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PREFACE

This is a collection of notes on classical mechanics, and contains a few things

o A collection of miscellaneous notes and problems for my personal (independent) classi-
cal mechanics studies. A fair amount of those notes were originally in my collection of
Geometric (Clifford) Algebra related material so may assume some knowledge of that
subject.

e My notes for some of the PHY354 lectures I attended. That class was taught by Prof.
Erich Poppitz. I audited some of the Wednesday lectures since the timing was convenient.
I took occasional notes, did the first problem set, and a subset of problem set 2.

These notes, when I took them, likely track along with the Professor’s hand written notes
very closely, since his lectures follow his notes very closely.

The text for PHY354 is [15]. I'd done my independent study from [5], also a great little
book.

e Some assigned problems from the PHY354 course, ungraded (not submitted since I did
not actually take the course). I ended up only doing the first problem set and two problems
from the second problem set.

e Miscellaneous worked problems from other sources.

Peeter Joot  peeterjoot@protonmail.com
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Part I

PHY354 (UOFT ADVANCED CLASSICAL MECHANICS)
LECTURE NOTES






RUNGE-LENZ VECTOR CONSERVATION

1.  MOTIVATION
Notes from Prof. Poppitz’s phy354 classical mechanics lecture on the Runge-Lenz vector, a less

well known conserved quantity for the 3D 1/r potentials that can be used to solve the Kepler
problem.

1.2 MOTIVATION: THE KEPLER PROBLEM

We can plug away at the Lagrangian in cylindrical coordinates and find eventually

¢ "M d
fzw: — ! (1.1)
$o ro M 2 M?2
—|E-U+
M ( 2mr2)
but this can be messy to solve, where we get elliptic integrals or worse, depending on the

potential.

For the special case of the 3D problem where the potential has a 1/r form, this is what Prof.
Poppitz called “super-integrable”. With 2N — 1 = 5 conserved quantities to be found, we have
got one more. Here the form of that last conserved quantity is given, called the Runge-Lenz
vector, and we verify that it is conserved.

1.3 RUNGE-LENZ VECTOR

Given a potential

v=-2 (1.2)
r

and a Lagrangian

_£ — m_r2 + l%zz —
2 2 mr? (1.3)
M, = mr*¢?
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RUNGE-LENZ VECTOR CONSERVATION

and writing the angular momentum as
M=mrxv (1.4)

the Runge-Lenz vector

A =vxM-of, (1.5)

is a conserved quantity.

1.3.1  Verify the conservation assumption

Let us show that the conservation assumption is correct

d d d
E(VXM)Zd—:XM+VX7;¥ (1.6)

Here, we note that angular momentum conservation is really dM/dt = 0, so we are left with
only the acceleration term, which we can rewrite in terms of the Euler-Lagrange equation

m Oor (1.7)

10U
=———1FX(mrxv)
m or

ou ,
=——FX(rXxv)
or

We can compute the double cross product

(ax(bXx¢)i = ambyCs€rsi€mi
= amb,csél[.;f] (1.8)

= ambicm - ambmci

For

ax(bxc)=(a-c)b—-(a-b)c (1.9)



1.3 RUNGE-LENZ VECTOR

Plugging this we have

d oU
g (VXM) = 2= (E-0v =)
I
:(%)Gv_;@.wﬁ (1.10)

B V_(r-v)r
S r3

Now let us look at the other term. We will need the derivative of f

dt _dr
dt  dtr
v di
:;+rE
V. rdr
ror2dt
y ravEr (1.11)
TroR2 dr
V. rv-er
2 p
vV T
AT

Putting all the bits together we have now verified the conservation statement

d . v (r-vr v or

E(VXM—ar):a(;— 3 )—a(;—r—Sv-r):O. (1.12)
With

d .

E(VXM—Q’I‘)IO, (1.13)

our vector must be some constant vector. Let us write this

vXM —af = «ae, (1.14)

so that



6

RUNGE-LENZ VECTOR CONSERVATION

vXM=a(e+t). (1.15)

Dotting eq. (1.15) with M we find

oM (e+1) = M- (v x M)

1.16
_o (1.16)

With £ lying in the plane of the trajectory (perpendicular to M), we must also have e lying in
the plane of the trajectory.
Now we can dot eq. (1.15) with r to find

r-(vxM)=ar-(e+t)

= a (recos(¢p — ¢o) +r)

M- -(rxv)= L17)
(1.17
MM _
m
M2
?:
This is
M2
W:ar(1+ecos(¢—¢0)). (1.18)

This is a kind of curious implicit relationship, since ¢ is also a function of r. Recall that the
kinetic portion of our Lagrangian was

(P + ) (1.19)

so that our angular momentum was

My = % (%mrzéﬁz) = mr’¢, (1.20)

with no ¢ dependence in the Lagrangian we have

%(mrz{p) -0, (1.21)



1.3 RUNGE-LENZ VECTOR

or

M = mr’¢2 = constant (1.22)

Our dynamics are now fully specified, even if this not completely explicit

T

ma 1+ ecos(¢ — ¢p) (1.23)
dp _ M
dt  mr?

What we can do is rearrange and separate variables

1 m?a? , mdg
Ry (1 +ecos(¢ — o)) = (1.24)
to find
M (? 1 M3 [P 1
1—102—,,[ de¢ 5 = 3f dv—> (1.25)
ma’ Jg,  (L+ecos(p—¢o))~ ma’ Jo (1+ ecosu)
Now, at least ¢ = ¢(¢) is specified implicitly.
We can also use the first of these to determine the magnitude of the radial velocity
dr  M? 1 _ de
ai = ma(lrecos@—ao. CSe- ey
eM? 1 (6 — do) M
= sin(¢ — ¢o)—
ma (1+ ecos(¢p — ¢g))> 0 2
eM? 1 (1.26)

= sin(¢ — ¢o)

m2ar? (1 + e cos(¢p — ¢p))?

eM? (mra\? .
= mlar? ( M? ) sin(¢ = do)

= % sin(¢ — do),
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with this, we can also find the energy

E = i(mi) + ¢ (mr*) - (%m# + %mrzéﬁz ~ U)

1 1 .

= —mi* + —mr*$* + U
2 2 (1.27)

= —mi“+ —mr-¢° — —
2 2
1 €2 .2 2 a

2" @=do) + 2mrr

Or
m . 1 a
E=m(exr)2+wM2—7. (1.28)

Is this what was used in class to state the relation

2EM?
e=4/1+ PR (1.29)

It is not obvious exactly how that is obtained, but we can go back to eq. (1.23) to eliminate
the ¢ sin® A¢ term

2
11 (, (M |
E=-m—le"—|—-1| |+ —M"——. 1.30

e [e (rma/ ) ) 2mr? r (1.30)

Presumably this simplifies to the desired result (or there is other errors made in that prevent
that).



PHASE SPACE AND TRAJECTORIES

2.1 PHASE SPACE AND PHASE TRAJECTORIES

The phase space and phase trajectories are the space of p’s and ¢’s of a mechanical system
(always even dimensional, with as many p’s as ¢’s for N particles in 3d: 6N dimensional space).
The state of a mechanical system = the point in phase space. Time evolution = a curve in
phase space.
Example: 1 dim system, say a harmonic oscillator.

2
p 1 22
H=—+-m 2.1
> +2wq 2.1)

Our phase space can be illustrated as an ellipse as in fig. 2.1

r-

Figure 2.1: Harmonic oscillator phase space trajectory

where the phase space trajectories of the SHO. The equation describing the ellipse is

2
14 1 2 2
E=—+— 2.2
> +2qu, 2.2)

which we can put into standard elliptical form as

2
_ p m | 2
REE NN




10 PHASE SPACE AND TRAJECTORIES

2.1.1 Applications of H

Classical stat mech.

transition into QM via Poisson brackets.

mathematical theorems about phase space “flow”.

perturbation theory.

2.1.2  Poisson brackets

Poisson brackets arises very naturally if one asks about the time evolution of a function f(p, g, 1)
on phase space.

a0 n O da O
dtf(p”q”t) L gp; ot * dq; Ot i
(2.4)
_Z_QG_H 0f6H+8f
Opidq; 0q;Op; Ot
Define the commutator of H and f as
Z OH of OH 0f (2.5)

dpi 0q;  0q; Op;

This is the Poisson bracket of H(p,q,t) with f(p,q,t), defined for arbitrary functions on
phase space.
Note that other conventions for sign exist (apparently in Landau and Lifshitz uses the oppo-

site).
So we have
d of ,
— it H, - 2.6
dtf(pl qi,t) = [ f]"'at (2.6)
Corollaries:
If f has no explicit time dependence df /0t = 0 and if [H, f] = 0, then f is an integral of
motion.

In QM conserved quantities are the ones that commute with the Hamiltonian operator.



2.1 PHASE SPACE AND PHASE TRAJECTORIES

To see the analogy better, recall def of Poisson bracket

of dg Of og
2L o L0 2.7
Z 0pi 0q;  0q, Op; @7

Properties of Poisson bracket

e antisymmetric

[f.gl=~1g. f]. (2.8)

e linear

laf +bh.g] = alf,g]+bh.g]

2.9
[g.af +bh) = alg, f]+b][g.h]. (2.9)

2.1.2.1 Example. Compute p, g commutators

ap, opy (9p 51’/
[Pz’ p] a a
Pk O]k qk OPk (2.10)

So
[pi»pj] =0 (2.11)
Similarly [g;,¢;] = 0.
How about
dg{ Opf  0Oq; Op
[qh Pj] = Z%Zz_ (9_(9_,
. P PkPOdk qk OPk

S Z ik ji (2.12)
k

11



12 PHASE SPACE AND TRAJECTORIES

So

[9i, )] = —6ij. (2.13)

This provides a systematic (axiomatic) way to “quantize” a classical mechanics system,
where we make replacements

. _) A4
EE (2.14)
Pi = Pis
and
gi, pj] = =6ij = |qi pj] = ihd;; (2.15)
H(p.q.0) > H(p,q,1).
So
[éi’ ﬁ]]
s —0ij (2.16)
Our quantization of time evolution is therefore
_Qt - [ i]
1 2.17)
_pl = _71 i] .
These are the Heisenberg equations of motion in QM.
2.1.2.2  Conserved quantities
For conserved quantities f, functions of p’s ¢’s, we have
[f,H| =0 (2.18)

Considering the components M;, where

M=rxp, (2.19)



2.2 ADIABATIC CHANGES IN PHASE SPACE AND CONSERVED QUANTITIES

We can show eq. (2.25) that our Poisson brackets obey

(M, M,] = —M,
[My, M.] = -M, (2.20)
(M., M,] = -M,

(Prof Poppitz was not sure if he had the sign of this right for the sign convention he happened
to be using for Poisson brackets in this lecture, but it appears he had it right).

These are the analogue of the momentum commutator relationships from QM right here in
classical mechanics.

Considering the symmetries that lead to this conservation relationship, it is actually possible
to show that rotations in 4D space lead to these symmetries and the conservation of the Runge-
Lenz vector.

2.2  ADIABATIC CHANGES IN PHASE SPACE AND CONSERVED QUANTITIES

In fig. 2.2 where we have

Figure 2.2: Variable length pendulum

r-2*_ 1@ 2.21)
w(1) 8

Imagine that we change the length /(¢) very slowly so that

T-= <1 (2.22)

where T is the period of oscillation. This is what is called an adiabatic change, where the
change of w is small over a period.

13



14 PHASE SPACE AND TRAJECTORIES

It turns out that if this rate of change is slow, then there is actually an invariant, and

E
=, (2.23)
w

is the so-called “adiabatic invariant”. There is an important application to this (and some
relations to QM). Imagine that we have a particle bounded by two walls, where the walls are
moved very slowly as in fig. 2.3

Figure 2.3: Particle constrained by slowly moving walls

This can be used to derive the adiabatic equation for an ideal gas (also using the equipartition
theorem).
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2.3 APPENDIX I. POISSON BRACKETS OF ANGULAR MOMENTUM

Let us verify the angular momentum relations of eq. (2.20) above (summation over k implied):

_ OM;OM;  OM; OM;
© Opr Ox Oxi Opy
0x4pp 0xrpy Oxapp 0x,py

[M;, M|

= €abi€rsj——— — €abi€rsj——
abi€rs j 5pk axk abi€rsj 8Xk apk
opp, Ox, Ox,  Ops
= eabierijaa_pkpsa_xk - eabiersjpba_xera_pk
= Eabifrijuékbpsé‘kr - Eabifrsjpbékaxr(ssk (2.24)
= fabifrijapsébr - fabifrsjpbxréas
= €ari€rsjXaPs — €sbi€rsjPbXr
= =60 xapy = 8. pyx,
= - (5a35ij - 6aj6is) XaPs — (6bj6ir - 6br6ij) PbXr
= _6as6ij-xaps + 6aj6isxaps - 5bj5irpbxr + 6br6ijpbxr
= —XsP507j + XjDi — PjXi + DpXp0ij
So, as claimed, if i # j # k we have
[M,', Mj] = —-M,. (2.25)

2.4 APPENDIX II. EOM FOR THE VARIABLE LENGTH PENDULUM
Since we have referred to a variable length pendulum above, let us recall what form the EOM

for this system take. With cylindrical coordinates as in fig. 2.4, and a spring constant w% =k/m
our Lagrangian is

1 , 1
L= M (1"2 + r292) - Ema)(z)r2 —mgr(1 —cos6) (2.26)
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« Ci- w&)

Figure 2.4: phaseSpaceAndTrajectoriesFig4

The EOM follows immediately

_9L _

=25 =
oL )

—gzmr

& = % = —mgrsin @ e
o0 8

dP, 0L 2

el mré® — mwir — mg(1 — cos 6)

Py mr2é

Or

% (r29) = —grsinf
d
dt

Even in the small angle limit this is not a terribly friendly looking system

(2.28)
() = r(é2 - a)(z)) —g(1 —cos®)

16 +26i-+ g6 = 0

2

. 2.29
?—r92+rw0:0. ( )

However, in the first equation of this system

i
6+20° +—g6 =0, (2.30)
r r

we do see the 7-/r dependence mentioned in class, and see how this being small will still result
in something that approximately has the form of a SHO.



RIGID BODY MOTION

3.1 RIGID BODY MOTION
3.1.1  Setup

We will consider either rigid bodies as in the connected by sticks fig. 3.1 or a body consisting
of a continuous mass as in fig. 3.2

Figure 3.2: Rigid solid body of continuous mass

In the first figure our mass is made of discrete particles

M:Zm,- (3.1

17
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RIGID BODY MOTION

whereas in the second figure with mass density p(r) and a volume element d°r, our total mass
is

M= f p(m®d’r (3.2)
Vv

3.1.2  Degrees of freedom

How many numbers do we need to describe fixed body motion. Consider fig. 3.3

F

Figure 3.3: Body local coordinate system with vector to a fixed point in the body

We will need to use six different numbers to describe the motion of a rigid body. We need
three for the position of the body R¢ys as a whole. We also need three degrees of freedom (in
general) for the motion of the body at that point in space (how our local coordinate system at
the body move at that point), describing the change of the orientation of the body as a function
of time.

Note that the angle ¢ has not been included in any of the pictures because it is too messy with
all the rest. Picture something like fig. 3.4

Figure 3.4: Rotation angle and normal in the body
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Let us express the position of the body in terms of that body’s center of mass

Rey = Zimiri’ a3
2jm;
or for continuous masses
d3 r/r/p(r/)
Rey = —fv . (3.4)
der//p(ru)

We consider the motion of point P, an arbitrary point in the body as in fig. 3.5, whos motion
consists of

1. displacement of the CM R¢yy

2. rotation of r around some axis fi going through CM on some angle ¢. (here fi is a unit
vector).

Figure 3.5: A point in the body relative to the center of mass

From the picture we have

p=Rey+r (3.5)
dp=dRcy +d¢ xr (3.6)
where

d¢ = hdg. (3.7)
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RIGID BODY MOTION
Dividing by dt we have

dp dRcy  dé
a - dar a "

The total velocity of this point in the body is then

v=Vey = QCM Xr
where

d¢ _ d(tg)

Qcy = il angular velocity of the body.

This circular motion is illustrated in fig. 3.6

Figure 3.6: circular motion

Note that v is the velocity of the particle with respect to the unprimed system.
We will spend a lot of time figuring out how to express Q¢yy.
Now let us consider a second point as in fig. 3.7

Il
=~

+r

R

+

=

P
P
Iy

r+a

(3.8)

(3.9)

(3.10)

(3.11)



3.1 RIGID BODY MOTION

Figure 3.7: Two points in a rigid body

we have

dp
VP—E

d
:_r+d_¢x

dt dt

dr d¢
—E-FEX(I'—a)

d
:—r—d—¢xa+d—¢xf'
dt dt dt

Vp:VCM—QCMX3+QCMXf'

Have another way that we can use to express the position of the point

i _dR dp

dar ar T

or

Vp=Va+Qu XE,.

Equating with above, and noting that this holds for all ¥,, and noting that if ¥, = 0

Va=Veu—Qcu xa

hence

QCMXf'p :QAXf‘p

(3.12)

(3.13)

(3.14)

(3.15)

(3.16)

(3.17)

21



22 RIGID BODY MOTION

or

Qcy = Q4. (3.18)
The moral of the story is that the angular velocity () is a characteristic of the system. It does

not matter if it is calculated with respect to the center of mass or not.
See some examples in the notes.

3.2 KINETIC ENERGY

For all P in the body we have

v, =Vi+Qxr, (3.19)

here V4 is an arbitrary fixed point in the body as in fig. 3.8

Figure 3.8: Kinetic energy setup relative to point A in the body

The kinetic energy is

(3.20)

=Z%(V§+2VA-(nxra)+(Q><ra)2)



We see that if we take A to be the center of mass then our cross term

ZmaVA . (Q X l‘a) = VA . [Q X Zmal'a]

=V4-(QxRewm)

which vanishes. With

:uzzma
a

we have

T = %MV%M+%Z(1](era)-(era)

with

(AXB)-(CxD)=(A-C)B-D)—(A-D)B-C),
or
(AxB)-(AxB)=A’B’>-(A-B)’.

Forgetting about the y dependent term for now we have
1
T = 5 Zu: my (erﬁ -(Q- ra)z)
Expanding this out with
g, = (rmraz’ ra3) = {rai}
and

Q= (100, O3) = {)}

we have

T = % Z mg (Qkarajraj - (riak)Z)

a

3.2 KINETIC ENERGY

(3.21)

(3.22)

(3.23)

(3.24)

(3.25)

(3.26)

(3.27)

(3.28)

(3.29)
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CLASSICAL MECHANICS EULER ANGLES

4.1 PICTORIALLY

We want to look at some of the trig behind expressing general rotations. We can perform a
general rotation by a sequence of successive rotations. One such sequence is a rotation around
the z, x, z axes in sequence. Application of a rotation of angle ¢ takes us from our original fig. 4.1
frame to that of fig. 4.2. A second rotation around the (new) x axis by angle 6 takes us to fig. 4.3,
and finally a rotation of  around the (new) z axis, takes us to fig. 4.4.

A composite image of all of these rotations taken together can be found in fig. 4.5.

Figure 4.1: Initial frame

213
=
%
J
)
#

Figure 4.2: Rotation by ¢ around z axis

25
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CLASSICAL MECHANICS EULER ANGLES

Figure 4.3: Rotation of 6 around (new) x axis

Figure 4.4: Rotation of ¢ around (new) z axis

Figure 4.5: All three rotations superimposed
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4.2 RELATING THE TWO PAIRS OF COORDINATE SYSTEMS

Let us look at this algebraically instead, using fig. 4.6 as a guide.

»
,/0: ,9,5)

X

Figure 4.6: A point in two coordinate systems

Step 1. Rotation of ¢ around z

X cos¢p sing Offx
y|=|-sing cos¢ Of|y
4 0 0 1

Step 2. Rotation around x’.

x" 1 0 0 x

y'|=10 cos@ sinf Oy

7’ 0 —sinf® cos6 O0]|Z
Step 3. Rotation around z”.

x" cosy siny Of|x”

Yy =|-siny cosy Of|y”

ZIII 0 0 1 ZI/

So, our full rotation is the composition of the rotation matrices

x" cosy siny Of]1 0 0 cos¢p sing Offx

y"|=|-sinyg cosyy 0||0 cosf sinf O||—sing cos¢ Of|y

7" 0 0 1/[0 —sin® cos@ O 0

0

1]z

A.1)

4.2)

(4.3)

(4.4)

27



28 CLASSICAL MECHANICS EULER ANGLES

Let us introduce some notation and write this as

[ cosa sina O
B (@) = |-sina cosa O
0 0 1

10 0
B.(#)=|0 cos® sinfd O
|0 —sinf cosfd O

so that we have the mapping

r— Bz(w)Bx(H)Bz(d))r

Now let us write
X1
r=ix
X3
We will call

AW, 0,¢) = B:(y)B(6)B(¢)

so that

3
/ — Aiix:
X, = ijXj-

=1

(4.5)

(4.6)

“4.7)

(4.8)

(4.9)

(4.10)

We will drop the explicit summation sign, so that the summation over repeated indices are

implied

/ — s .
X; = Ajjxj.

(4.11)



4.2 RELATING THE TWO PAIRS OF COORDINATE SYSTEMS

This matrix A(Y, 6, ¢) is in fact a general parameterization of the 3 X 3 special orthogonal ma-
trices. The set of three angles 6, ¢,  parameterizes all rotations in 3dd space. Transformations
that preserve a - b and have unit determinant.

In symbols we must have

ATA =1 (4.12)

detA = +1. (4.13)

Having solved this auxiliary problem, we now want to compute the angular velocity.

We want to know how to express the coordinates of a point that is fixed in the body. i.e. We
are fixing x; and now looking for x;.

The coordinates of a point that has x’, y’ and 7’ in a body-fixed frame, in the fixed frame are
X, y, z. That is given by just inverting the matrix

X X
x| =AT'.0.9) X,
X3 X}
x|
= B.'(9)B,' 0B W) | x, (4.14)
X
X,
= B} (9)B(O)B](¥) | x,
X

Here we have used the fact that B, and B, are orthogonal, so that their inverses are just their
transposes.

We have finally
X] x’l
X2 = Bz(_d’)Bx(_Q)Bz(_’v[’) X’Z (4~15)

/
X3 x5

29



30 CLASSICAL MECHANICS EULER ANGLES

If we assume that i, 6 and ¢ are functions of time, and compute dr/dt. Starting with

= [A7'(¢.60.¥)]ij ', (4.16)
= (1A' (@ + Ag, 0+ A,y + M)y — [A7(6,60,0)]) ). (4.17)
For small changes, we can Taylor expand and retain only the first order terms. Doing that and
dividing by At we have
dx 8 8
Now, we use
x =Ajx, (4.19)
so that we have
dx; 0 .
d_tl = ((8170 ij ) jl'wb‘i'( )A]19+ ((9¢ ij )Aj[¢) X. (4.20)
We are looking for a relation of the form
dr
— =QXxr. 4.21
dr ' (4.21)
We can write this as
Vx X
0A™ oA HAT!
=6 A+ A+ A 4.22
Ivy‘ ( 50 ¢6¢ lﬁaw )y (4.22)
z
Actually doing this calculation is asked of us in HW6. The final answer is
dx,' _; b 9 .0 P W 4.23
7 (¢€ijk]n + O€iji j, + llféijkjn)xj- (4.23)
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Here ¢ is the usual fully antisymmetric tensor with properties

0 when any of the indices are equal.
€ijk =4 1 for any of i jk = 123,231,312 (cyclic permutations of 123. (4.24)
-1 for any of ijk = 213,132,321.






PARALLEL AXIS THEOREM

We can express the kinetic energy as

3
1
T=> Z 010, (5.1)
i,j=1
where
I,'j = Z mg ((5”‘1'(21 - ral.raj) (52)

a

Here a is a sum over all particles in the body.
If the body is continuous and p(r) is the mass density then the mass inside is

m:fd3rp(r), (5.3)

where we integrate over a volume element as in fig. 5.1.

Pr

Figure 5.1: Volume element for continous mass distribution

For this continuous case we have

I = f drp(r) (8ix” - rir ) (5.4)
|4

33



34 PARALLEL AXIS THEOREM

\b

® Ma
Ocm

Figure 5.2: Shift of origin

Another property of /;; is the parallel axis theorem (or as it is known in Europe and perhaps
elsewhere, as the “Steiner theorem”).

Let’s consider a change of origin as in fig. 5.2

We write

r, =r,+b, (5.5)

and / l.’j for the inertia tensor with respect to O’. Write

ry =1, +b; (5.6)
or

r, =r,—b, (5.7)
so that

. Zma ,]r rl’?j)
= (61j(ra = b)Y = (r, = bi)(ry, = b)) (5.8)

Z (61/(rayTay =% = 2r4b) = rg,ry, = bibj + r by + 13 ;)

but, by definition of center of mass, we have

> mar, =0, (5.9)
a



PARALLEL AXIS THEOREM

SO
I =
(5.10)
This is
I = I + (6,07 = bib) .11

Some examples  Infinite cylinder rolling on a plane, with no slipping and no dissipation (heat?)
as in fig. 5.3.

cm

Figure 5.3: Infinite rolling cylinder on plane

Take the mass as uniform and set up coordinates as in fig. 5.4.
No slip means on revolution, the center of mass moves 2wR. We have one degree of freedom:

®.

.od
r=p="2 (5.12)

This is the angular velocity.

Ap  2n

= — 5.13
Ax 2nR ( )

35



36 PARALLEL AXIS THEOREM

cr

X
i
[ 24
Figure 5.4: Coordinates for infinite cylinder

SO

Ax = RA$ (5.14)

The kinetic energy is
1 1
T= EMVCM + 503133

1 2 1 2
= EIUVCM-FEQ 1

(5.15)

Vom = —
CM At

_ph¢ 5.16
_RAt (5.16)
= RO
— R

SO
1 ,., 1.
T = E“R2¢2 + §¢21‘ (5.17)

(can calculate I : See notes or derive).

Now suppose the CM is displaced as in fig. 5.5.

Perhaps a hollow tube with a blob attached as in fig. 5.6, where the torque is now due to
gravity.
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Figure 5.5: Displaced CM for infinite cylinder

Figure 5.6: Hollow tube with blob
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This can have more interesting motion. Example: Oscillation. This is a typical test question,
where calculation of the frequency of oscillation is requested. Such a question would probably
be posed with the geometry of fig. 5.7.

Figure 5.7: Hollow tube with cylindrical blob

Recall for a general body as in fig. 5.8.

Figure 5.8: general body coordinates

Write
r=a+r (5.18)

and
v=Vom + Q Xr (5.19)
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or
v=Vem+Qxa+Qxr'. (5.20)

Here Vu is the velocity of the origin A.
If Veum and Q) are perpendicular always there always exists a such that A is at rest.
Another example is a cone on plane or rod as in fig. 5.9.

Figure 5.9: Cone on rod

(this is another typical test question).
For cylinder that point is the contact between plane and cylinder. This is called the momentary
axis of rotation: fig. 5.10. Using this is a very useful trick.

> oy

=
I

7

’

/
4 -
2 4
A.SL{ >VCM

Figure 5.10: Momentary axes of rotation
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Aside  more interesting is the cone viewed from above as in fig. 5.11.

Q€

>

Figure 5.11: Cone from above

Coordinates for this problem as in fig. 5.12.

;T 7 /77777

Figure 5.12: Momentary axes of rotation for cone on stick
Using eq. (5.20) we have

VCMZQXb
=¢zxDb

where this followed from

v=0Oxr

(5.21)

(5.22)
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here 1’ is the vector from axes of momentary rotation to point.
Our kinetic energy is

1
2
and our coordinates are fig. 5.13.

2 / w2
T = SuVn + 59 (5.23)

=
P

=/

T

Figure 5.13: Coordinates

Vem = Q xb (5.24)
[Veml = |4|Ib]
= ¢|b| X moving unit vector in x y plane
. 5.25
=¢Va2+R2+2a-R (5:23)
= ¢ Ja? + R% + 2aR cos(m — )
For
_ Moo 0 _ 1.,
T==¢ (a + R“ + 2aR cos(m ¢))+ 1)
2 2 (5.26)

= %¢2 (,u (a2 +R? +2aR cos(m — ¢)) + I),

and

Height of CM above plane

T ) 5o

This gravity portion accounts for the torque producing interesting effects.
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PHY354 PROBLEM SET 1 (2012)

6.1 PROBLEMS

Exercise 6.1 Lorentz force Lagrangian

1. For the non-covariant electrodynamic Lorentz force Lagrangian

1
L= EmV2+quA—q¢,
derive the Lorentz force equation

F=qE+vxB)

0A
E:—V¢—E

B =VXxA.

2. With a gauge transformation of the form
o
+ —_
$=0+

A — A-Vy,

show that the Lagrangian is invariant.

(6.1)

(6.2)

(6.3)

Exercise 6.2 Finding trajectory through explicit minimization of the action

For a ball thrown upward, guess a solution for the height y of the form y(f) = a»1> + a;t + ao.
Assuming that y(0) = y(T) = 0, this quickly becomes y(¢) = a>(#* — T1). Calculate the action (to
do that, you need to first write the Lagrangian, of course) between t = 0 and r = T, and show

that it is minimized when a, = —g/2.

Exercise 6.3 Coordinate changes and Euler-Lagrange equations

45
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Consider a Lagrangian £(q,4) = L(q1, -, qn, g1, - gn). Now change the coordinates to

some new ones, e.g. let ¢; = gj(x1, -+, xy),i = 1--- N, orin short g; = g;(x). This defines a new
Lagrangian:
-~ d d
Lx, %) = Lg1(x), - - - gn (), d_qu(x)’ EE ECIN(X)) (6.22)

which is now a function of x; and x;. Show that the Euler-Lagrange equations for £(q, §):

0L, q) _ d9Lq.9
9qi dr  0g;

(6.23)

imply that the Euler-Lagrange equations for £(x, X) hold (provided the change of variables
g — x is nonsingular):

0L(x,x) d 0L(x,%)
6x,- B E (956,'
The moral is that the action formalism is very convenient: one can write the Lagrangian in any
set of coordinates; the Euler-Lagrange equations for the new coordinates can then be obtained
by using the Lagrangian expressed in these coordinates.
Hint: Solving this problem only requires repeated use of the chain rule.

(6.24)

6.2 SOLUTIONS

Answer for Exercise 6.1

Solution Part 1. Evaluate the Euler-Lagrange equations
In coordinates, employing summation convention, this Lagrangian is

1 . ,
L= S +qxjA;—qé. (6.4)

Taking derivatives

0;.5 = mx; + qA,', (65)

axi

i% = mx; + % + %ﬂ

dros; 0 Tor T oy, ar 66
0A; 0A; . (®.

o A OAL
T e T T,



6.2 SOLUTIONS

This must equal

oL 0A; ¢
= —gxi—L gL 6.7
Bxi qx] 6)6,' qax,- ’ ( )

So we have
. 0A;  0A; v 0Aj ¢
mxj=—q— —q—Xx; +qxj— —qg—
A T T A TR .
0A;  0¢ N (’)Aj 0A; .
= — —_— Vi|l— — ——
Noar " ox) T\ ox; ~ ox;
The first term is just E;. If we expand out (v X B); we see that matches
(VX B); = vyBp€api
= Vu0,As€rshEapi
lia] (6.9)
= v,0,A0;

=v4(0iAs — 04A)).

A a — jsubstitution, and comparison of this with the Euler-Lagrange result above completes
the exercise.

Solution Part 2. Gauge invariance

We really only have to show that

v-A—¢ (6.10)

is invariant. Making the transformation we have

0
V'A—¢—>Vj(Aj—3jX)—(¢+a—);)

4
=VjAj=¢=vidx - 5-

_ dxja)( 8)(
‘V'A_¢_(Ea_xj+5)

dy(x,1)
dr

(6.11)

sz_¢_
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We see then that the Lagrangian transforms as

d
Lo L+ 5 (an). (6.12)
dt
and differs only by a total derivative. With the lemma from the lecture, we see that this

gauge transformation does not have any effect on the end result of applying the Euler-Lagrange
equations.

Answer for Exercise 6.2

We are told to guess at a solution

y = axt® + ait + ag, (6.13)

for the height of a particle thrown up into the air. With initial condition y(0) = 0 we have

ap =0, (6.14)

and with a final condition of y(T") = 0 we also have

0= Clsz +a1T

(6.15)
=T(ayT + ay),
so have
() = art’ —axTt = ay (> =Tt ,
y 2 2 2( ) (6.16)
W) =ax2t-T)
So our Lagrangian is
1
L= 5ma§ (2t=T)* = mgay (* - Tt) (6.17)

and our action is

T
S = f dt(lmag (2t—T)2—mga2(t2—Tt)). (6.18)
o T \2



6.2 SOLUTIONS

To minimize this action with respect to a; we take the derivative

s g 2 2
% :j()‘ (ma2 (2t-T) —mg(t —Tt)). (6.19)

Integrating we have

s
0= —
Oar
T
1 3 1, 1.,
== 2-T) —mg| = - =Tt
(6ma2(t ) mg(3 5 ))0
1 1 1 1
= ZmarT —mg(§T3 - ET3)— gmaz(—T)3 (6.20)
Y G O
- 3278372
1
ol
or
ar+g/2=0, (6.21)

which is the result we are required to show.

Answer for Exercise 6.3

Here we want to show that after a change of variables, provided such a transformation is
non-singular, the Euler-Lagrange equations are still valid.
Let us write

ri = ri(ql,qz,---qN). (625)

Our “velocity” variables in terms of the original parametrization g; are

. drj B orjdq; . Or;

= — = =q;—, 6.26
T4 T oq o - Y, (6.26)

so we have
orj _ ori (6.27)

dg;  Oqi’
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Computing the LHS of the Euler Lagrange equation we find

0L _9Ldry L0

= _ = =_J) 2
Bq,- (’)rj aqi ai"j 6q,~ (6 8)
For our RHS we start with
or; or; or; or;
0L _0Lory oLor; _0Lor 9Lory (6.29)
8q,' 6}’, 56]5 57, 56][ al’j qu 6}’, 56]5
but dr;/0¢; = 0, so this is just
0L - %% %% - %% (6.30)

8_q','_ 6rjc')qi+6ij6q',~ B (‘)fjaql-'

The Euler-Lagrange equations become

B 6}’, 56][ * C()i’j 8qi dt 8fj 8q,-

_0Lorj 0L (doL)0rj OLdDr; 6.31)
- arjaqi a'jaq,' dl‘ai‘j 0qi (9'] dt dq;
_(az: dé?L)arj

drj  dt 9i;) g

o 0L aLoi d(azarj)

Since we have an assumption that the transformation is non-singular, we have for all j

a .
Do, (6.32)
0qg;

so we have the Euler-Lagrange equations for the new abstract coordinates as well

= or, o (6.33)



PHY354 PROBLEM SET 2 (2012)

7.1 PROBLEMS

Exercise 7.1 Symmetries and conservation laws in external E.M. fields

2012 PHY354 Problem set 2, problem 1

Let us continue studying the Lagrangian of Problem 1 of Homework 1, namely, its sym-
metries, and the relevant conserved quantities. To this end, we will consider various cases of
external scalar and vector potentials.

1. Consider first the case of time-independent A and ¢. Find the expression for the con-
served energy, &, of the particle.

2. For external A and ¢ dependent on time, find d&/dt.

3. Let now A and ¢ be spatially homogeneous, i.e. x-independent. Find the conserved
momentum. Is it equal to the usual mv?

4. Consider motion in the field of an electrostatic source (creating an external static ¢(X)).
Find the angular momentum of the particle. Is it conserved for all ¢(x)?

Exercise 7.2 Find components of angular momentum in spherical and cylindrical coordinates
2012 PHY354 Problem set 2, problem 5
1. Find M\, M,, M, M? in spherical coordinates (r, 6, ¢).
2. Find M,, My, M., M? in cylindrical coordinates (7, ¢, 7).

7.2 SOLUTIONS

Answer for Exercise 7.1

Solution Part 1. Conserved energy
Recall the argument for energy conservation, the result of considering time dependence of
the Lagrangian. We have
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dLOq  9L0Gi 0L

d o
gt a0 = 6q, ot oq ot ot

=(i%)%+%%+%
dtdg;) ot  09q; ot Ot
- d(0cta) o

dt\oq; ot ot

Rearranging we have the conservation equation

d (oL, oL
E(a_éIiQI_L)'FE—O.

We define the energy as

oL
e Sy
34iq L

so that the when the Lagrangian is independent of time & is conserved, and in general

a& oL
dt ot
Application to this problem where our Lagrangian is
15
L= Emv +qv-A - qdo,
we have

0
%zmv+qA.

so the energy is

E=(mv+gK) v— %mv2+g,w10(—q¢)

1 2, s
= —mv ,
) q

with an end result of

1
&= Emv2 + qo.

Solution Part 2. Find d&/dt

(7.1)

(7.2)

(7.3)

(7.4)

(7.5)

(7.6)

(7.7)

(7.8)



7.2 SOLUTIONS

With direct computation  There are two ways we can try this. One is with direct computation
of the derivative from eq. (7.7)

& do
a Sy
d¢
:v-(qE+qva)+q(E+v-V¢)
0
:qv-(E+V¢)+qv/-QV/><’137+416—¢t5

oA ¢
=qv- (—%— E +%) + qE

So our end result is

d& oA 3¢
_=_qv._+ —

dr or " Tar (79)

Using the Lagrangian time partial ~ Doing it explicitly as above is the hard way. We can do it
from the conservation identity eq. (7.4) instead

ag __oL
dt ot
o(1 ,
Y A — (7.10)
y 2mv +qgv-A q¢)
__gy.0A 09
ST T
as before.

Aside: Why not the “expected” qv - E result?  From the relativistic treatment I expected

— =av-E, (7.11)

but that’s not what we got. With & = mv?/2 + q¢, it appears that we get a similar result
considering just the Kinetic portion of the energy

1
Emv2 =& - q¢. (7.12)

Computing the derivative from above we have

53



54 PHY354 PROBLEM SET 2 (2012)

DL o gy 94, 00 40
a\2"™ T 6t 6t T
=—qv-— /Z qv-Vo¢
MER
or
d (1 d
p (5"”2) =g &-a» 7.13)

Looking back to what we did in the relativistic treatment, I see that my confusion was due to
the fact that we actually computed

d(gkin
dt

= gv-E, (7.14)

where Eyi, = ymcz. To first order, removing an additive constant, we have ymc2 ~ mv?/2, so
everything checks out.

Solution Part 3. Conserved momentum

The conserved momentum followed from a Noether’s argument where we compute

ar _oL g oL 04
de — 0q; Oe oq. Oe

d 0L\ dqi N (')L’% (7.15)
dt 0q; Oe 0q; Oe

d (o9

t\0q, de

where it has been assumed that a perturbed Lagrangian £'(e) = L(q(€), q(€),1) also sat-
isfies the Euler Lagrange equations using the transformed coordinates. With the coordinates
transformed by a shift along some constant direction a as in

X =X+ ea, (7.16)

we have 9x’/de = a, so eq. (7.15) takes the form

dr  d (oL
de = E (a—xlal) . (717)

Our shifted Lagrangian for spatially homogeneous potentials ¢’ = ¢ and A’ = A is



7.2 SOLUTIONS

’ 1 ’ ’
L =§mvz+qv -A—q¢ (7.18)

=L,

but v/ = v, so we’ve just got our canonical momentum M = 9.L/dx; within the time derivative,
and must have for all a
dM

Y oa-o. 7.19
o (7.19)

The conserved momentum is then just

M = mv + gA. (7.20)
Solution Part 4. Conserved angular momentum
Does the conserved angular momentum take the same from as x X M as we had in a non-

velocity dependent Lagrangian? We can check using the same Noether arguments using the
following coordinate transformation

X = ~€il2%e<i12, (7.21)

where j = @ A V is the geometric product of two perpendicular unit vectors, and € is the
magnitude of the rotation. This gives us

ax’ __j oI 012 4 om€il25p€il2 J
de 2
1 .. (7.22)
= ) (x'j—Jjx')
=x"-J

The Noether conservation statement is then

dr _d (oL
de  di\ dx;

e - (x'- j)) (7.23)

With a static scalar potential ¢(x) is our Lagrangian rotation invariant? We have

’ 1 72 ’
L£=v-
Y qe(x’) (7.24)

= %VZ — gp(x").

With zero vector potential, our kinetic term is invariant since the squared velocity is invariant,
but we require ¢(x’) = ¢(x) for total Lagrangian invariance. We have that if ¢(x) = ¢(|x]).
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Evaluating the conservation identity eq. (7.23) at € = 0 we have
d .
0= 7 M- (x-))). (7.25)
t
We are used to seeing this in dual form using the cross product

M- (x- j) = (M(x- )))
= S(Mxj - Mjx)

1
= §<MXJ - xMj)

1 (7.26)
= §<MAX—X/\M> -
1
= §<(M/\X—X/\M)-j)
=MAX)-j
=IMXX)-j.
We are left with
d
0=1I—xxM)- 7.27
S XM (7.27)
but since j can be arbitrarily oriented, we have a requirement that
O—d(xxM) (7.28)
dt ' '

This verifies that the our angular momentum is conserved, provided that ¢(x) = ¢(|x|), and
A = 0. With A =0, so that M = mv + gA = mv this is just

XXM=mxXv. (7.29)
Note that the dependency on Geometric Algebra in the Noether’s argument above can proba-
bly be eliminated by utilizing a rotational transformation of the form

X =x+hXX. (7.30)

I’d guess (or perhaps recall if I attended that class), that this was the approach used.

Answer for Exercise 7.2

Solution Part 1. Spherical coordinates
In Cartesian coordinates our angular momentum is

M =r X (mv)
R R . (7.31)
= m(yv; — zvy)X + m(zvy — xv,)§ + m(xvy — yv,)Z



Substituting x, y, z is easy since we have

X sin 6 cos ¢
y|=Tr|sinfsing|,
Z

cos 6

but the v substitution requires more work. We have

cos 6 cos ¢ — sin 0 sin ¢¢
= [cos @ sin ¢f + sin @ cos p¢
—sin 60

v dr
Cdt
d,
= d—t(”‘)
. dr
=it+r—
dt
sin § cos
dr ) ) ¢
T = b7 sin sin ¢
cosf
So we have

i-sin @ cos ¢ + r cos 0 cos ¢f — rsin O sin ¢
V = |jsinfsin¢ + rcos @ sin ¢ + r sin 6 cos ¢¢

cos @ — rsin 60

7.2 SOLUTIONS

(7.32)

(7.33)

(7.34)

(7.35)

57



58 PHY354 PROBLEM SET 2 (2012)

sin @sin ¢v, — cos 6v,
M =mr| cos6v, —sinécos¢v,
sin 6 cos ¢v, — sin O sin v,
S 0S p(iCo — 1S ¢0) — Co(i'S S 4 + rCS 40 + rS ¢Cyh)
=mr Co(iS gCy + rCoCyl — 1S ¢S ) — S ¢Cy(iCq — 1S g6)
[S9Cy(i-S 6S ¢ + rCaS 30 + S 9Cyp) — S 4S 3(iS 9Cy + rCoCyf — rS ¢S 3$)

(7.36)
FCoSyS G —r0S LS 4 — SeCyS s — roC2S 4 — rgS ¢CyCy
=mr SgCgCq + rOC3Cy — rdS ¢CoS g — iCoSvC€5 + r0S2Cy
S 785Cs + riCeSTCsS ¢ + rdS §C; — iS755C, — réCeSyS3Cy + rdSyS;
| —10S 4 — r$S 4CoCy
= mr +i‘9C¢ - I"(Z)SgCgS¢
+r¢S5
In matrix form, we have (and can read off M,, M, M)
—2sin¢g —sin(26) cos ¢ P
M= Emrz 2cos¢  —sin(26) sin ¢ l} - (7.37)

0 1 — cos(26)

We have also been asked to find M? and can write this as a quadratic form

| r 5 si 5 —2sin¢g —sin(26) cos ¢ 4
M=o gl sin ¢ Zeosd ] 2cosd  —sin(26)sin H
—sin(26)cos¢ —sin(26)sing 1 — cos(20)
) 0 1 — cos(20)
1o qle 0 o
o gl 0 201- cos(20))] L‘J
(7.38)

This simplifies surprisingly, leaving only

M? = m?r* (7 + sin® 697). (7.39)




7.2 SOLUTIONS

Solution Part 1. Spherical coordinates - a smarter way
Observe that we have no i factors in the angular momentum. This makes sense when we

consider that the total angular momentum is

M = mrt X v, (7.40)

so the 7t term of the velocity is necessarily killed. Let us do that simplification first. We want
our velocity completely specified in a {f, 8, ¢} basis, and note that our basis vectors are

sin 6 cos ¢

>
Il

sin 6sin ¢

cos @

[cos @ cos 0]
cos fsin ¢ (7.41)

—sin@

[=u}d
Il

—sing¢

>
1l

cos ¢
0

We wish to rewrite

cosfcos¢ —sinfsing|r,
. . 0
T =|cosfsing sinfcos¢ { } ) (7.42)
—sinf 0
in terms of these spherical unit vectors and find
dt rdf
— Ff=F — = 0
ar T
dv ., .7db .
—-0=0 — =0 7.43
dt dt (7:43)
dt . .tdf . .
—Pp=¢ — = 6.
g PO g =osm

So our velocity is

v =it +r(00+psin6p). (7.44)
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As an aside, now that we know the Euler-Lagrange methods, we could also compute this
velocity from the spherical free particle Lagrangian by writing out the canonical momentum in
vector form. We have

1 —
L=gm(i?+ 728 + ¢ sin® o) (7.45)

We expect our canonical momentum in vector form to be

oL, 0LO L
=TI+ —=-"+ ——
or 00 r  0¢ rsinf

A A

P

.0 .
o 2 22
= + 60—+ 0
mit + mr . mr* sin” 6¢ ind (7.46)

=m (ff' + 760 + rsin 8¢$)
= mv
This is consistent with eq. (7.44) calculated hard way, and is a nice verification that the
canonical momentum matches the expectation of being nothing more than how to express the

momentum in different coordinate systems. Returning to the angular momentum calculation we
have

f‘XV:rf'x(99+¢sin9$)

o R (7.47)
= r(0¢ - psin68),
So that our total angular momentum in vector form is
M = mr* (0¢ - sin 68), (7.48)

Now, should we wish to extract coordinates with respect to x,y,z we just have to write our
our vectors (3 and 0 in the {e1, ey, e3} basis and have

M = mr? [$ —sin 0@] {Z]
(7.49)

=mr | cos ¢ —sin6(cosfsin @)

0 sin® @

—sin¢g — sinf(cos O cos ¢) lg}

This matches eq. (7.37), but all the messy trig is isolated to the calculation of v in the spherical
polar basis.



7.2 SOLUTIONS

Solution Part 2. Cylindrical coordinates
This one should be easier. To start our position vector is

pcos¢@
I=lpsing (7.50)
b4
= pp + 72Z.

Our velocity is

vV=pp+ dp +272
=PPEp L
=pp +pi (e e’¢) + 27
dr \! (7.51)
= pp + pdere + 2
=pp+pod + 2
Here, I have used the Clifford algebra representation of p with the plane bivector i = eje,. In
coordinates we have

A

¢ =ey(cos¢ + ejexsing) (7.52)
= —e;sing + e, cos @,

so our velocity in matrix form is

cos ¢ —sing 0
V=p|sing|+pp| cos¢ |+2]0
0 0 ! (7.53)
pCos ¢ — pdsin g
= |psin ¢ + pg cos ¢
Z
For our angular momentum we get
M =r X (mv)
psingz —z (psing + pd cos ¢) (7.54)
=m z(pcos ¢ —pdsing) — pcos ¢z

cos ¢ (psinrgs + pipcos ¢) — psin ¢ (p.coss — pi sin ¢)
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We can now read off M,, M,, M, by inspection

(pz = zp) sin ¢ — zpd cos ¢
M =m|(zp — pz) cos ¢ — zpp sin p| -
P’
We also want the (squared) magnitude, which is

M? = m? ((pz - ) + P** (@ + p?))

(7.55)

(7.56)



ATTEMPTS AT SOLUTIONS FOR SOME GOLDSTEIN MECHANICS
PROBLEMS

8.1 PROBLEMS

Now have the so often cited [5] book to study (an ancient version from the 50’s). Here is an
attempt at a few of the problems. Some problems were tackled but omitted here since they
overlapped with those written up in 9.1 before getting this book.

Exercise 8.1 Kinetic energy for barbell shaped object (1.6)

Two points of mass m are joined by a ridid weightless rod of length /, the center of which is
constrained to move on a circle of radius a. Set up the kinetic energy in generalized coordinates.

Exercise 8.2 Angular momentum conservation of three particle system (1.8)

A system is composed of three particles of equal mass m. Between any two of them there are
forces derivable from a potential

V=—ge ™

where r is the distance between the two particles. In addition, two of the particles each exert
a force on the third which can be obtained from a generalized potential of the form

U=-fv-r

v being the relative velocity of the interacting particles and f a constant. Set up the Lagrangian
for the system, using as coordinates the radius vector R of the center of mass and the two vectors

P =T —I3

pPr=T2—13

(8.5)

Is the total angular momentum of the system conserved?

Exercise 8.3 Shortest curve variational problem (2.1)

Prove that the shortest length curve between two points in space is a straight line.
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Exercise 8.4 Geodesics on sphere (2.2)

Prove that the geodesics (shortest length paths) on a spherical surface are great circles.

Exercise 8.5 Euler Lagrange equations for second order systems (2.4)

For f = f(y,9,¥, x), find the equations for extreme values of

I=Lbfdx

8.2 SOLUTIONS

Answer for Exercise 8.1

Barbell shape, equal masses. center of rod between masses constrained to circular motion.
Assuming motion in a plane, the equation for the center of the rod is:

c=ae
and the two mass points positions are:

q1 = ¢+ (1/2)e

‘ (8.1)
¢ = c—(/2)e"
taking derivatives:
71 = aibe” + (1/2)iqe’™
q1 e (1/2) . 82)
G = aife’ — (1/2)ice"
and squared magnitudes:
gs = |af = (1/2)ae @O
(8.3)

1 N 2
= (a@ + Eld cos(a — 9)) + (Eld sin(a — 9))

Summing the kinetic terms yields



8.2 SOLUTIONS

2
, 1
K=m (a0)2 +m (Eld)
Summing the potential energies, presuming that the motion is vertical, we have:

V =mg(l/2)cos 6 —mg(l/2)cos b

So, the Lagrangian is just the Kinetic energy.
Taking derivatives to get the EOMs we have:

(mazé)/ =0

1 ’
—ml&| =0
(17}
This is surprising seeming. Is this correct?

Answer for Exercise 8.2

The center of mass vector is:

1
R = g(l‘] +l'2+l‘3)

This can be used to express each of the position vectors in terms of the p, vectors:

3mR = m(p; +1r3) +m(p, +1r3) + mr3

=2m(p; + p,) + 3mr;3
1
r;=R=2(p +py)

2 1
r2=Pz+r3=Pz+r3=§Pz—§P1+R

2 1
I =p+r3=3p -7, +R

(8.4)

(8.6)

Now, that is enough to specify the part of the Lagrangian from the potentials that act between

all the particles

Ly = Z ~V; = g(e—ulpll 1+ e Hleal 4 e—#lpl—pzl)
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Now, we need to calculate the two U potential terms. If we consider with positions ry, and
> to be the ones that can exert a force on the third, the velocities of those masses relative to r3
are:

(r3—r1y) = py

So, the potential parts of the Lagrangian are

1
Lusy = g(e—ulml + e Heol 4 e—#lpl—pzl) +f(R — §(p1 +p2)). (B, +P2)

The Kinetic part (omitting the m/2 factor), in terms of the CM and relative vectors is

2

I (21, ol 2
07+ 02+ 07 = (301 32+ R) + (302 30 +R) + (R Sapy 40

8.7
=3R? + (5/9 + 1/4)(p)* + (p2)7) (&0
+2(=2/3+1/9)p; - py +2(1/3— 1/2)(py +p,) - R
So the Kinetic part of the Lagrangian is
3m 29m
Li= TR+ ==((p)" + (p)’ )——p1 pz——(pl +p)-R (8.8)
and finally, the total Lagrangian is
3m 29m ) Sm, . m,, . :
L="R*+ ((Pl) +(P)) = PPy~ =P +p2) R
2 9 6 8.9)

1
+g (e_ﬂlpll + e‘l‘lpzl + e_li|p1_P2|) +f(R — g(pl +p2)) . (pl +p‘2)

Angular momentum conservation?  How about the angular momentum conservation ques-
tion? How to answer that? One way would be to compute the forces from the Lagrangian, and
take cross products but is that really the best way? Perhaps the answer is as simple as observ-
ing that there are no external torque’s on the system, thus dL/dt = 0, or angular momentum
for the system is constant (conserved). Is that actually the case with these velocity dependent
potentials?

It was suggested to me on PF that I should look at how this Lagrangian transforms under ro-
tation, and use Noether’s theorem. The Goldstein book does not explicitly mention this theorem
that I can see, and I do not think it was covered yet if it did.
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Suppose we did know about Noether’s theorem for this problem (as I now do with in this
revisiting of this problem to complete it), we would have to see if the Lagrangian is invariant
under rotation. Suppose that a rigid rotation is introduced, which we can write in GA formalism
using dual sided quaternion products

X — X = o—i/2y ifla/2 (8.10)

(could probably also use a matrix formulation, but the parametrization is messier).
For all the relative vectors p, we have

IARSIN 8.11)

So all the V potential interactions are invariant.
Since the rotation quaternion here is a fixed non-time dependent quantity we have

p;c = pifia/2 D ¢ihal2, (8.12)

so for the dot product in the the remaining potential term we have
’ 1 / , ./ ./ —in if —in . P ) i
(R -3 +Pz)) (P +ph) = e (R - = (m +pz)) 6’"“/2) (e py + pre™)?)

omife/2 (R — (o +p2)) pifa/2ifal2py +p~28iﬁa/2>

. . 1
eMe/2emial? (R 3 (o1 +Pz>) (P +P2)>

R- % (p, +p2)) (P +P2)>

|
|
= <e_iﬁa/2 (R =3 (o + Pz)) (b1 +62) eiﬁ"/2>
|
|
|

1 L
R-2(m +pz)) (1 +P2)
(8.13)
So, presuming I interpreted the r in v - r correctly, all the vector quantities in the Lagrangian

are rotation invariant, and by Noether’s we should have system angular momentum conserva-
tion.
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Application of Noether’s  Invoking Noether’s here seems like cheating, at least without com-
puting the conserved current, so let us do this.

To make this easier, suppose we generalize the Lagrangian slightly to get rid of all the peculiar
and specific numerical constants. Let p3 = R, then our Lagrangian has the functional form

L=a'lp;py+ge Pl glletbrrls fip, (o +py) (8.14)

We can then pick specific &/, f', and g'/ (not all non-zero), to match the Lagrangian of this
problem. This could be expanded in terms of coordinates, producing nine generalized coor-
dinates and nine corresponding velocity terms, but since our Lagrangian transformation is so
naturally expressed in vector form this does not seem like a reasonable thing to do.

Let us step up the abstraction one more level instead and treat the Noether symmetry in
the more general case, supposing that we have a Lagrangian that is invariant under the same
rotational transformation applied above, but has the following general form with explicit vector
parametrization, where as above, all our vectors come in functions of the dot products (either
explicit or implied by absolute values) of our vectors or their time derivatives

L= f(X - Xj, Xg - X, Xg - X;) (8.15)

Having all the parametrization being functions of dot products gives the desired rotational
symmetry for the Lagrangian. This must be however, not a dot product with an arbitrary vector,
but one of the generalized vector parameters of the Lagrangian. Something like the A - v term
in the Lorentz force Lagrangian does not have this invariance since A does not transform along
with v. Also Note that the absolute values of the p, vectors are functions of dot products.

Now we are in shape to compute the conserved “current” for a rotational symmetry. Our
vectors and their derivatives are explicitly rotated

X;< — e—ma/zxkema/Z (8 16)
X]/( — e—ma/ZXkema/Z

and our Lagrangian is assumed, as above with all vectors coming in dot product pairs, to have
rotational invariance when all the vectors in the system are rotated

L L(x, X)) = L(xk, %)) (8.17)

The essence of Noether’s theorem was applied chain rule, looking at how the transformed
Lagrangian changes with respect to the transformation. In this case we want to calculate

dr’

8.18
4 oo (8.18)
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First seeing the Noether’s derivation, I did not understand why the evaluation at @ = 0 was
required, even after doing this derivation for myself in 19 (after an initial botched attempt), but

the reason for it actually became clear with this application, as writing it up will show
Anyways, back to the derivative. One way to evaluate this would be in terms of coordinates

11 VARENPN ([
writing x; = €"'x,

oL aka oL ax,’lcm (8 1 9)

dL’ £
X X)) ~ 0x;,,, da T %, o

This is a bit of a mess however, and begs for some shorthand. Let us write

oL
Vx/ 7 — m
kL e 3,
mn (8.20)

0L

Vol =e"—
Y ox,
m

Then the chain rule application above becomes

dL, ) .7 7 a l’( 4 8Xk
o X-)=;(Vx2£)-a— (VL) 52 (8.21)
Now, while this notational sugar unfortunately has an obscuring effect, it is also practical
since we can now work with the transformed position and velocity vectors directly

ox, " " " "
Tk _ ( iﬁ/z)e—ma/ZXkema/Z + e—zna/ZXkezna/Z(ln/z)
= (—if/2)X] + X, (i/2) (8.22)
=i(h A x,’c)
So we have

ar’ )
— (X)) = Z (VL) (it A X)) Z (iR A X))

k k
Next step is to reintroduce the notational sugar noting that we can vectorize the Euler-Lagrange

(8.23)

equations by writing
(8.24)

d
VXkL = EVX](L
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We have now a three fold reduction in the number of Euler-Lagrange equations. For each of
the generalized vector parameters, we have the Lagrangian gradient with respect to that vector
parameter (a generalized force) equals the time rate of change of the velocity gradient.

Inserting this we have

ar’ d
%(x,;, X)) = Ek] (Ev,«(;ﬂ) (i A X)) + zk] (Vs L) (it A %)) (8.25)

Now we can drop the primes in gradient terms because of the Lagrangian invariance for this
symmetry, and are left almost with a perfect differential

d
X)) = ; (EkaL) (iR AX)) + Y (Vi L) - (ilh A X)) (8.26)

k

Here is where the evaluation at @ = 0 comes in, since x,’((a = 0) = x;, and we can now
antidifferentiate

al’ | Z N (4.
R DY (AN RILISRED MULANSRILYS)
d
=> - (VL) - (ith A %))
k
d .
- Z d_t<(v,-(k1;) i A X))
k
dl
=> — 5 (Vs L) iChx; - x,))
k
-y di%(ﬁi (x¢ (Vi £) = (Vi £) X0) (8.27)
T 1
dl, .
= Z d_t§<m (xx (V. L) = (Vi L) X))
k
d
= Z d_t<ﬁi (Xk A (kaL)»
k
= Z di<ﬁi2 (Xk X (ka.L))>
T 1
-y di “h- (3 x (Vi L))
T 1
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Because of the symmetry this entire derivative is zero, so we have

f Z (xx % (Vg L)) = constant (8.28)
k

The Lagrangian velocity gradient can be identified as the momentum (ie: the canonical mo-
mentum conjugate to X)

pi = Vi L (8.29)

Also noting that this is constant for any i, we finally have the conserved “current” for a
rotational symmetry of a system of particles

Z X X Px = constant (8.30)
k

This digression to Noether’s appears to be well worth it for answering the angular momentum
question of the problem. Glibly saying “yes angular momentum is conserved”, just because the
Lagrangian has a rotational symmetry is not enough. We have seen in this particular problem
that the Lagrangian, having only dot products has the rotational symmetry, but because of the
velocity dependent potential terms fip, - p ;» the normal Kinetic energy momentum vectors are
not equal to the canonical conjugate momentum vectors. Only when the angular momentum
is generalized, and written in terms of the canonical conjugate momentum is the total system
angular momentum conserved. Namely, the generalized angular momentum for this problem is
conserved

Z x; X (Vg L) = constant (8.31)
k

but the “traditional” angular momentum »; X; X mXg, is not.

Answer for Exercise 8.3

A first attempt of this [ used:

ds = \/1 + (dy/dx)? + (dz/dx)*dx
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Application of the Euler-Lagrange equations does show that one ends up with a linear relation
between the y and z coordinates, but no mention of x. Rather than write that up, consider instead

a parametrization of the coordinates:

x = x1(4)
y =x(4) (8.32)
=X3 (/1)
in terms of this arbitrary parametrization we have a segment length of:
dx;\*
— htad) — .
ds = Z(d/l) dl = f(x;)dA
Application of the Euler-Lagrange equation to f we have:
af
A
(9)6,‘
d 0 P
T d10% 2.5 (8.33)
_d X
Al O
Z Y
Therefore each of these quotients can be equated to a constant:
N
J
c’ir =) i
. . (8.34)
(c,-2 - l)xi2 = Z x?
J#i
(1-c?)i?+ Y B =0
J#i

This last form shows explicitly that not all of these squared derivative terms can be linearly
independent. In particular, we have a zero determinant:
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1-ci 1 11
1 1-4 1 1
0=] 1 1 1-4 1

Now, expanding this for a couple specific cases is not too hard. For n = 2 we have:

0=(1-cAH1-c)-1
A+ 3=l

2
©

(8.35)

C% -1
2
c

2 _
Cz—l——2
ol

NSRS}

This can be substituted back into one our c% equation:

2 2 .2
(2" = Dix; = X3

i =i
1 (8.36)

+—Xp = X
+—Xp) = X1 +K

This is precisely the straight line that was desired, but we have setup for proving that consid-
eration of all path variations from two points in IR" space has the shortest distance when that
path is a straight line.

Despite the general setup, I am going to chicken out and show this only for the R? case. In
that case our determinant expands to:

2 2 2_ 2272
C1+62+C3 = (603
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Since not all of the xl2 can be linearly independent, one can be eliminated:

(I-cHil+i3+i3=0
(1-ci5+i3+i7=0 (8.37)

(1-c)i5+i1+i5=0
Let us pick x% to eliminate, and subst 2 into 3:
(I-3B+(~(1-chHis-B)+35=0 =

0 (8.38)

+C3X3 = CpXp

2.2, 2.
—C3X3 + ¢y X

Since these equations are symmetric, we can do this for all, with the result:

+C3X3 = CpXp
+e3ds = o1 (8.39)
*+CrXp = C1X]

Since the ¢; constants are arbitrary, then we can for example pick the negative sign for +c5,
and the positive for the rest, then add all of these, and scale by two:

C3X3 — C2Xp = C1X|

and integrating:

C3X3 —C2Xp) = C1X] +K

Again, we have the general equation of a line, subject to the desired constraints on the end
points. In the end we did not need to evaluate the determinant after all, as done in the R? case.

Answer for Exercise 8.4

As a variational problem, the first step is to formulate an element of length on the surface. If
we write our vector in spherical coordinates (¢ on the equator, and § measuring from the north
pole) we have:

FIXME: Scan picture.

r = (x,y,2) = R(sinfcosg, sin 6 sin ¢, cos )
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A differential vector element on the surface is (set R = 1 without loss of generality) :

dr do dr d¢
dr = ——dl+ ——dA
"T ™ T dgaa
= (cos 6 cos ¢, cos A sin ¢, — sin §)Ad A + (— sin §sin ¢, sin O cos ¢, 0)pd A (8.40)
= (cos 6 cos ¢ — sin O sin ¢, cos O sin ¢ + sin O cos p¢p, — sin H0)dA
Calculation of the length ds of this vector yields:
ds = |dr| = /6% + (sin 0)2¢2dA
This completes the setup for the minimization problem, and we want to minimize:
s = f \ 6% + (¢ sinH)2dA
and can therefore apply the Euler-Lagrange equations to the function
The ¢ is cyclic, and we have:
of _g_ 4 $sin® 0
op  da f
Thus we have:
¢ sin* 0 = K* (92 + (¢ sin 9)2)
¢* sin’ H(Sin2 60— Kz) = K*¢?
202
# = Ko (8.41)
sin” 0 (sin 6 - K2)
. Ko
b=

sin 6 Vsin? 6 — K2

This is in a nicely separated form, but it is not obvious that this describes paths that are great
circles.
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Let us have a look at the second equation.

of d of
90~ didg
sinfcosOp> d
T F Tdaf
i 1(92+(¢sin6)2)/
G
6 60+ dsinf(Psind+ ¢cosbh)
o f f?
— —sinfcos 6 (92 + (¢sin 9)2) =-0 ([92 + (¢ sin 9)2) +600 + $sin 6 ($sin + ¢ cos 60)

(8.42)
Or,

—06% — 6 sin” 0 + 00 + ¢ sin® 6 + ¢*0'sin O cos O + ¢*6* sin O cos 6 + ¢* sin* GcosH = 0

What a mess! I do not feel inclined to try to reduce this at the moment. I will come back to
this problem later. Perhaps there is a better parametrization?

Did come back to this later, in [14], but still did not get the problem fully solved. Maybe the
third time, some time later, will be the charm.

Answer for Exercise 8.5

Here we want y and y fixed at the end points. Following the first derivative derivation write
the functions in terms of the desired extremum functions plus a set of arbitrary functions:

y(x, @) = y(x,0) + an(x) (8.43)
y(x, @) = y(x, 0) + am(x)

Here we specify that these arbitrary variational functions vanish at the endpoints:

n(a) = n(b) = m(a) = m(b) =0

The functions y(x,0), and y(x,0) are the functions we are looking for as solutions to the
min/max problem.

Calculating derivatives we have:

dx

ar f ofdy 0f oy Of oy
da

“J \oyda " 9y da” 55 da
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Assuming sufficient continuity look at the second term where we have:
dy 0 dy
da  da Ox

" 0x0a

(8.44)

Similarly for the third term we have:

9 _doy
da  dxda

w' = wv) —u'v

dl_faf@ of d oy |,  ofd oy

G_yaa/ a dy dx 0a x+(9jidx6a/ *

= =27

Now integrating by parts:

dl af dy of d dy f@f d dy
—=| —==d ——=d ————d
da f@y(')a/ x+f8)')dxaa/ o 0y dx 0a *

n(x) m(x) (8.45)

ar _ (ofoy . Of 9y (dydof . 0f 0\, (0ydof
da ayaad“(ay)“ aadxayd“(ay)a o dx 7

Because m(a) = m(b) = n(a) = n(b) the non-integral terms are all zero, leaving:

dl af dy f@yd@f f@ydﬁf
— = | —=dx- | =——77dx—- | ——-d 4
da fay oa * Oa dx 0y * Oa dx 0y * (8.46)

Tl
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Now consider just this last integral, which we can again integrate by parts:

’

u v
@ia_fdx_f doy|dof,
dadx 9y~ dx da | dx 0y
n(x) (8.47)
_(ov|dor, (ovddor,
~ N da |dx 8y da dx dx 0y
fﬁy d* of
=— | =——dx
da dx?* 0y
This gives:
dl af dy oy d of dy d* of
—= | L Zdx- | =—-24a =4
da 0y da * Oa dx 0y o da dx? 0y
dl dy (6f dof d* of
- = CAY e A R 4
da f dx@a/(o'?y dx 9y | dx 0y (8.48)

~ of dof d® of
- Jaweo( - 55+ i)

So, if we want this derivative to equal zero for any n(x) we require the inner quantity to by

ZEro.

=

2
o _dof dof_, (8.49)

dy dxdy dx2oy

Question. Goldstein writes this in total differential form instead of a derivative:

dl
dl = —da

da
a of dof d* 9
:fdx D o —f———f+——f
da dy dxdy dx*dy
and then calls this quantity g—cyyda = ¢y, the variation of y. There must be a mathematical
subtlety which motivates this but it is not clear to me what that is. Since the variational calculus
texts go a different route, with norms on functional spaces and so forth, perhaps understanding

that motivation is not worthwhile. In the end, the conclusion is the same, namely that the inner
expression must equal zero for the extremum condition.

(8.50)



SOLUTIONS TO DAVID TONG’S MF1 LAGRANGIAN PROBLEMS

9.1 PROBLEMS

These are my solutions to David Tong’s mf1 [25] problem set (Lagrangian problems) associated
with his excellent and freely available online text [27].

Exercise 9.1 Euler-Lagrange equations for purely kinetic system (problem 1)

Derive the Euler-Lagrange equations for

_ 1 -a-b
L= E Z gab(‘]c)q q ©.1
Exercise 9.2 An alternate Lagrangian with same equations of motion (problem 2)
L= %mz)f‘ +mi’V - V? (9.8)

Exercise 9.3 (problem 3)

Derive the relativistic equations of motion for a point particle in a position dependent poten-
tial:

L=-mc*V1-v2/c2 - V(r) 9.12)

Exercise 9.4 Double pendulum (problem 4)

Derive the Lagrangian for a double pendulum.

Exercise 9.5 Pendulum on a rotating wheel (problem 5)

Lagrangian and equations of motion for pendulum with pivot moving on a circle.
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Exercise 9.6 Lorentz force Lagrangian (problem 6)

Using

1
L= Emv2 —qp+qv/c-A,
derive the Lorentz force equation, and some other stuff.

Exercise 9.7 Two circular constrained paths (problem 7)

Masses connected by a spring.

Exercise 9.8 Masses on string, one dangling (problem 8)

Two particles connected by string, one on table, the other dangling.

9.2 SOLUTIONS

Answer for Exercise 9.1

I found it helpful to clarify for myself what was meant by g,,(¢¢). This is a function of all the
generalized coordinates:

2ar(@*) = 2@ ¢ ... ") = gap(q)

So I think that a vector parameter reminder is helpful.

1 :
L=5 D s @d

szwaf 9.2)

Now, proceed to calculate the generalize momentums:

oL 1 a(4"¢°)
a2 Zgbc(Q) YT

1 9.3
= 5 2 8ac @ + ol o

= Z gab(q)qb
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For

d oL 08ab .4. b b
=== E . 9.4
a1 3¢ 9 9°q" + 8bad (9-4)

Taking the difference of eq. (9.2) and eq. (9.4) we have:

1.,..08c O08ab
0= 3¢ q;—aaﬂ,q"qb—gwq

E -b - c 1agbc agab b
— 8baq
2 6q 0q°

9.5
.b.c 1 agbc 1 agab 1 agab b ©-5)
= Z q + = + 8baq
2 0q° 2 aq¢ 2 9q°
1 .b.c agbc agah agac b
= + + +
2 ( oq*  9q¢¢  dqP 8bad

Here a split of the symmetric expression

X=3dq ”Cag“b (X X),

was used, and then an interchange of dummy indices b, c.
Now multiply this whole sum by g, and sum to remove the metric term from the generalized
acceleration

.. agbc agab aguc
da b i c da
a +
> 8% ghaii § q’q ( o o
2 : 5y = 9.6)
j' =

Swapping a, and d indices to get form stated in the problem we have

5gbc 08a»  08dc
0= b.c ad
q+22q ( +aqc+aqb

=G+ ) 4T 9.7)

L (_58bc L O8av . (9gdc)

%, =
be =38 oq?  dq¢  Oqb
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Answer for Exercise 9.2

Digging in
8_L _doL
dx  dt ox
S d (1,4 ' (9.9)
mx“V,=2VV,= —|=m" X’ + 2mxV
dr\3

When taking the time derivative of V, dV/dt # 0, despite no explicit time dependence. Take
an example, such as V = mgx, where the positional parameter is dependent on time, so the chain
rule is required:

dv _dVdx _ v
at " dxdr *
Perhaps that is obvious, but I made that mistake first doing this problem (which would have

been harder to make if [ had used an example potential) the first time. I subsequently constructed

an alternate Lagrangian (L = %mz)'c4 - mi*V + Vz) that worked when this mistake was made,

and emailed the author suggesting that I believed he had a sign typo in his problem set.
Anyways, continuing with the calculation:

mi*V, = 2VV, = m>i%% + 2mxV + 2mi*V,
nu?Vx—zvvx—zmxﬁg::nﬁ(mx2+2v) (9.10)
—@V+nmﬂv;=

Canceling left and right common factors, which perhaps not coincidentally equal 2E = V +

%mv2 we have:

mx= -V,

This is what we would get for our standard kinetic and position dependent Lagrangian too:

1
-E = mez—V
oL _ d oL
dx  dt dx
Ly, = d(mx) (9.11)
dt

-V, = mi
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Answer for Exercise 9.3

The first thing to observe here is that for |v| << ¢, this is our familiar kinetic energy La-
grangian

1 11
L =—mc? (1 vi/e? + ———(V/C)4 )— V(r)
2 2-22! 9.13)

1
~ —mc® + Emv2 - V(r)

The constant term —mc? will not change the equations of motion and we can perhaps think of
this as an additional potential term (quite large as we see from atomic fusion and fission). For
small v we recover the Newtonian Kinetic energy term, and therefore expect the results will be
equivalent to the Newtonian equations in that limit.

Moving on to the calculations we have:

oL _diL
oxi  dtox

oV __,d oL
_ = 1— 2
ox a 8x’\/ ) fe

,d 1 1 oL ny
= dl 2maxl( _Z(XJ) /c2)

d

— 22 2 gy 2
¢ dt 2 ‘/1—v2/c2( ¥ /e
d (9.14)
= —m—x
dt 1—v2/c2
= Emyxl
e
—(Ze, )V— —myZel
d(myv)
-VV =
dt

For v << ¢, gamma =~ 1, so we get our Newtonian result in the limiting case.

Now, I found this result very impressive result, buried in a couple line problem statement. |
subsequently used this as the starting point for guessing about how to formulate the Lagrange
equations in a proper time form, as well as a proper velocity form for this Kinetic and potential
term. Those turn out to make it possible to express Maxwell’s law and the Lorentz force law
together in a particularly nice compact covariant form. This catches me a up a bit in terms of my
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understanding and think that I am now at least learning and rediscovering things known since
the early 1900s;)

Answer for Exercise 9.4

First consider a single pendulum (fixed length /).

x = lexp(if)
i = lif exp(if) (9.15)
|x|2 — 1292

Now, if 8 = 0 represents the downwards position at rest, the height above that rest point is
h =1 —1Icos@. Therefore the Lagrangian is:

1
L= Emv2 —mgh
T (9.16)
= Eml 6° — mgl(1 — cos 6)

The constant term can be dropped resulting in the equivalent Lagrangian:

1 .
L= Emlze2 +mgl cos 6

This amounts to a difference in the reference point for the potential energy, so instead of
measuring the potential energy V = mgh from a reference position below the mass, one could
consider that the potential has a maximum of zero at the highest position, and decreases from
there as:

V' =0-mglcosb.

Moving back to the EOMs that result from either form of Lagrangian, we have after taking
our derivatives:

d . .
—mglsiné = Emlze = ml*9

Or,

6 =—g/lsiné
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This is consistent with our expectations, and recovers the familiar small angle SHM equation:

0~ —g/lb.

Now, move on to the double pendulum, and compute the Kinetic energies of the two particles:

X1 = 11 exp(i@l)

561 = lll'g] exp(i@l) (9~17)
> = 167
Xy = X1+ lz exp(i@z)

X) = X1 + lzi@z eXp(iQQ)

= 1,i6, exp(ify) + Lt exp(if>)
2l = (101)7 + (bb)* + 1110y exp(i6y) 2 (i) exp(—iba) + Iy (=)0 exp(—ify)Lib, exp(i6-)
= (161 + (L6)* + 1110165 (exp(i(6 — 62)) + exp(—i(61 — 62)))
= (161 + (L6)* + 2111016, cos(6y — 6,)
(9.18)

Now calculate the potential energies for the two masses. The first has potential of

V] = m1g11(1 — COS 91)
and the potential energy of the second mass, relative to the position of the first mass is:
Vé = nglz(l — COS 92)

But that is the potential only if the first mass is at rest. The total difference in height from the
dual rest position is:

[1(1 =cos8y) + (1 —cos6,)
So, the potential energy for the second mass is:

Vo =mag (Li(1 —cos ;) + (1 —cos6y))

85



86 SOLUTIONS TO DAVID TONG’S MF]l LAGRANGIAN PROBLEMS

Dropping constant terms the total Lagrangian for the system is:

1 1
L= Emlmz + Emz\/zz + mlgll cos 6 + nmpg (11 cos O + 12 COS 92)
1 5, 1 . . .
= S0} + Sy (161 + (12)? + 2011016 cos(; - 6) ©.19)

+mygly cos ) + mpg (I cos0) + 1, cos By)

Again looking at the resulting Lagrangian, we see that it would have been more natural to
measure the potential energy from a reference point of zero potential at the horizontal position,
and measure downwards from there:

V{ =0 —mlgll COS 91
’ (9.20)
V5 =0—myg (l1 cos by + 1> cos 6)

N coupled pendulums  Now, with just two masses it is not too messy to expand out those
kinetic energy terms, but for more the trig gets too messy. With the K, term of the Lagrangian
in complex form we have:

U o 1
L= Emlllzef + Emz|1191 + 10, exp(i(6 - 91))’2
+mygly cos 0 +mag (11 cos 0y + [ cos b) (9.21)

1 ) g2 1 . . ; 2
= §m1|1191 exp(191)| + 57’!’!2|1191 exp(le) + 1292 eXp(lez)‘
+mygly cos ) + mpg (11 cos0) + 1, cos By)
By inspection we can also write the Lagrangian for the N particle variant:
J

Z 1Ok exp(iby)

k=1

N —

L=

N 2 N N
ij' +ngjCOSQJ'ka
j=1 j=1 k=j

Can this be used to derive the wave equation?
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If each of the N masses is a fraction m; = Am = M/N of the total mass, and the lengths are
all uniformly divided into segments of length [; = Al = L/N, then the Lagrangian becomes:

A 2 N N
2— Z Z_; O exp(iby)| + Z_; cosf; Z 1
- , “ (9.22)
ALY, N
2—2 Zekexp(ié’k) +(N—j+1)Zcos€1-
j=1 lk=1 J=1
FIXME: return to this later?
Double pendulum  First consider a single pendulum (fixed length /).
x = lexp(if)
x = lif exp(if) (9.23)
|x|2 — 1292

Now, if 8 = 0 represents the downwards position at rest, the height above that rest point is
h = [—1[cos@. Therefore the Lagrangian is:

2

L= >mv —mgh

» (9.24)
= Emlzéz —mgl(1 — cos 6)

The constant term can be dropped resulting in the equivalent Lagrangian:

1 .
L= Emlze2 +mgl cos 0

This amounts to a difference in the reference point for the potential energy, so instead of
measuring the potential energy V = mgh from a reference position below the mass, one could
consider that the potential has a maximum of zero at the highest position, and decreases from
there as:

V' =0-mglcosé.

Moving back to the EOMs that result from either form of Lagrangian, we have after taking
our derivatives:
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d , .
—mglsinf = Emlzé = ml*d

Or,

0=—g/lsin@

This is consistent with our expectations, and recovers the familiar small angle SHM equation:

0~ —g/lo.

Now, move on to the double pendulum, and compute the Kinetic energies of the two particles:

X1 = ll exp(i@l)
%1 = L6 exp(i6;) (9.25)
1 = 1,267

Xo = x1 + [ exp(i6s)
X2 = X1 + Lib, exp(ify)
SN exp(ifr) + L6, exp(i6h)
li2? = (161)% + (hb)* + 1116y exp(i6))la(=i)ba exp(=i) + [1 (=i)8) exp(~if1)ibh exp(i6s)
= (16))* + (lhtn)* + L1 x0165 (exp(i(8) — 62)) + exp(—i(6) — 62)))
= (1161)* + (lth)” + 21111016, cos(61 — 6,)
(9.26)

Now calculate the potential energies for the two masses. The first has potential of

V1 = mlgll(l — COS 91)
and the potential energy of the second mass, relative to the position of the first mass is:
Vé . nglz(l — COS 92)

But that is the potential only if the first mass is at rest. The total difference in height from the
dual rest position is:

[1(1 —cosBy) + (1 —cos 6y)
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So, the potential energy for the second mass is:
Vo =mag (Li(1 —cos ;) + (1 —cos b))

Dropping constant terms the total Lagrangian for the system is:

1
L= Emlvlz + Emzvzz + m1g11 cos 6 + nmyg (11 cos O + lz COoSs 92)

1 4 1 2 ; .«
= Em1l129% + > ((1101)2 + (102)* + 211 1:0,0; cos(6, — 92)) 9.27)
+mygly cos0) + mpg (I cos 0y + 1 cos By)

Again looking at the resulting Lagrangian, we see that it would have been more natural to
measure the potential energy from a reference point of zero potential at the horizontal position,
and measure downwards from there:

V{ =0- m1g11 COS 91
’ (9.28)
Vi =0—myg (I cos by + [ cos6,)

Answer for Exercise 9.5

Express the position of the pivot point on the wheel with:

g1 = Re™™".

The position of the mass is then:
g> = Re™™" — jle®.

The velocity of the mass is then:
gy = —i(@f + w)Re ™ + 10e.

Let wt = a, we have a Kinetic energy of:

I I o
Smlipl = Sm|-icRe™" + 6e"|

1 . . o
= 5m (R*a” + P& + 2RIaORe (—ie™ "))

" (9.29)
= Sm(R?&? + P07 + 2Rlad cos(—a - 0 — 7/2))

2
1
2

m (Rza2 + 2% — 2RIad sin(a + 9))
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The potential energy in the Lagrangian does not depend on the position of the pivot, only the
angle from vertical, so it is thus:

V = mgl(1 — cos 0)

(9.30)
V' =0-mglcos@

Depending on whether one measures the potential up from the lowest potential point, or
measures decreasing potential from zero at the horizontal. Either way, combining the kinetic
and potential terms, and dividing through by mi*> we have the Lagrangian of:

£ =5 (R/1?a* + 6 = 2R/ sin(a +6)) + (g/]) cos 0

N =

Digression. Reduction of the Lagrangian ~ Now, in Tong’s solutions for this problem (which
he emailed me since I questioned problem 2), he had & = w = constant, which allows the
Lagrangian above to be expressed as:

L= % (/D +67) + %((R/l) cos(wt + 0)) + w(R/1) sin(wt + 0) + (g/1) cos O

and he made the surprising step of removing that cosine term completely, with a statement
that it would not effect the dynamics because it was a time derivative. That turns out to be a
generalized result, but I had to prove it to myself. I also asked around on PF about this, and it
was not any named property of Lagrangians, but was a theorem in some texts.

First consider the simple example of a Lagrangian with such a cosine derivative term added
to it:

L' =L+ %A cos(wt + )
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and compute the equations of motion from this:

2L d(0L)

(9 d (0L d o d
— - — = ——A -———A
( = ) 26 cos(wt + 6) 5 a0 i cos(wt + 6)
% _ i (%) AQ sin(wt + ) + iﬁAG sin(wt + 6)
90 80 dt 96 (9.31)
% — i (%) AG sin(wt + 0) + diA sin(wt + 0)
oL d (oL
% - — (%) Afcos(wt + ) + Ab cos(wt + 6)
0L _d (oL
00  dt\ oo

Now consider the general case, altering a Lagrangian by adding the time derivative of a
positional dependent function:

y_ L 4f
L' =L+ ”
and compute the equations of motion from this more generally altered function:
_oL d (8.5’)
T 0d  di\ ogi
1 7 9.32)
0L _d (L), odf_dodf
dqt  dt 6q aq dt dtdq' dt
Now, if f(¢’,¢/,1) = f(q-’ f) we have:
df
Z aq]
We want to see if the following sums to zero:
Odf d9df_ Zaaf J ‘__Z i+
dq' dt  dtdq' dt dq' 0q’ (9t dt dg' BqJ
& N d d?
=2 oq aqu 7 aqigz T ar (Z 0ij ajf 0q’£l)
(9.33)

LS P, P da
aq' aqf quat dt dq'

2 2 2 2
O VI B
0q éql dqiot 0q’0q'  0toq
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92 SOLUTIONS TO DAVID TONG’S MF]l LAGRANGIAN PROBLEMS

Therefore provided the function is sufficiently continuous that all mixed pairs of mixed par-
tials are equal, this is zero, and the d f/dt addition does not change the equations of motion that

the Lagrangian generates.

Back to the problem  Now, return to the Lagrangian for this problem, and compute the equa-
tions of motion. Writing u = R/, we have:

1 , ,
L= 3 (,112@2 + 6% — 2ucdsin(a + 9)) +(g/Dcos@
_do-oL
~ dt 06 90
- di; (6 — pd sin(a + 6)) + udb cos(a + 6) + (¢/1) sin (9.34)

= 0 — pa sin(a + 0) — pc cos(a + 0)(& + 0) + uad cos(a + 6) + (g/1) sin 6

Sure enough we have a cancellation of terms for constant w. In general we are left with:

6 = pd sin(a + 0) + uc? cos(a + 6) — (g/1)sin @

Or,

0 = p(ivt + 20) sin(wt + 6) + u(wt + a))2 cos(wt +6) —(g/l)sinb
For constant w, this is just:

8 = pw* cos(wt + 0) — (g/1)sin 6

Answer for Exercise 9.6

First part of the problem is to show that the Lagrangian:

is equivalent to the Lorentz force law.
When I first tried this problem I had trouble with it, and also had trouble following the text

for the same in Tong’s paper. Later I did the somewhat harder problem of exactly this, but for
the covariant form of the Lorentz force law, so I thought I had come back to this and try again.
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First step that seemed natural was to put the equation into four vector form, despite the fact
that the proper time Lagrangian equations were not going to be used to produce the equation of
motion. For just the Lorentz part of the Lagrangian we have:

L' =—-¢p+v/c-A

%(%‘Ojo +7Yj0i0) = —Yi*Vj

=—¢p >V /cAf (9.35)
1 o

= —Eqbc + Z v’A’y,-2
1 o

= gy’ + ) VAly?

Thus with v = cyg + X viy; = 3 Wy, and A = ¢yo + 2, Aly; =3 Aty,, we can thus write the
complete Lagrangian as:

1
L= Emvz—qA-v/c

As usual we recover our vector forms by wedging with the time basis vector:

Anyo= ) Alyg= ) Aoy =A

andvAyy=---=V.

Notice the sign in the potential term, which is negative, unlike the same Lagrangian in rela-
tivistic (proper) form: £ = %mv2 + gA - v/c. That difference is required since the lack of the use
of time as one of the generalized coordinates will change the signs of some of the results.

Now, this does not matter for this particular problem, but also observe that this Lagrangian
is almost in its proper form. All we have to do is add a —%mc2 constant to it, which should not
effect the equations of motion. Doing so yields:

1 1
L= Em(—c2 +V2) —qgA-v/c= —(Emv2 +gA - v/c)

I did not notice that until writing this up. So we have the same Lagrangian in both cases,
which makes sense. Whether or not one gets the traditional Lorentz force law from this or the
equivalent covariant form depends only on whether one treats time as one of the generalized
coordinates or not (and if doing so, use proper time in the place of the time derivatives when
applying the Lagrange equations). Cool.
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94 SOLUTIONS TO DAVID TONG’S MF]l LAGRANGIAN PROBLEMS

Anyways, now that we have a more symmetric form of the Lagrangian, lets compute the
equations of motion.

oL _daL
oxi  dtoxl
d ; ov
= —[m/-q/cA-—
dt (mv alc axl)
d i
= d_t(mv —Q/CA'%')
d . .
= d—t(mv’ +q/cA’)
6A’
=p' +q/c
axl
0A
q— v/c=
ox!
- (9.36)
: 0A BA
a5 )
(9xJ
OAH OA!
:—q/c( o lvyﬂ Yy — vam)
8A’
= -are( Y Povon s 3 By - 3 o)
-
Zmp:p:q/CZm( alv?’o o Ty O,W)

(o4 on
oxt Ox/



9.2 SOLUTIONS

Now, it is not obvious by looking, but this last expression is v X (V X A). Let us verify this by
going backwards:

x(VxA):%( A (VX A))
=%(V(VXA) (VxA)v)
=%( Liwna- 1(V/\A)v)

—%(V(V/\A)—(V/\A)V)
=(VAA)-v

GA/
—Z i(0j-o1)—0oj(oi-ou)
aAf
—Z O—l jk — O_jfsik
Z 5,41 ) AJ’
- i =V

N %U %U
oxi ! Bfl

= Y e, 0AT _oA!
oxt  Ox/

Therefore the final result is our Lorentz force law, as expected:

(9.37)

pP=-9Vd+qv/cx(VXxA)

Cylindrical Polar Coordinates  The next two parts of question 6 require cylindrical polar co-
ordinates. I found a digression was useful (or at least interesting), to see if the gradient followed
from the Lagrangian as was the case with non-orthonormal constant frame basis vectors.
The first step required for this calculation (and the later parts of the problem) is to express

the KE in terms of the polar coordinates. We need the velocity to do so:

r =esz+ elreie

Ir=e37+ el(f + I’gi)eig
L L2 (9.38)
[i| = 2+ |r + r01|

=2+ +(rd)
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96 SOLUTIONS TO DAVID TONG’S MF]l LAGRANGIAN PROBLEMS

Now, form the Lagrangian of a point particle with a non-velocity dependent potential:

L= %m(z‘2 +i%+(r8)’) - ¢

and calculate the equations of motion:

oL _ (%)

g; S\ (9.39)
i (mz)’

9L _ (%)

00 ‘92 o | (9.40)
5t mr” = (mi)

oL _ (%)'

‘;Z b (9.41)
—% = (mrze)

There are a few things to observe about these equations. One is that we can assign physi-
cally significance to an expression such as mr?6. If the potential has no 6 dependence this is a
conserved quantity (angular momentum).

The other thing to observe here is that the dimensions for the 8 coordinate equation result has
got an extra length factor in the numerator. Thus we can not multiply these with our respective
frame vectors and sum. We can however scale that last equation by a factor of 1/r and then sum:

U 1
2mz) + & (i —mrl?) + —(mr*6) = - (z 0 32, —ﬁ) ¢
r Z

For constant mass this is:

, 1 , . 0 o 1,0
nee e 9 . 2 _ (49 O 140
m(zz+r(r—r9)+;(2rr6)+r€))— (zaz+rar+r069)¢
However, is such a construction have a meaningful physical quantity? One can easily imagine
more complex generalized coordinates where guessing scale factors in this fashion would not

be possible.
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Let us compare this to a calculation of acceleration in cylindrical coordinates.

i = ez + e (7 + rfi + ibi + (i + r0i) i) "
= 3 + ey (7 + rbi + 2i0i — ré?) " (9.42)
= 2+ (7 = r0?) + B (0 + 2i0)
Sure enough, the ad-hoc vector that was constructed matches the acceleration vector for the

constant mass case, so the right hand side must also define the gradient in cylindrical coordi-
nates.

N
d (9.43)

- zﬁ o

0z ((9r r@H)

Very cool result. Seeing this I finally understand when and where statements like "angular
momentum is conserved" is true. Specifically it requires a potential that has no angular depen-
dence (ie: like gravity acting between two point masses.)

I never found that making such an angular momentum conservation "law" statement to be
obvious, even once the acceleration was expressed in a radial decomposition. This is something
that can be understood without the Lagrangian formulation. To do so the missing factor is that
before a conservation statement like this can be claimed one has to first express the gradient in
cylindrical form, and then look at the coordinates with respect to the generalized frame vectors.
Conservation of angular momentum depends on an appropriately well behaved potential func-
tion! Intuitively, I understood that something else was required to make this statement, but it
took the form of an unproven axiom in most elementary texts.

FIXME: generalize this and prove to myself that angular momentum is conserved in a N-body
problem and/or with a rigid body rotation constraint on N — 1 of the masses.

(i)  The Lagrangian for this problem is:

1
£=Emvz—eA-V

Given a cylindrical decomposition, our velocity is:

r=zZ+rt

¥ =22+ rf + it
. . (9.44)
=22+ 1 (7 + ri)

=22+ it + rf
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98 SOLUTIONS TO DAVID TONG’S MF]l LAGRANGIAN PROBLEMS

The specific potential for the problem, using (z, 6, r) coordinates is:

Therefore the Lagrangian is:

L= gm(@+ 2+ () -l

so the equations of motion for the z, 6, and r coordinates (respectively) are:
(mz)' =0

(mr*d—ef(r)) =0 (9.45)
(mi) = mré? — ef'(r)o

From second of these equations we have:

mr*d—ef(r) = K

In particular this is true for r = r(fg) = rg, SO

mro*0p — ef(ro) = K

Or,

2
9@—@Qﬂ@=ilﬁm—ﬂm>

72

Now, the problem is to show that

b= "= ()~ f(r)
mr

I do not see how that follows? Ah, I see, the velocity is in the (r,z) plane for = 0, so
(ty) = 0.
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(ii)  The potential for this problem is

A =rg(2)0
Therefore the Lagrangian is:

L= %m (22 +i+ (r6’)2) —er’g(2)0
Taking 6, r, z derivatives:

0= (mr29 - erzg(z))l

mrd? — 2erg(2)0 = (mi)

—erzg'é = (mz)

One constant of motion is:

mrlé — erzg(z) =K

Looking at Tong’s solutions another is the Hamiltonian. (I have got to go back and read that
Hamiltonian stuff since this did not occur to me).

0 = (e/m)g(2) + (ro/r)* (B0 — (e/m)g(z0))
With 0y = 2eg(zp)/m this is:
. e r0\2
bh="2 (g(z) +(2) g(Zo))
m r
FIXME: think through the remainder bits of this problem more carefully.

Answer for Exercise 9.7
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With i = e A e, the paths, (squared) speeds and separation of the masses can be written:

q1 = eRe"”

g2 = ce3 +e (ai + Rzela)

12 = (Ri6)?
2l = (Racr)?
&= (q1—q) (9.46)

=c*+ |ai + Rye'® — Rle"9|2

=+ +R>+R\> +ai (Rge_m —RieT— Ry + Rleie)
-RR, (ei“e_ig + e_i“eig)

=c?+a’+R>+R\> +2a(Rysina — Ry sin ) — 2R, R; cos(a — 6)

With the given potential:

V= szdz

We have the following Lagrangian (where the constant terms in the separation have been
dropped) :

1 ., 1
L= 5ml(Rle)2 + Emz(ch’x)z +w* (a(Rysina — Ry sin @) — R{ R, cos(a — 6))

Last part of the problem was to show that there is an additional conserved quantity when
a = 0. The Lagrangian in that case is:

1 . 1
L=sm (R10) + 5 (Rat)* = Ry Ryw? cos(a — )
Evaluating the Lagrange equations, for this condition one has:
~R|Ryw” sin(a - 6) = (m1R,%6)

, (9.47)
R1R2w2 sin(a — 0) = (mzRgzd/)

Summing these one has:

(mlRlzé)/ + (mszzd’), =0
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Therefore the additional conserved quantity is:
2/ 2. _
mRi70+mRr*@ = K

FIXME: Is there a way to identify such a conserved quantity without evaluating the deriva-
tives? Noether’s?

Spring Potential?  Small digression. Let us take the gradient of this spring potential and see
if this matches our expectations for a —kx spring force.

—-V,V = —w’dd = —w*d

Okay, this works, w? = k, which just expresses the positiveness of this constant.

Answer for Exercise 9.8

Fart (i)  The second particle hangs straight down (also Goldstein problem 9, also example 2.3
in Hestenes NFCM.) First mass m; on the table, and second, hanging.

The kinetic term for the mass on the table was calculated above in problem 7, so adding that
and the KE term for the dangling mass we have:

1 . 1
K= Eml (1'"2 + (n//)z) + Emzi’z

Our potential, measuring down is:

V=0-mg(l-r)

Combining the KE and PE terms and dropping constant terms we have:

1 ; 1
L= Eml (,-,2 + (rw)z) + Emzi"z — mogr
The ignorable coordinate is i since it has only derivatives in the Lagrangian. EOMs are:

0= (mlrzlﬁ),

_2 , (9.48)
myry” —mpg = ((my +mp)ir)" = My
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The first equation here is a conservation of angular momentum statement, whereas the second
equation has all the force terms that lie along the string (radially above the table, and downwards
below). We see the rj*> = rw? angular acceleration component when calculating radial and non-
radial component of acceleration.

Goldstein asks here for the equations of motion as a second order equation, and to integrate
once. We can go all the way, but only implicitly, as we can write ¢ = #(r), using 7 as an integrating
factor:

mir*y = miry*wy

_—
o= (2 e
_—

}’4

0 ..
m r—3w02 —mpg = My

-
1”04 2
mll"—3a)0 —ngi’ = Mi¥
r
IRy _ o\
—myro? (;) wo? —magi- = M () (9.49)

a1 2
K —mry —wo —mogr = Mr
r

fr—t
_ 2. 2 .2
K = miro"wo” + mygro + Miy

2
ro . .
mywo>ro> (1 -7 )+ Mr(z) —mpg (r—ro) = Mi?
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We can also write i = y/(r), but that does not look like it is any easier to solve:

. dydr
VEard
—
W _ ﬂ(@)z
dr — dr\r @0 (9.50)
rowodr
o= —
m m
r2 ﬁ]wozroz (1 - —2) + %— ﬁzg (r—ro)

(ii). Motion of dangling mass not restricted to straight down  This part of the problem treats
the dangling mass as a spherical pendulum. If 8 is the angle from the vertical and « is the angle
in the horizontal plane of motion, we can describe the coordinate of the dangler (pointing Z =
downwards), as:

g> = R(sin 8 cos a, sin 8 sin «, cos )
and the velocity as:

¢> = R(sin A cos a, sin @ sin @, cos 6)
+ R(cos @ cos @, cos 8sin @, — sin )0 (9.51)

+ R(— sin @ sin «, sin 8 cos &, 0)&

and can then attempt to square this mess to get the squared speed that we need for the kinetic
energy term of the Lagrangian. Instead, lets choose an alternate parametrization:

g2 = Rcos 07 + e R sin e’
g2 = (Rcos @ — Rsin00) 2 + e;e™® (Rsin 6 + R cos 66 + R sin bic)
ol = (Rcos 6 — Rsin00)” + (Rsin 6+ R cos 00) + (R sin )
= R* + (R9)” + (R sin 0cr)’

(9.52)

Our potential is

V =0-myg(l—r)cos0,
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so, the Lagrangian is therefore:

L= %mz (i’z +(-r)? (92 + sin Gd)z) + %ml (i’2 + (n//)z) +mog(l—r)cosé (9.53)



SOLUTIONS TO SOME LANDAU MECHANICS PROBLEMS

10.1 PROBLEMS

Exercise 10.1 Pendulum with support moving in circle

Attempting a mechanics problem from Landau I get a different answer. I wrote up my solution
to see if I can spot either where I went wrong, or demonstrate the error, and then posted it to
physicsforums. I wasn’t wrong, but the text wasn’t either. The complete result is given below,
where the problem (§1 problem 3a) of [15] is to calculate the Lagrangian of a pendulum where
the point of support is moving in a circle (figure and full text for problem in this Google books
reference)

Exercise 10.2 Pendulum with support moving in line

This problem like the last, but with the point of suspension moving in a horizontal line x =
acos yt.

Exercise 10.3 Pendulum with support moving in verticle line

As above, but with the support point moving up and down as a cos yt.

10.2 SOLUTIONS

Answer for Exercise 10.1

The coordinates of the mass are

p =ae” +ile", (10.1)

or in coordinates

p = (acosyt+lsin¢g,—asinyt + [cos @). (10.2)

The velocity is

p = (—aysinyt + Ip cos ¢, —ay cos yt — I sin ¢), (10.3)
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and in the square

p? = a®y? + 12¢* — 2ayd sinyt cos ¢ + 2ayld cos yt sin ¢ (10.4)
= a*y? + P + 2ayld sin(yt — ¢).

For the potential our height above the minimum is

h=2a+1-a(l —cosyt)—Ilcos¢

(10.5)
=a(l + cosyt) + I(1 — cos ¢).

In the potential the total derivative cos yt can be dropped, as can all the constant terms, leaving

U = —mglcos ¢, (10.6)
so by the above the Lagrangian should be (after also dropping the constant term ma>y?>/2
1 /h. .
L=gm (P¢* + 2aylg sin(yt - ¢)) + mgl cos . (10.7)
This is almost the stated value in the text
1 .
L=gm (P¢* + 2ay*Isin(yt - ¢)) + mgl cos ¢. (10.8)

We have what appears to be an innocent looking typo (text putting in a y instead of a ¢), but
the subsequent text also didn’t make sense. That referred to the omission of the total derivative
mlay cos(¢ —yt), which isn’t even a term that I have in my result.

In the physicsforums response it was cleverly pointed out by Dickfore that eq. (10.7) can be
recast into a total derivative

malyd sin(yt — ¢) = maly(¢ — y) sin(yt — ¢) + maly?* sin(yt — ¢)

(10.9)

d
yr (maly cos(yt — ¢)) + maly* sin(yt — ¢),
which resolves the conundrum!

Answer for Exercise 10.2

Our mass point has coordinates

p =acosyt + lie™™?
= acosyt + li(cos ¢ — i sin ¢) (10.10)
= (acosyt + Ising,lcos @),
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so that the velocity is
p = (—aysinyt + Ip cos ¢, —Ip sin ). (10.11)

Our squared velocity is

p? = a*y? sin? yr + P@* — 2ayld sinyt cos ¢

1 . .
= %azyzg (t - Z sin Zyt) + P¢? — ayld(sin(yt + ¢) + sin(yt — §)).

(10.12)

In the last term, we can reduce the sum of sines, finding a total derivative term and a remainder
as in the previous problem. That is

P(sin(yt + @) + sin(yr — ¢)) = (¢ +7y) sin(yt + @) —y sin(yt + @) + (¢ — y) sin(yt — ¢) +y sin(yr — §)
d
=7 (= cos(yt + @) + cos(yt — ¢)) + y(sin(yt — @) — sin(yt + ¢))

- % (= cos(yt + ¢) + cos(yt — ¢)) — 2y cos ytsin ¢.
(10.13)

Putting all the pieces together and dropping the total derivatives we have the stated solution

1 .
L= M (lz¢2 + 2ay*lcos yt sin ¢) + mgl cos ¢ (10.14)

Answer for Exercise 10.3

Our mass point is

p =acosyt + e (10.15)

with velocity

p = —aysinyt + lige® (10.16)
= (~aysinyt — lp sin @, I cos ¢)
In the square this is

IpP? = a®y? sin® yt + 12¢? sin® ¢ + 2aly sin yt sin . (10.17)

Having done the simplification in the last problem in a complicated way, let’s try it, knowing
what our answer is
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¢sinytsing = ¢ sinyrsing — y cos ytcos ¢ +y cos yt cos ¢
. d d .
= sin ytd—t (—cos¢) + (E (—sin yt)) COS @ + y COs yt cos ¢ (10.18)
d .
=y Ccosytcos¢ — 7 (sinytcos @) .

With the height of the particle above the lowest point given by

h=a+1—-acosyt—Ilcosd, (10.19)

we can write the Lagrangian immediately (dropping all the total derivative terms)

1 .
L=5m (¢* sin” ¢ + 2aly* cos yt cos ¢) + mgl cos ¢. (10.20)



OTHER WORKED PROBLEMS

Exercise 11.1 Dipole Moment induced by a constant electric field
In [7] it is stated that the force per unit angle on a dipole system as illustrated in fig. 11.1 is
Fyg = —p&Esiné, (11.1)

where p = gr. The text was also referring to torques, and it wasn’t clear to me if the result
was the torque or the force. Derive the result to resolve any doubt (in retrospect dimensional
analysis would also have worked).

Figure 11.1: Dipole moment coordinates

Answer for Exercise 11.1
Let’s put the electric field in the X direction (6 = 0), so that the potential acting on charge i is

given implicitly by

Fi = qlgf(
=-V¢i 11.2
N e
dx

or
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éi = —qi(x; — xo). (11.3)
Our positions, and velocities are
ris = igﬁeﬁyf’ (11.4a)
dl‘1 2 V.. ¢
T 11.4b
a2 (1140

Our kinetic energy is
1 dl‘,’ 2
T=- i|—
2 Z i ( dt )
1 2 ., (11.5)
=z 2ml3) ¢
1 2,
= E(ml +my) (%) 92.
For our potential energies we require the x component of the position vectors, which are

A

Xi=r;-X
I‘A K90 A
= i<— e X> (11.6)

+r 0
= +—CO0S
2

[\

Our potentials are

b1 = —q18% cos 8 + o (11.7a)

¢ = q28§ cos 6+ do (11.7b)

Our system Lagrangian, after dropping the constant reference potential that doesn’t effect the
dynamics is

L=2om+ )(r)292+ EX cosf — 26~ cos (11.8)
—2m1 my 3 q1 2COS q> 2COS .

For this problem we had two equal masses and equal magnitude charges m = m; = my and
9=91=—q

I
L= Zmr292 + qr&cos b (11.9)



OTHER WORKED PROBLEMS

oL
Po = —
1(’%) (11.10)
= Emrzé
0
a—g = —qr&Esin 6
_dpe (11.11)
dt
I 5.
= —mrd
2
Putting these together, with p = gr, we have the result stated in the text
d
Fg=%z—p8$in0. (11.12)

111






Part III

LAGRANGIAN TOPICS






NEWTON’S LAW FROM LAGRANGIAN

In the classical limit the Lagrangian action for a point particle in a general position dependent
field is:

1
S=§mV2—go (12.1)

Given the Lagrange equations that minimize the action, it is fairly simple to derive the New-
tonian force law.

s _dds
8)290 dtd@)'c’ (12.2)
-5 )

Multiplication of this result with the unit vector e;, and summing over all unit vectors we
have:

d  n_ Oy
Zeja(mX)—— eiﬁ
Or, using the gradient operator, and writing v = Y’ e;x’, we have:

d(mv)
F = =
dt

~Vo (12.3)

12.1 THE MISTAKE HIDING ABOVE

Now, despite the use of upper and lower pairs of indices for the basis vectors and coordinates,
this result is not valid for a general set of basis vectors. This initially confused the author, since
the RHS sum v = 3 e;' is valid for any set of basis vectors independent of the orthonormality of
that set of basis vectors. This is assuming that these coordinate pairs follow the usual reciprocal
relationships:

X = Z eix’
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e, — &
e-e =0

However, the LHS that implicitly defines the gradient as:

0
szejﬁ

is a result that is only valid when the set of basis vectors e; is orthonormal. The general result
is expected instead to be:

This is how the gradient is defined (without motivation) in Doran/Lasenby. One can however
demonstrate that this definition, and not V = }} ei%, is required by doing a computation of
something like V||x||* with x = }’ x’e; for a general basis e; to demonstrate this. An example of
this can be found in the appendix below.

So where did things go wrong? It was in one of the “obvious” skipped steps: v = )’ xixi. It is
in that spot where there is a hidden orthonormal frame vector requirement since a general basis
will have mixed product terms too (ie: non-diagonal metric tensor).

Expressed in full for general frame vectors the action to minimize is the following:

1
S=§m2x’x1ei-ej—go (12.4)

Or, expressed using a metric tensor g;; = €; - €;, this is:

1
S = EmZx'xjg,-j—tp (12.5)



12.2 EQUATIONS OF MOTION FOR VECTORS IN A GENERAL FRAME

12.2 EQUATIONS OF MOTION FOR VECTORS IN A GENERAL FRAME

Now we are in shape to properly calculate the equations of motion from the Lagrangian action
minimization equations.

_os _dis

oxk  dt Oxk

dp d (1 ox . .ox/
- axk (2ngifﬁxj”ﬁ)

(9x’< Z glj(6 kxj + X 6Jk))

= axk ( mZ(gk,x + ik X ))
= (m

d , %};" (12.6)
7 sd) = -
d i 0
e N EEa
=e;
dit(mzjzxf Zklekek e )=

The requirement for reciprocal pairs of coordinates and basis frame vectors is due to the
summation v = Y e;x’, and it allows us to write all of the Lagrangian equations in vector form
for an arbitrary frame basis as:

d(mV) Z ka a (12.7)
X

If we are calling this RHS a gradient relationship in an orthonormal frame, we therefore must
define the following as the gradient for the general frame:

Z M (12.8)
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The Lagrange equations that minimize the action still generate equations of motion that hold
when the coordinate and basis vectors cannot be summed in this fashion. In such a case, how-
ever, the ability to merge the generalized coordinate equations of motion into a single vector
relationship will not be possible.

12.3 APPENDIX. SCRATCH CALCULATIONS

12.4  FRAME VECTOR IN TERMS OF METRIC TENSOR, AND RECIPROCAL PAIRS

k

ej:Zake

_ i
ej-ek—Zaie c €k

ej-ep=a
prok= Gk (12.9)
fr—t

12.5 GRADIENT CALCULATION FOR AN ABSOLUTE VECTOR MAGNITUDE FUNCTION

As a verification that the gradient as defined in eq. (12.8) works as expected, lets do a calculation
that we know the answer as computed with an orthonormal basis.

J) =il
V) = V|ir|*

Z ek%(z xixjgij)a/z
3 D)™ G )

= allr|*™? ) ey (12.10)

T
=~

:ei

afirf* )" ¥
i

|a—2r

allr|



COVARIANT LAGRANGIAN, AND ELECTRODYNAMIC POTENTIAL

13.1 MOTIVATION

In [9], it was observed that insertion of F = V A A into the covariant form of the Lorentz force:

p=qF-v/c) (13.1)

allowed this law to be expressed as a gradient equation:

p=qV(A-v/c). (13.2)

Now, this suggests the possibility of a covariant potential that could be used in a Lagrangian
to produce eq. (13.1) directly. An initial incorrect guess at what this Lagrangian would be was
done, and here some better guesses are made as well as a bit of raw algebra to verify that it
works out.

13.2 GUESS AT THE LAGRANGE EQUATIONS FOR RELATIVISTIC CORRECTNESS

Now, the author does not at the moment know any variational calculus worth speaking of, but
can guess at what the Lagrangian equations that would solve the relativistic minimization prob-
lem. Specifically, use proper time in place of any local time derivatives:

0L d oL

o dr o (13.3)

Note that in this equation ¥ = %‘l.

13.2.1 Try it with a non-velocity dependent potential

Lets see if this works as expected, by applying it to the simplest general kinetic and potential
Lagrangian.

L=gmi+y (13.4)
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120 COVARIANT LAGRANGIAN, AND ELECTRODYNAMIC POTENTIAL

Calculate the Lagrangian equations:

9L _d 9L

ox*  dt o
= %m Z Ya -yﬁ% (5“,15&* + xaéﬁ#)
B %mZ % (- 78 + 70 78°)
=my, d%w “Yak?

- mz Vi Yoi*

Now, as in the Newtonian case, where we could show the correct form of the gradient for

(13.5)

non-orthonormal frames could be derived from the Lagrangian equations using appropriate re-
ciprocal vector pairs, we do the same thing here, summing the product of this last result with
the reciprocal frame vectors:

X (58] S
S rfsonSnr
= mi

=m

Now, this left hand operator quantity is exactly our spacetime gradient:

3
— u
V= § Yo (13.7)

and the right hand side is our proper momentum. Therefore the result of following through
with the assumed Lagrangian equations yield the expected result:

p=Vg. (13.8)

Additionally, this demonstrates that the spacetime gradient used in GAFP is appropriate for
any spacetime basis, regardless of whether the chosen basis vectors are orthonormal.

There are two features that are of interest here, one is that this result is independent of di-
mension, and the other is that there is also no requirement for any particular metric signature,
Minkowski, Euclidean, or other. That has to come another source.



13.2 GUESS AT THE LAGRANGE EQUATIONS FOR RELATIVISTIC CORRECTNESS

13.2.2  Velocity dependent potential

The simplest scalar potential that is dependent on velocity is a potential that is composed of the
dot product of a vector with that velocity. Lets calculate the Lagrangian equation for such an
abstract potential, ¢(x,v) = A -v (where any required unit adjustment to make this physically
meaningful can be thought of as temporarily incorporated into A).

1

L= Emv2+A-v (13.9)
9L _d oL

aA@x/‘ dt Ot oA (13.10)

"
V= mYy Yok

+ —_—
OxH dr O+

To simplify matters this last term can be treated separately. First observe that the coordinate
representation of the proper velocity v follows from the worldline position vector as follows

x =y,
Cdx (13.11)
Y a T
This gives

(9A-v_iA W
o oY

a5
:(Aaxy)'yv (13.12)
=o0",A -y,

=A-y,.

The taking the derivative of this conjugate momentum term we have

doA-v dA
dr s  drt u
d
= d—T(A"yv)-yu (13.13)
dA”
=" Yu

dr
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122 COVARIANT LAGRANGIAN, AND ELECTRODYNAMIC POTENTIAL

Reassembling things this is

0A d 0A-v

MYy Yol = oV
= %-V—V#'yaxﬁ%
AY DAY
:_sz.yd‘;—xﬁ+%\ﬁw~7ﬁ (13.14)
=y, (—Yu% + %Vﬁ)fla
—

a

. 0 0
P =" (—7;1@ +7ﬁ@)A

Now, this last result has an alternation that suggests the wedge product is somehow involved,
but is something slightly different. Working (guessing) backwards, lets see if this matches the
following:

(VAA)-v = D 0F A Ya) - Yp0uA™
= > 0"V V8= YoV VR)OA"
= > 0"Ya V5 = Yad pIATV
= D P Va V9P OuA” = Yo" uA” (13.15)
= > VY V9P OA" =Y Yol 0, A"
= >V Va VP OA” = VY YarPOpA"
= > VPV Ve (gl — vudp)A”

From this we can conclude that the covariant Lagrangian for the Lorentz force law has the
form:

L= %mv2+q(A-v/c) (13.16)

where application of the proper time variant of Lagrange’s equation eq. (13.3) results in the
equation:

p=q(VAA)-vic=qF -v/c (13.17)
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Adding in Maxwell’s equation:

VF=VAA=, (13.18)

we have a complete statement of pre-quantum electrodynamics and relativistic dynamics all
buried in three small equations eq. (13.18), eq. (13.3), and eq. (13.16).

Wow! Very cool. Now, I have also seen that Maxwell’s equations can be expressed in La-
grangian form (have seen a tensor something like F*'F,,, used to express this). Next step is
probably to work out the details of how that would fit.

Also worth noting here is the fact that no gauge invariance condition was required. Adding
that in yields the ability to solve for A directly from the wave equation V?A = J.






VECTOR CANONICAL MOMENTUM

[5] defines the canonical momentum as:

0L
A
and gives an example (Lorentz force) about how this can generalize the concept of momentum
to include contributions from velocity dependent potentials.
Lets look at his example, but put into the more natural covariant form with the Lorentz La-
grangian (using summation convention here)

1 1 e .
L= Emv2 +gA-v/c = MY 7ﬁx(’xﬁ + %ya . 7ﬁA"xﬁ

Calculation of the canonical momentum gives:

0L 5,4
o = MY yp0® i + Ya - ypAYS,
o, 4
=myy Yo X" + =Va "YuAa
Cq (14.1)
=Y (myafc“ + ;VQA“)
A
=Y, + -A
o ?

So, if we are to call this modified quantity p = mv + gA/c the total general momentum for

the system, then the canonical momentum conjugate to x* is:

oL
@—VM'P-

In terms of our reciprocal frame vectors, the components of p are:

p=yY"p =y

P=Y"v.p=v"pu
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126 VECTOR CANONICAL MOMENTUM

From this we see that the conjugate momentum gives us our vector momentum component
with respect to the reciprocal frame. We can therefore recover our total momentum by summing
over the reciprocal frame vectors.

0L d oL
ax*  dr ot

d

= abr (14.2)
N

0L d
Z )’”ﬁ = Z $7’” Pu
Observe that we have nothing more than our spacetime gradient on the left hand side, and a

velocity specific spacetime gradient on the right hand side. Summarizing, this allows for writing
the Euler-Lagrange equations in vector form as follows:

dp
£ _y
dr L
pP= VV-E
~ P, (14.3)
OxH
0
V, = pA—
Ly

Now, perhaps this is a step backwards, since the Lagrangian formulation allows for not having
to use vector representations explicitly, nor to be constrained to specific parameterizations such
as this constant frame vector representation. However, it is nice to see things in a form that
is closer to what one is used to, and this is not too different seeming than the familiar spatial
Newtonian formulation:

dp _

=-V
dt ¢



DIRECT VARIATION OF MAXWELL EQUATIONS

15.1 MOTIVATION, DEFINITIONS AND SETUP

This document will attempt to calculate Maxwell’s equation, which in multivector form is

VF = J/ec (15.1)

using a Lagrangian energy density variational approach.

15.1.1 Tensor form of the field

Explicit expansion of the field bivector in terms of coordinates one has

F=E+IcB
= E*yk0 + Yor23u0c B* (15.2)
= E'yi0 + (v0)* (v)*€”kcyii B
Or,
F = Efyio — €' BYy;j (15.3)

When this bivector is expressed in terms of basis bivectors y,, we have

1

F = Z(F'VV”)%W = E(F-VV")MV (15.4)
u<v

As shorthand for the coordinates the field can be expressed with respect to various bivector
basis sets in tensor form

Fv=F-y" F=/2)Fy,
va =F *Yvu F = (1/2)va)’w
F,) =F-y/ F=1/2)F,"y,
Ft, =F-y F:(I/Z)F#V’Y/.tv
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128 DIRECT VARIATION OF MAXWELL EQUATIONS

In particular, we can extract the electric field components by dotting with a spacetime mix of
indices

F=E'y-y" = E' = -Fy

and the magnetic field components by dotting with the bivectors having a pure spatial mix of
indices

F'l = —ce®® By, - v/ = €V} BF = Fjj
It is customary to summarize these tensors in matrix form

(0 -E' -E2 -E}
E' 0 —cB® cB?
Fr = e (15.5)
E? ¢B? 0 —cB!

|E3 —cB®> (B! 0

[0 E' E2 E3

-E' 0 -cB® c¢B?

Fy = e (15.6)
—-E* ¢B? 0 —cB!

|-E3 —¢B*> (B! 0

Neither of these matrices will be needed explicitly, but are included for comparison since
there is some variation in the sign conventions and units used for the field tensor.

15.1.2  Maxwell’s equation in tensor form

Taking vector and trivector parts of Maxwell’s equation eq. (15.1), and writing in terms of
coordinates produces two equations respectively

0, F*" = J%/ce (15.7)

€PH, Fpy = 0. (15.8)

The aim here to show that these can be derived from an appropriate Lagrangian density.



15.2 FIELD SQUARE

15.1.2.1  Potential form

With the assumption that the field can be expressed in terms of the curl of a potential vector

F=VAA (15.9)

the tensor expression of the field becomes

FY = F - (9" AyH) = 1A — §” A (15.10)
Fu=F (3, Ay) = 0,A, — 0,4, (15.11)
F'y = F-() Ay,) = 34, — 5,A" (15.12)
F) =F-(y, Ay") = 9,A” - 0'A, (15.13)

These field bivector coordinates will be used in the Lagrangian calculations.

15.2 FIELD SQUARE

Our Lagrangian will be formed from the scalar part (will the pseudoscalar part of the field also
play a part?) of the squared bivector

F? = (E + IcB)E + IcB)
= E? - ¢’B? + ¢ (IBE + EIB)

15.14
= E? - ?B? + ¢l (BE + EB) (519
=E?-?B? +2¢IE-B
15.2.1 Scalar part
One can also show that the following are all identical representations.
1
S Fu " = —(F?) = B> - E? (15.15)

In particular, we will use the tensor form with the field defined in terms of the vector potential
of eq. (15.9).
Expanding in coordinates this squared curl we have

(VAAYVAA) = (y’”’aﬂAv)(yaﬁﬁaAlg) (15.16)
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130 DIRECT VARIATION OF MAXWELL EQUATIONS

Implied here is that u # v and @ # (. Given that expansion of the scalar and pseudoscalar

parts of this quantity we have

((VAAP) = ™) (rap)3uA 0" AP
— (SHSV _ sV M @ A
= (8500 — 050 DA A
= 0,A,0" A" — 9,A,0"A”
= —,A, ('A” - & AF)

That is
2 v 1 %
((VAAY) = -0,A,F" = 5 FurF".
We will work first with the Lagrangian field density in the following form
L=-5(F)+J-A
2

- gaﬂAV(é}”A" — AN + LA

15.2.2  Pseudoscalar part

For the pseudoscalar parts of the product we have

<(V A A)2>4 = (VAA)A(VAA)
= (V) A (Yap)' A0 AP

That is

((V A 4)?) o = Guapl A AP

15.3 VARIATIONAL BACKGROUND

(15.17)

(15.18)

(15.19)

(15.20)

(15.21)

Trying to blindly plug into the proper time variation of the Euler-Lagrange equations that can

be used to derive the Lorentz force law from a A - v based Lagrangian

oL _dor
Ox*  dt O+

(15.22)
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did not really come close to producing Maxwell’s equations from the Lagrangian in eq. (15.19).
Whatever the equivalent of the Euler-Lagrange equations is for an energy density Lagrangian
they are not what is in eq. (15.22).

However, what did work was Feynman’s way, [4], from the second volume of the Lectures
(the “entertainment” chapter on Principle of Least Action). which uses some slightly ad-hoc
seeming variational techniques directly. To demonstrate the technique some simple examples
will be calculated to get the feel for the method. After this we move on to the more complex
case of trying with the electrodynamic Lagrange density of eq. (15.19).

15.3.1  One dimensional purely kinetic Lagrangian

Here is pretty much the simplest case, and illustrates the technique well.
Suppose we have an action associated with a kinetic Lagrangian density (1/2)mv?

b 2
m(dx
= = 23
S L Z(dt) dt (15.23)

where x = x(¢) is the undetermined function to solve for. Feynman’s technique is similar to
[5] way of deriving the Euler Lagrange equations, but instead of writing
x(t,€) = x(t,0) + en(?)

and taking derivatives under the integral sign with respect to €, instead he just writes

xX=x+n (15.24)

In either case, the function n = n(¢) is zero at the boundaries of the integration region, and is
allowed to take any value in between.
Substitution of eq. (15.24) into eq. (15.23) we have

b -\2 b - b 2
m(dx mdXxdn m(dn
= — — —_—— — PR— —_— 5.
S fa 2(dt) dt+2 YT dthfa Z(dt)dt (15.25)
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The last term being quadratic and presumed small is just dropped. The first term is strictly
positive and does not vary with n in any way. The middle term, just as in Goldstein is integrated
by parts

f

fg fg ‘g

bl dx dn dx | b 2% (15.26)
——dt=| —n| |- —n dt.

. | dt dt dr |, « | di?

Since n(a) = n(b) = 0 the first term is zero. For the remainder to be independent of path (ie:
independent of n) the X’ term is set to zero. That is

*x
i
As the solution to the extreme value problem. This is nothing but the equation for a straight
line, which is what we expect if there are no external forces

x—xg = v(t—1tp).
15.3.2  Electrostatic potential Lagrangian

Next is to apply the same idea to the field Lagrangian for electrostatics. The Lagrangian is
assumed to be of the following form

L =k(V$)* +ps

Let us see if we can recover the electrostatics equation from this with an action of

S =f£dxdy (15.27)
Q

Doing this for the simpler case of one dimension would not be too much different from the
previous kinetic calculation, and doing this in two dimensions is enough to see how to apply
this to the four dimensional case for the general electrodynamic case.

As above we assume that the general varied potential be written in terms of unknown function
for which the action takes its extreme value, plus any other unspecified function

b=d+n (15.28)



15.3 VARIATIONAL BACKGROUND

The function 7 is required to be zero on the boundary of the area (). One can likely assume
any sort of area, but for this calculation the area will be assumed to be both type I and type 11
(in the lingo of Salus and Hille).

FIXME: picture here to explain. Want to describe an open area like a ellipse, or rectangle
where bounding functions on the top/bottom, or left/right and a fixed interval in the other direc-
tion.

Substituting the assumed form of the solution from eq. (15.28) into the action integral eq. (15.27)

one has

- f dA(K(vas)2+p<$)+ f dA (26(V$) - Vi + pn) + & f dA(Vn)?
Q Q (@]

Again the idea here is to neglect the last integral, ignore the first integral which is fixed, and
use integration by parts to eliminate derivatives of n in the middle integral. The portion of that
integral to focus on is

¢ on
2 dx\d
(5 f g g
but how do we do integration by parts on such a beast? We have partial derivatives and

multiple integration to deal with. Consider just one part of this sum, also ignoring the scale
factor, and write it as a definite integral

od O Xp= Hz(Xu) a_ )
f iy 2201 f dx, f $lx1, %) Onliis, ¥a) (15.29)
(@] X1=

6)61 axl x2=0;(x1) 8x2 8)62

In the inner integral x; can be considered constant, and one can consider n(x, x;) to be a set
function of just x,, say

my, (x2) = n(xy, x2)

Then dm/dx; is our partial of n

dmy, (x2) _ On(x1, x2)
dx, ~ ox

and we can apply integration by parts

o 0 b8
de1dX28—¢a—n:f dxy w (x1,x2)
0 x| 0X1 x1=a X2 x2=01(x1) (15.30)

X2 = 92(X1)
f dxlf d M n(xy, x2)
X226, (x1) dx2 x>

x=02(x1)
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In the remaining single integral we have n(xy, 6(x1)), and n(xy, 62(x1)) but these are both
points on the boundary, so by the definition of n these are zero (Feynman takes the region as all

space and has n = 0 at infinity).

In the remaining term, the derivative %W(BX_;;CZ) is taken with x; fixed so is just a second

partial. Doing in the same integration by parts for the other part of the sum and reassembling
results we have

27 2
S:fdA(K(V(Z))2+p<?>)+fdA(—2K8—¢—2K8—¢2 +p)n+deA(Vn)2 (15.31)
Q 0O @)

Ox 1 2 8x2

As before we set this inner term to zero so that it holds for any n, and recover the field
equation as

V26 = p/2«.

provided we set the constant k = —¢€y/2. This also fixes the unknown constant in the associ-
ated Lagrangian density and action

S=f(—%(V¢)2+p¢)dQ. (15.32)
(@)

It is also clear that the arguments above would also hold for the three dimensional case

¢ = P(x,y,2).
154 LAGRANGIAN GENERATION OF THE VECTOR PART OF MAXWELL’S EQUATION

We want to do the same for the general electrodynamic Lagrangian density (where « is still
undetermined)

L= gaﬂAy(aﬂAV _ AR + T, A (15.33)
Using the same trick we introduce the desired solution and an variational function for each

AH

AH = AF 4 pt



15.4 LAGRANGIAN GENERATION OF THE VECTOR PART OF MAXWELL’S EQUATION

2/K(L = Jo(A” + 1)) = (A, + n, ) (A” +n”) — 8" (A" + n'))
= 0, A (A" — &"AM) + 0,n, (F'n” — 0" nt) (15.34)
+0,A,("n” = 3"nt) + 9un, (" AY — 0" AF)
The idea again is the same. Treat the first term as fixed (it is the solution that takes the

extreme value), neglect the quadratic term that follows, and use integration by parts to remove
any remaining n* derivatives. Those derivative terms multiplied out are

9, A,0'n” — 0,A,0" " + 8,n, " A" — d,n, 0" A

= A, 0" — 9,70 " + 0, n” # A, — 9,n" 9, AF

= 20"A,d,n" — 0,A”0,n*" — 8,n"9,A”

= 20"A,0,n" - 28,A*d,n" (15.35)
=2(A, - 9,A") un”

=2(0"A" - 0"A¥) d,n,

= 2F;",n,

Collecting all the non-fixed and non-quadratic n* terms of the action we have

58 = f d*xkF 3" dyn, + Jng

(15.36)

= f d3x“x“KF/3“an|aﬂ + fd4x (—KﬁﬂF;“V + J") n,

Where d>x“X" = dx*dxPdx?, for{a, B, v} # u denotes the remaining three volume differential

element remaining after integration by dx*. The expression du denotes the boundary of this first
integration, and since we have n = 0 on this boundary this first integral equals zero.

Finally, setting the interior term equal to zero for an extreme value independent of n” we have

1
QMFA‘MV = ;JV

This fixes k = cey, and completes half of the recovery of Maxwell’s equation from a La-
grangian

ceo
£:—7<(V/\A)2>+J-A (15.37)

135



136

DIRECT VARIATION OF MAXWELL EQUATIONS

15.5 LAGRANGIAN GENERATION OF THE TRIVECTOR (DUAL) PART OF MAXWELL’S EQUATION

Next it will be shown that the remaining half eq. (15.8) of Maxwell’s equation in tensor form
can be calculated from the pseudoscalar part of the field square eq. (15.21) when used as a
Lagrangian density.

2
= —«kclE-B (15.38)
1
a8
I think that it will be natural as a follow on to retain the complex nature of the field square
later and work with an entirely complex Lagrangian, but for now the —«//2 coefficient can be
dropped since it will not change the overall result. Where it is useful is that the factor of
implicitly balances the upper and lower indices used, so a complete index lowering will also
not change the result (ie: the pseudoscalar is then correspondingly expressed in terms of index
upper basis vectors).
As before we write our varied field in terms of the optimal solution, and the variational part

A* = AF 4

and substitute into the Lagrangian

L= L3+ Lo+ 6uap (A0 + 0’0" AF)

It is this last term that yields the variation part of our action

0S = €40 f d*x (8";\"6‘%6 +aﬂnva‘ﬁﬁ)

€vap f d*x" A1 + €apyy f d*xd" P+ A (15.39)
= 26408 f d*x" A 9P
and we do the integration by parts on this
oS = —ZEyvaﬁfd4x6“ (aﬂzv)nﬁ

(15.40)
=2 [ (0, (9,4.)) s



15.6 COMPLEX LAGRANGIAN USED TO GENERATE THE COMPLETE MAXWELL EQUATION

We are close to recovering the trivector part of Maxwell’s equation from this. Equating the
kernel to zero, so that it applies for all variations in n we have

¢, (9,A,) = 0
Since we can add zero to zero and not change the result, we can write

0 = €0, (0,A,) + €8, (0,A,)

= €0, (9,4, - 0,A,) (4

That completes the result and this extremal solution recovers the trivector part of Maxwell’s
equation in its standard tensor form

Py F = 0 (15.42)

15.6 COMPLEX LAGRANGIAN USED TO GENERATE THE COMPLETE MAXWELL EQUATION

Working with the Lagrangian in a complex form, avoiding any split into scalar and pseudoscalar
parts, may be a more natural approach. Lets try this, forming the complex Lagrangian density

L=x(VAAP+J-A

(15.43)
= k(") "P)0uA,00Ap + J7 Ay

With the same split into solution and variational parts

A=A, +ny,

and writing £, = k(V A u)*, we can split this into three parts

L=L;+TAc+ L, +6L

where

0L = K('yyv)(yaﬁ)augvaanﬁ + K(yﬂv)(yaﬁ)a,unvaagﬁ +J7ns
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It is important to note that all of the squared field Lagrangian terms

Ly=L;+ L +6L=k(VAAY, (15.44)

has only grade zero and grade four parts. In particular since L4, L3, and £, all have no grade
two term, then 6L also has no grade two term. This observation will be needed later to drop
grade two terms when it is not so obvious that they are necessarily zero algebraically.

Forming the action §' = f d*xL, and integrating the 6L contribution by parts we have

58 = f &' x (—k ™YY PIngdaduAy + -k )Y P )n,0,00Ap + I s

~ (15.45)
= [ e (40,0, (P07 + )+ 07)
Setting the kernel of this to zero
J7 [k = BaBuAy (P + ™)) (15.46)

Since the integration by parts cannot have changed the grade, the observation made with
eq. (15.44) can be used to write this last symmetric bivector product as a single product.
Temporarily writing U = y*?, and V = v*” we have

Uv+vU=2(U-V+UAYV)
=2(UV -(UV),) (15.47)
=20V

With multiplication by vy, and summing we are almost there

J/k = Zaaaﬂgyy(,ya‘fy“"
= —20,0,A, YY" V"
= —26&@4&,)/")/’”’
= —2V9, A,y (15.48)
=V ((’)VA# - aﬂﬁv) o
==-VF,»"
= —2VF



15.7 SuUMMARY

With « = —cey/2 we have derived Maxwell’s equation eq. (15.1) from a Lagrangian density
without having to reassemble it from the tensor eq. (15.7) for the vector part, and the associated
dual tensor eq. (15.8) for the trivector part.

It also shows that the choice to work directly with a complex valued Lagrangian,

cey

-£=—7

(VAA? +J-A (15.49)

leads directly to Maxwell’s equation in its Geometric Algebra formulation, as detailed in [3].

157 SUMMARY

With just two Lagrangian’s and their associated action integrals

Lz—czﬂ(V/\A)2+J-A (15.50)
1 2
£=§mv +gA-v/c (15.51)

we have a good chunk of non-quantum electrodynamics described in a couple energy min-
imization relationships. A derivation, albeit a primitive one based somewhat on intuition, of
eq. (15.51) can be found in 13.

The solution of the action problem for these give us our field equation and Lorentz force law
respectively.

VF =J/eyc
dp

L _gF-
dr gk -vie

Now, to figure out everything else based on these still takes a lot of work, but it is nice to
logically reduce things to the minimal set of fundamental relationships!

Positive time metric signature is implied in the above Lorentz Lagrangian. A more careful
followup treatment of this Lagrangian with respect to signature can be found in 16.
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REVISIT LORENTZ FORCE FROM LAGRANGIAN

16.1 MOTIVATION

In 13 a derivation of the Lorentz force in covariant form was performed. Intuition says that
result, because of the squared proper velocity, was dependent on the positive time Minkowski
signature. With many GR references using the opposite signature, it seems worthwhile to under-
stand what results are signature dependent and put them in a signature invariant form.

Here the result will be rederived without assuming this signature.

Assume a Lagrangian of the following form

1
£=§mv2+KA-v (16.1)

where v is the proper velocity. Here A(x*, ) = A(x") is a position but not velocity dependent
four vector potential. The constant k includes the charge of the test mass, and will be determined
exactly in due course.

16.2 EQUATIONS OF MOTION

As observed in 14 the Euler-Lagrange equations can be summarized in four-vector form as

VL= i(VVL). (16.2)
dr
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142 REVISIT LORENTZ FORCE FROM LAGRANGIAN

To compute this, some intermediate calculations are helpful

Vv =0
VA-v) = VA#)'C"
=y"i0,A,
S = SV
=9 (yu) 0 &
= Y () i
= 7, (16.3)
=y
Vi(A-v) =y"0pA, X"
=y'A,
= YA,
=A
d
— =0,

Putting all this back together

d
VL - E (VV-L)

d
ky"3H0,A, = g (mv+«A) o

—
p =k (Y #oA,— X0y AL)
= k0,A, (Y3 = X'pH)

We know this will be related to F - v, where F' = V A A. Expanding that for comparison

F-v=(VAA)-v
= (' AY") - YaX"0,A,
= (Y6 —y'a) X70,A, (16.5)
= Y'R0,A, -7 #D,A,
= 0,A, (Y& —y'%)



16.3 CORRESPONDENCE WITH CLASSICAL FORM

With the insertion of the « factor this is an exact match, but working backwards to demon-
strate that would have been harder. The equation of motion associated with the Lagrangian of
eq. (16.1) is thus

p=«kF-v. (16.6)

16.3 CORRESPONDENCE WITH CLASSICAL FORM

A reasonable approach to fix the constant « is to put this into correspondence with the classical
vector form of the Lorentz force equation.

Introduce a rest observer, with worldline x = cteg. Computation of the spatial parts of the
four vector force eq. (16.6) for this rest observer requires taking the wedge product with the
observer velocity v = cyeq. For clarity, for the observer frame we use a different set of basis
vectors {e,}, to point out that yy of the derivation above does not have to equal ey. Since the
end result of the Lagrangian calculation ended up being coordinate and signature free, this is
perhaps superfluous.

First calculate the field velocity product in terms of electric and magnetic components. In this
new frame of reference write the proper velocity of the charged particle as v = ¢, Vi

F-v=E+IcB)-v
= (E'ei — &jxcBre;)) - e, f* (16.7)
= Eifoeio ey + Eifjei() cej— Eijkchfme,-j c €
Omitting the scale factor y = dt/dt for now, application of a wedge with ey operation to both
sides of eq. (16.6) will suffice to determine this observer dependent expression of the force.

(F-v)Aey = (Eifo(eio ce0) + E'fi(ejo - €j) — €jucB* fMe;; - €m) A e
= E'fOeip(e0)’ — €jxcB " () (€i6 jm — €6im) A €0 (16:8)
= (e0)’ (Eifoeio + €;jxcB* (fjeio - fiejO))

This wedge application has discarded the timelike components of the force equation with
respect to this observer rest frame. Introduce the basis {o; = e; A eg} for this observers’ Eu-
clidean space. These spacetime bivectors square to unity, and thus behave in every respect like
Euclidean space vector basis vectors. Writing E = E'oi,B = Bioj, and v = o;dx'/dt we have

dfi  df
S S J)) (16.9)

dt
(F-v)ANey= (eo)zc£ (E + € B" (Eo',- il
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144 REVISIT LORENTZ FORCE FROM LAGRANGIAN

This inner antisymmetric sum is just the cross product. This can be observed by expanding
the determinant

g1 02 03
axb=la a a3
by by b3 (16.10)

o1(axbz — azby) + oz(azby — a1b3) + o3(a1by — axby)

=0;a jbk
This leaves

dt
K(F-v)/\eQZK(eo)zcE (E+vxB) (16.11)

Next expand the left hand side acceleration term in coordinates, and wedge with eq

e dmf'”ﬂ Ae
“dar dr)
dmf dt

= eijo———=

dt dt’

P Aeo =(
(16.12)

Equating with eq. (16.11), with cancellation of the y = dt/drt factors, leaves the traditional
Lorentz force law in observer dependent form

% (myv) = k(ep)*c (E+v xB) (16.13)

This supplies the undetermined constant factor from the Lagrangian «(ep)’c = ¢. A summary
statement of the results is as follows

L= %mv2 +qleo)A - (v/c)

p = (e0)’qF - (v/c) (16.14)
p=9q(E+vxB)
For (eg)? = 1, we have the proper Lorentz force equation as found in [3], which also uses

the positive time signature. In that text the equation was obtained using some subtle relativistic
symmetry arguments not especially easy to follow.



16.4 GENERAL POTENTIAL

16.4 GENERAL POTENTIAL

Having written this, it would be more natural to couple the signature dependency into the veloc-
ity term of the Lagrangian since that squared velocity was the signature dependent term to start

with

L= %mvz(eo)z +gA - (v/c) (16.15)

Although this does not change the equations of motion we can keep that signature factor with
the velocity term. Consider a general potential as an example

1
L= Emvzm)z +¢

VL= i(VVL) (16.16)
dr

d N _u. 4
d—T(MV()’o) )=V¢ dT(Vv¢)
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DERIVATION OF EULER-LAGRANGE FIELD EQUATIONS

17.1 MOTIVATION

In 15 Maxwell’s equations were derived from a Lagrangian action in tensor and STA forms. This
was done with Feynman’s [4] simple, but somewhat non-rigorous, direct variational technique.

An alternate approach is to use a field form of the Euler-Lagrange equations as done in the
wikipedia article [30]. I had trouble understanding that derivation, probably because I did not
understand the notation, nor what the source of that equation.

Here Feynman’s approach will be used to derive the field versions of the Euler-Lagrange
equations, which clarifies the notation. As a verification of the correctness these will be applied
to derive Maxwell’s equation.

17.2 DERIVING THE FIELD LAGRANGIAN EQUATIONS

That essence of Feynman’s method from his “Principle of Least Action” entertainment chapter
of the Lectures is to do a first order linear expansion of the function, ignore all the higher order
terms, then do the integration by parts for the remainder.

Looking at the Maxwell field Lagrangian and action for motivation,

L= (A" -0"A") (8,4, - 0,A,) +kJT A
) (17.1)
S = fd xL

where the potential functions A* (or their index lowered variants) are to be determined by

extreme values of the action variation. Note the use of the shorthand d,, = %.

We want to consider general Lagrangians of this form. Write

L= LA, 0,A7) = LAY AL, -+, 80A°,0,A°,- ) (17.2)
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DERIVATION OF EULER-LAGRANGE FIELD EQUATIONS

17.2.1  First order Taylor expansion of a multi variable function

Given an abstractly specified function like this, with indices and partials flying around, how to
do a first order Taylor series expansion may not be obvious, especially since the variables are
all undetermined functions!

Consideration of a simple case guides the way. Assume that a two variable function can be
expressed as a polynomial of some order

fx,y) = aijx'y! (17.3)

Evaluation of this function or its partials at (x,y) = (0,0) supply the constants a;;. Simplest
is the lowest order constant

f(0,0) = ago (17.4)

O f = iaijxi_lyj

Oyf = jajx'y’™!
Ounf = i(i — Dayx"™2y!
Oy f = j(j - Daix'y

il -l
Oxyf = ijaijx'"y’

- (17.5)
aio = (0xf) lo
ao1 = (0yf) lo
1
a0 = 5 (Dxxf) lo

1
n = 5, (Aypf) lo

ain = (0xf) lo= (yxf) lo



17.2 DERIVING THE FIELD LAGRANGIAN EQUATIONS

FC,y) = flo+x (0xf) lo+y (0yf) lo
1
+ E (XZ (axxf) lo+xy (&cyf) lo+yx (ayxf) |0"’y2 (ayyf) |O) (17.6)

+ Z a;x'y’

(i+))>2
17.2.2  First order expansion of the Lagrangian function

It is not hard to see that the same thing can be done for higher degree functions too, although
enumerating the higher order terms will get messier, however for the purposes of this variational
exercise the assumption is that only the first order differential terms are significant.

How to do the first order Taylor expansion of a multivariable function has been established.
Next write A = A* + n*, where the A* functions are the desired solutions and each of n* van-
ishes on the boundaries of the integration region. Expansion of £ around the desired solutions
one has

LA + 1, 0,(A7 +n7)) = LA, 5,A7)

- 0
+ (A" + n“) ( —L)
OAF || 4
- oL
+ (A7 + 00| ———
0y v )( 9(3,A7) ) St i (17.7)
higher order derivatives
+ Z (Z/‘ + n“)l (c‘)VZ‘T + c')vn")J
i+j>2
17.2.3  Example for clarification
Here we see the first use of the peculiar looking partials from the wikipedia article
oL
(17.8)

3(8,A7)’
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150 DERIVATION OF EULER-LAGRANGE FIELD EQUATIONS

Initially looking at that I could not fathom what it meant, but it is just what it says, differenti-
ation with respect to a variable d,A”. As an example, for

L =uA’ +vA' + a8, A + boyA!

0A°  9A! (17.9)
=uA’ +vA' + a— + h—
Ox! 0x0

where u,v,a, and b are constants. Then an corresponding example of such a partial term is

oL

17.2.4  Calculation of the action for the general field Lagrangian
S = f d*xL
= f d*xL(A*,0,A7)
- 0
+fa’4x(A“+n”)(—£)
OAH AR=AH

+ f d*x(0,A7 +6,n”) (ﬁ)

+ f d*x(- - - neglected higher order terms - - -)

(17.11)

8,A"=9,A"

Grouping this into parts associated with the assumed variational solution, and the varied parts
we have

S = f d4x(£(;\”,6v;l")+/_1” (E)

O0AH
[ ( ()
0AH

+ ...

+9,A” (—BL )
8(3,A7)

AH=AH 6VA‘T=8VA’T]
oL
8(6VA°')

(17.12)

+0,n” (

AR=AH 6VA”:6VA”]

None of the terms in the first integral are of interest since they are fixed. The second term of
the remaining integral is the one to integrate by parts. For short, let

(s

507 (17.13)

0, AH=0,AF



17.2 DERIVING THE FIELD LAGRANGIAN EQUATIONS

then this integral is

c')n 8
3 v 3 o 4. o

= — 17.1
fd xdx"—u fd x (n7u) o fd xn” —u (17.14)

Here 0x” denotes the boundary of the integration. Because n? was by definition zero on all
boundaries of the integral region this first integral is zero. Denoting the non-variational parts of
the action integral by ¢S, we have

58 = fd4x(nﬂ (%)
- [ (7)

Now, for 6§ = 0 for all possible variations n” from the optimal solution A”, then the inner
expression must also be zero for all o-. Specifically

9 (L)
" ox \a(0,A7)

AM=AH 8,A=8,A" )

(17.15)

AT=Ao dx” \9(0,A7) 8,A7=8,A7

oL 9 AL
0A” — 9x” 3(8,A7)’

(17.16)

Feynman’s direct approach does not require too much to understand, and one can intuit
through it fairly easily. Contrast to [5] where the same result appears to be derived in Chap-
ter 13. That approach requires the use and familiarity with a functional derivative

OL 9L d 9L
SAT  9AT  dx” 3(8,A7)

17.17)

which must be defined and explained somewhere earlier in the book in one of the chapters
that I skimmed over to get to the interesting “Continuous Systems and Fields” content at the
end of the book.

FIXME: I am also not clear why Goldstein would have a complete derivative d/dx” here
instead of 9, = d/0x". A more thoroughly worked simple example of the integration by parts
in two variables can be found in the plane solution of an electrostatics Lagrangian in 15. Based
on the arguments there I think that it has to be a partial derivative. The partial also happens to
be consistent with both the wikipedia article [30], and the Maxwell’s derivation below.
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152 DERIVATION OF EULER-LAGRANGE FIELD EQUATIONS

17.3 VERIFYING THE EQUATIONS
17.3.1 Maxwell’s equation derivation from action

For Maxwell’s equation, our Lagrangian density takes the following complex valued form

£=—%(VAA)2+J-A (17.18)

In coordinates, writing Yy = y® A %#, and for convenience k = —eyc/2 this is

L=x(r") (y*)0uA0Ap + I Ay (17.19)
Some intermediate calculations to start

oL

— =J7 17.20

9., ( )

For the differentiation with respect to partials it is helpful to introduce a complete switch of
indices in eq. (17.18) to avoid confusing things with the v, and o indices in our partial.

oL . oL
(0,Ar)  9(0,A,)

This makes it clearer that the differentiation really just requires evaluation of the product
chain rule (fg) = f'g + fg’

(™) (") omANOBAC) (17.21)

aL vo Q Q vo
m=’<((7 )(Vﬁ)aaAﬂ+(7’ﬁ)(7 )ﬁaAﬂ) (17.22)

-t (7)) + ) ™)

Reassembling results the complete field equations are described by the set of relations

1
- __ B B
J? = 26008V60A5 ((ym) (ya ) + (y“ ) (ym)). (17.23)
Multiplying this by 7y, on both sides and summing produces the current density J = y,J’ on
the LHS
L L o0 () () + () ()
€oC ) vUa fod
1 17.24

_ EavaaAﬁ%r ((,ym/) (,yaﬁ) + (yaﬁ) (ych)) ( )



17.3 VERIFYING THE EQUATIONS

L= Za0us (v () + 70 () 7)) (17.25)

€nC
It appears that there is a cancellation of o terms possible in that last term above too. Alge-
braically for vectors a, b, and bivector B where a - b = 0, a reduction of the algebraic product is
required

lea (17.26)
a

Attempting this reduction to cleanly cancel the a terms goes nowhere fast. The trouble is that
there is a dependence between B and the vectors, and exploiting that dependence is required to
cleanly obtain the desires result.

Step back and observe that the original Lagrangian of eq. (17.18), had only have scalar and
pseudoscalar grades from the bivector square, plus a pure scalar grade part

L=(Lo4 (17.27)

This implies that there is an dependency in the indices of the bivector pairs of the Lagrangian
in coordinate form eq. (17.19). Since scalar differentiation will not change the grades, the pairs
of indices in the symmetric product above in eq. (17.25) are also not all free. In particular, either
{v,0} € {a, B}, or these indices are all distinct, since two but only two of these indices equal
would mean there is a bivector grade in the sum.

The end of a long story is that the bivector product

) ™) = (™) (v*) (17.28)

can be commuted, which leaves

== 0,0, (1)

= yvavaarAﬁ (,yrx/j)

= VaaAs (vF) (17.29)

- %v (OaAp — IpAa) (¥

_ émﬁ ()
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154 DERIVATION OF EULER-LAGRANGE FIELD EQUATIONS

This is Maxwell’s equation in its full glory

J
VF = —. (17.30)
€nC

[3] contains additional treatment, albeit a dense one, of this form of Maxwell’s equation.
17.3.2  Electrodynamic Potential Wave Equation
17.3.3  Schrodinger’s equation
Problem 11.3 in [5] is to take the Lagrangian

n? h
L= VU VY Vi + o (Y oy — yo™)
m l

H? ho o
= SO + Vi + (V" Oy — yd™)

m

(17.31)

treating ¢, and ¥ as separate fields and show that Schrodinger’s equation and its conjugate
follows. (note: I have added a 1/2 fact in the commutator term that was not in the Goldstein
problem. Believe that to have been a typo in the original (first edition)).

We have

oL
o+
and canonical momenta
h2
P (;91: 5 = 2O
(Om) — 2m (17.33)
oL h

h
=V + =0 (17.32)
21

oowr) 2

0L oL oL
= O +0
* ; AOny) 0(0*)
5 72 how (17.34)
Vi + 2—iazl// = om Zm:amm‘/’— 5 or
which is the desired result

n? oy
_ g2 - (17.35)
2m vy ! ot



17.3 VERIFYING THE EQUATIONS

The conjugate result

h2 5 aw*
_ * * = _hi (17.36
2mv v+ Vi hi > )

follows by inspection since all terms except the time partial are symmetric in ¢ and ¥*. The
time partial has a negation in sign from the commutator of the Lagrangian.

FIXME: Goldstein also wanted the Hamiltonian, but I do not know what that is yet. Got to
go read the earlier parts of the book!

17.3.4  Relativistic Schrodinger’s equation
The wiki article on Noether’s theorem lists the relativistic quantum Lagrangian in the form

m?c?

L= "o’ + =y’ (17.37)

That article uses 7 = ¢ = 1, and appears to use a — + ++ metric, both of which are adjusted
for here.
Calculating the derivatives

2.2
oL _me, (17.38)
A

0L 0
Ouzra— = —0u |1 0aty Iy’
#a(aﬂw*) ﬂ 20u”) /3 (17.39)
= =0y (n™0at) .
= -0,0"y
So we have
—m202
8,0y = ?w (17.40)
With the metric dependency made explicit this is
1 & m?c?
Vi — |y= — 17.41
( c2<at)2)‘” e b

Much different looking than the classical time dependent Schrodinger’s equation in eq. (17.36).
[24] has a nice discussion about this equation and its relation to the non-relativistic Schrédinger’s
equation.
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TENSOR DERIVATION OF COVARIANT LORENTZ FORCE FROM
LAGRANGIAN

18.1 MOTIVATION
In 16, and before that in 13 Clifford algebra derivations of the STA form of the covariant Lorentz

force equation were derived. As an exercise in tensor manipulation try the equivalent calculation
using only tensor manipulation.

18.2 CALCULATION

The starting point will be an assumed Lagrangian of the following form

L= lv2 +(g/m)A -v/c

: (18.1)
= Sk + (q/mc)Api
Here v is the proper (four)velocity, and A is the four potential. And following [3], we use a
positive time signature for the metric tensor (+ — ——).
oL 0Ag
= _ —F; 18.2
ppT (g/mc) FpT i# (18.2)
oL o (1 4., 0(Agx%)
ok g (2g"ﬁxﬂx )+(q/ o)
1 (18.3)

=5 (8ot + gupi®) + (q/me)A,

= X, + (g/mc)A,
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158 TENSOR DERIVATION OF COVARIANT LORENTZ FORCE FROM LAGRANGIAN

oL _d oL
oxt  dt Ot
aAB. . . 6Au
(q/mc)@xg =X, + (q/mc)xﬁﬁ
— (18.4)
. . 5AB aAu
% = (g/me)i? (a_ - ﬁ)
= (q/mc)¥ (9,Ap — 9pA,)
This is
miy, = (q/C)F 53 (18.5)

The wikipedia article [29] writes this in the equivalent indices toggled form
mit = (q/c)igF** (18.6)

[22] (22nd edition, equation 467) writes this with the Maxwell tensor in mixed form

v = Lp (18.7)

m
where b is a proper acceleration. If one has to put the Lorentz equation it in tensor form,
using a mixed index tensor seems like the nicest way since all vector quantities then have con-

sistently placed indices. Observe that he has used units with ¢ = 1, and by comparison must
also be using a time negative metric tensor.

18.3 COMPARE FOR REFERENCE TO GA FORM

To verify that this form is identical to familiar STA Lorentz Force equation,

p=q(F-v/c) (18.8)



18.3 COMPARE FOR REFERENCE TO GA FORM

reduce this equation to coordinates. Starting with the RHS (leaving out the g/c)

1
(F ) yu = 5 Fapd” (/" A ) r)  Vu

= %F o (VP ) =0 ) W

1

— 5 (Fm/xv,ya _ Fyﬁxv,yﬁ) Yy (18.9)

1 . .
=3 (Fuyx” = Fyux”)
= F %"
And for the LHS

P Yu= miqy” “Yu

= mxy

(18.10)

Which gives us

mi, = (q/c)F %" (18.11)

in agreement with eq. (18.5).
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EULER LAGRANGE EQUATIONS

19.1 SCALAR FORM OF EULER-LAGRANGE EQUATIONS

[16] presents a multivector Lagrangian treatment. To preparation for understanding that I have
gone back and derived the scalar case myself. As in my recent field Lagrangian derivations
Feynman’s [4] simple action procedure will be used.

Write
L=L(q.4.
q=q+n (19.1)
S = LdA

[

Here g are the desired optimal solutions, and the functions n' are all zero at the end points of
the integration range 0A.

A first order Taylor expansion of a multivariable function f(a') = f(a',a?,---,a") takes the
form
o . . Of
L4 )~ i+ iy yy 2L
fld +x) ~ f(d) §i @+xh 25 (19.2)

In this case the x' take the values ¢', and ¢, so the first order Lagrangian approximation
requires summation over differential contributions for both sets of terms

(19.3)

q'=q

i —j = —i i aL Y . 8£
£.d\ D~ LG.§.0+) @G +n>;‘ + G +ih ==
i T lg=g 7 oq
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162 EULER LAGRANGE EQUATIONS

Now form the action, and group the terms in fixed and variable sets

S :f.[:d/l
_oed _; aL =i a‘L
~ d/l 17 9/1 l 0 ot
f [-L(q q )+Zq aq' ‘qi:qi-i-zi:q o4’ qi:qi}

oS
qi:qi]

0 0

> f da (n’ a_Li + il a—f
i T lg=g q

For the optimal solution we want 6S = 0 for all possible paths n’. Now do the integration by

parts writing u’ = 7', and v = 0.L/0¢'

fu'\/:uv—fuv' (19.5)

The action variation is then

.aL) f .[az d 0L ]
6S =+ (A=)l + dn'| =| -=Z = 19.6
Z( 94" Jloa Z‘ U=z 44 09'|yg e

The non-integral term is zero since by definition n' = 0 on the boundary of the desired
integration region, so for the total variation to equal zero for all possible paths n' one must have

(19.4)

+

=_Z=_o. 19.7
dq'  dA g (19.7)

Evaluation of these derivatives at the optimal desired paths has been suppressed since these
equations now define that path.

19.1.1 Some comparison to the Goldstein approach

[5] calls the quantity eq. (19.7) the functional derivative

oS 0L doL
6_qi = 6_q’_ﬁc')_q’ (19.8)



19.1 SCALAR FORM OF EULER-LAGRANGE EQUATIONS

(with higher order derivatives if the Lagrangian has dependencies on more than generalized
position and velocity terms). Goldstein’s approach is also harder to follow than Feynman’s
(Goldstein introduces a parameter €, writing

¢ =g +en (19.9)

He then takes derivatives under the integral sign for the end result.

While his approach is a bit harder to follow initially, that additional € parametrization of the
variation path also fits nicely with this linearization procedure. After the integration by parts and
subsequent differentiation under integral sign nicely does the job of discarding all the “fixed” g’
contributions to the action leaving:

ds 08
- = d/l ! o
de f Zj:n oq'

Introducing this idea does firm things up, eliminating some handwaving. To obtain the ex-
tremal solution it does make sense to set the derivative of the action equal to zero, and introduc-
ing an additional scalar variational control in the paths from the optimal solution provides that
something to take derivatives with respect to.

Goldstein also writes that this action derivative is then evaluated at e = 0. This really says
the same thing as Feynman... toss all the higher order terms, since factors of epsilon will be left
associated with of these. With my initial read of Goldstein this was not the least bit clear... it
was really yet another example of the classic physics approach of solving something with a first
order linear approximation.

(19.10)

19.1.2  Noether’s theorem

Also covered in [3] is Noether’s theorem in multivector form. This is used to calculate the con-
served quantity the Hamiltonian for Lagrangian’s with no time dependence. Lets try something
similar for the scalar variable case, after which the multivector case may make more sense.
At its heart Noether’s theorem appears to describe change of variables in Lagrangians.
Given a Lagrangian dependent on generalized coordinates ¢', and their first order derivatives,
as well as the path parameter A.

L=L4.q".D

q =4, e

One example of such a change of variables would be the Galilean transformation ¢' = x/(f) +
vt, with A = t¢.

(19.11)
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164 EULER LAGRANGE EQUATIONS

Application of the chain rule shows how to calculate the first order change of the Lagrangian
with respect to the new parameter a.

dL _3Ldq dLdg

=== 19.12

dae dq'0a  0q' O ( )
If ¢', and ¢ satisfy the Euler-Lagrange equations eq. (19.7), then this can be written

i i

aL _(d 0L)oq | 0Log (19.13)

da dAdgt) 0 0q' O
If one additionally has

2 i 2 i
oq _ 94 (19.14)

@y~ @ap

so that d¢' /0, and 04’ /da are dependent only on A, then eq. (19.13) can be written as a total

derivative
d;[: = i %% (19.15)
da  dA\dg da '

If there is an o dependence in these derivatives a weaker total derivative statement is still
possible, by evaluating the Lagrangian derivative and dq'/da at some specific constant value of

«. This is
d;[: = i % % (19.16)
dalo=ay dA\0g" Or|,_, '

19.1.2.1 Hamiltonian

Hmm, the above equations do not much like the Noether’s equation in [3]. However, in this
form, we can get at the Hamiltonian statement without any trouble. Let us do that first, then
return to Noether’s

Of particular interest is when the change of variables for the generalized coordinates is de-
pendent on the parameter @ = A. Given this type of transformation we can write eq. (19.15)
as

L _ i(%a—qi) (19.17)

dA ~ da\ogi aa
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For this to be valid in this @ = A case, note that the Lagrangian itself may not be explicitly
dependent on the parameter A. Such a dependence would mean that eq. (19.12) would require
an additional 0.£/0A term.

The difference of the eq. (19.17) terms is called the Hamiltonian H

dH d (0L, dL
di _ d (0L ; dL)_ 19.1
i da(aqu dﬁ) 0 (19.18)
Or,
oL , dr
=5l ar (19.19)

which is a conserved quantity when the Lagrangian has no explicit A dependence.

19.1.2.2  Noether’s take I1

Noether’s theorem is about conserved quantities under symmetry transformations. Let us re-
visit the attempt at derivation once more cutting down the complexity even further, considering
a transformation of a single generalized coordinate and the corresponding change to the La-
grangian under such a transformation.

Write

_qﬁqffwﬁ% . (19.20)
L(C]’q,/l) _>-£ Z-E(CI »q 7/1):-£(f9f’/1)

Now as before consider the derivative
af’ _oLof oLof (19.21)
da  0f 0a  Of Oa

In terms of the transformed coordinates the Euler-Lagrange equations require

0L d oL

ﬁ = ﬁﬁ (19.22)
and back-substitution into eq. (19.21) gives

4L _d (0L)or 0L0] @92

da  dA\of)oa Of oa

165



EULER LAGRANGE EQUATIONS

This can be written as a total derivative if

of _ d of
da  ddda
ddf of O .
——= g+ @
dadl 0gda”  (Oa)? 1094
9 (3f,, 0f ) o
Oa 6qq da |

Bf P 0t
0adq” " 02" " 8a da

Thus given a constraint of sufficient continuity

2 2
of _9f (19.25)
dadq Ogoa
and also that & is not a function of «
oa
—~ =0 19.26
%o ( )
we have from eq. (19.23)
ar’ d (0L Of
- |==L 19.2
da dﬂ(afaa) (1927
Or
ar’ d (0L dq
= — 19.28
dae dA ((96]’ 6@) ( )

The details of generalizing this to multiple variables are almost the same, but does not really
add anything to the understanding. This generalization is included as an appendix below for
completeness, but the end result is

ar’ d L dq"
de  dA (Z PG (')a/) (19.29)

i
In words, when the transformed Lagrangian is symmetric (not a function of @) under co-

ordinate transformation then this inner quantity, a generalized momentum velocity product, is
constant (conserved)

Z 8'_5. ai = constant (19.30)
 oq" o
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Transformations that leave the Lagrangian unchanged have this associated conserved quan-
tity, which dimensionally, assuming a time parametrization, has units of energy (mv?).

FIXME: The d&/da = 0 requirement is what is removed by evaluation at @ = . This state-
ment seems somewhat handwaving like. Firm it up with an example and concrete justification.

Note that it still does not quite match the multivector result from [3], equation 12.10

n

d & (0X]
@ le (%*a&z) (19.31)

drl’
da

I believe there is a missing prime there, and it should read

ar’
da

d < (0X]
=2y (—’*ax;i) (19.32)

i=1
19.2  VECTOR FORMULATION OF EULER-LAGRANGE EQUATIONS
19.2.1 Simple case. Unforced purely kinetic Lagrangian

Before considering multivector Lagrangians, a step back to the simplest vector Lagrangian is in
order

L= %mxx (19.33)

Writing x(1) = X + en, and using the variational technique directly the equation of motion
for this unforced path should follow directly in vector form

| B 1 -
S = fd/limxz + fmd/lex ‘n+ fd/limeznz (19.34)
Integration by parts operating directly on the vector function we have

ds
de

mnl,, - [ mdkon

—fmd/l;i-n

Introducing shorthand 65 /6x, for a vector functional derivative, we have

ds oS
— = | din- —, 19.36
de |e=o f n 10). 4 ( )

€=0 (19.35)
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168 EULER LAGRANGE EQUATIONS

where the extremal condition is
oS
X
Here the expected and desired Euler Lagrange equation for the Lagrangian (constant velocity

in some direction dependent on initial conditions) is arrived at directly in vector form without
dropping down to coordinates and reassembling them to get back the vector expression.

19.2.2  Position and velocity gradients in the configuration space

Having tackled the simplest case, to generalize this we need a construct to do first order Tay-
lor series expansion in the neighborhood of a vector position. The (multivector) gradient is the
obvious candidate operator to do the job. Before going down that road consider the scalar La-
grangian case once more, where we will see that it is natural to define position and velocity
gradients in the configuration space. It will also be observed that the chain rule essentially mo-
tivates the initially somewhat odd seeming reciprocal basis used to express the gradient when
operating in a non-orthonormal frame.

In eq. (19.3), the linear differential increment in the neighborhood of the optimal solution had

the form
—i 0L =i 0L
— i iy 7~ Y Nidond
AL =+ Z(q +n) aqi‘ o Z(q wil) gl (19.38)
i q'=q i q'=q
If one defines a configuration space position and velocity gradients respectively as
( g 0 0 ) £ 0
q: A A s a V= Jk—
dal’ g2 dg" dak
T 1 7 (19.39)
(9 9 0\ £ 0
qa~ 55]1 > aq'Z’ ’ g - kaqk

and forms a configuration space vector with respect to some linearly independent, but not
necessarily orthonormal, basis

q=d'e (19.40)

then the chain rule dictates the relationship between the configuration vector basis and the
basis with which the gradient must be expressed. In particular, if we wish to write eq. (19.38)
in terms of the configuration space gradients

AL=@+n)- VoL o +@+n)- VoL . (19.41)
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Then we must have a reciprocal relationship between the basis vector for the configuration
space vectors e;, and the corresponding vectors from which the gradient was formed

ei fj = 0ij
— (19.42)
fi=¢e

This gives us the position and velocity gradients in the configuration space

0
k
Yo
P (19.43)
Vq = ek—..
gk

Note also that the size of this configuration space does not have to be the same space as the
problem. With this definitions completion of the integration by parts yields the Euler-Lagrange
equations in a hybrid configuration space vector form

VoL = %VQL (19.44)
When the configuration space equals the geometrical space being operated in (ie: generalized
coordinates are regular old coordinates), this provides a nice explanation for why we must
have the funny pairing of upper index coordinates in the partials of the gradient and reciprocal
frame vectors multiplying all these partials. Contrast to a text like [3] where the gradient (and
spacetime gradient) are defined in this fashion instead, and one gradually sees that this does in
fact work out.

That said, the negative side of this vector notation is that it obscures somewhat the Euler-
Lagrange equations, which are not terribly complicated to begin with. However, since this
appears to be the form of the multivector form of the Euler-Lagrange equations it is likely
worthwhile to see how this also expresses the simpler familiar scalar case too.

19.3 EXAMPLE APPLICATIONS OF NOETHER S THEOREM

Linear translation and rotational translation appear to be the usual first example applications.
[28] does this, as does the wikipedia article. Reading about those without actually working
through it myself never made complete sense (esp. want to do the angular momentum example).

Noether’s theorem is not really required to see that in the case of unforced motion eq. (19.33),
translation of coordinates X — x + a will not change the equation of motion. This is the conser-
vation of linear momentum result so familiar from high school physics.
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19.3.1 Angular momentum in a radial potential

The conservation of angular momentum case is more interesting.
Suppose that one has a radial potential applied to a point particle

L= %mx2 - o(x") (19.45)

and apply a rotational transformation to the coordinates x — exp(if/2)x exp(—if/2).
Provided that this is a fixed rotation with i, and 6 constant (not functions of time), the trans-
formed squared velocity is:

X - X" = (exp(if/2)x exp(—if/2) exp(if/2)% exp(—if/2))
= (exp(if/2)xx exp(—if/2))

= x*(exp(if/2) exp(—if/2))
2

(19.46)
=X

Since [x’| = |x| the transformed Lagrangian is unchanged by any rotation of coordinates.
Noether’s equation eq. (19.29) takes the form

oL d (ax'

= %-Vvﬁ) (19.47)

Here the configuration space gradient is used to express the chain rule terms, picking the R
standard basis vectors to express that gradient.
The velocity term can be expanded as

ox’

%6 = 76 (exp(if/2)x exp(—if/2))

_ Laxv —xi) (19.48)
2
=i x

The transformed conjugate momentum is

1
vv,zmv’2 =mv' =p’ (19.49)
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so the conserved quantity is

(i-x)-p’ = constant (19.50)

Temporarily expressing the bivector for the rotational plane in terms of a dual relationship,
i = In, where n is a unit normal to the plane we have

(i-x)-p’ = (Un)-x)-p

1
= E(Inx’ —x'In)-p’

= 1(I(nx’ —x'n)p’)
2 (19.51)

_ %(Inx’p> ~(mp'x’)

1
= 5 (i ApY) = (" A X))
=i-(xX’Ap)

Since i is a constant bivector we have angular momentum (dropping primes), by virtue of
Lagrangian transformational symmetry and Noether’s theorem the angular momentum

X A p = constant, (19.52)

is a constant of motion for a point particle Lagrangian in a radial potential field.
This is typically expressed in terms of the dual relationship using cross products

X X p = constant. (19.53)

Also observe the time derivative of the angular momentum in eq. (19.52)

d
d—t(x/\p):p/m/\p+x/\p

—xAp (19.54)

=0

Which says that the torque on a particle in a radial potential is zero. This finally supplies
the rational for texts like [17], which while implicitly talking about motion in a (radial) gravita-
tional potential, says something to the effect of “in the absence of external torques the angular
momentum is conserved”!
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What other more general non-radial potentials, if any, allow for this conservation statement?
I had guess that something like the Lorentz force with velocity dependence in the potential will
explicitly not have this conservation of angular momentum. [28] and [5] both cover Lagrangian
transformation, and specifically cover this angular momentum issue, but blundering through it
myself as done here was required to really see where it was coming from and to apply the idea.

19.3.2 Hamiltonian

Consider a general kinetic form and a possibly velocity dependent potential

1 i
£=K—¢=§ § 8iid'qy —¢ (19.55)
ij

and form the Hamiltonian. First calculate

oL N, i 92
o = : 8ijq aqi
S
0L i j ;09 (19.56)
l Cla—qi—m;giﬂq _an_qi
~(9¢
=2K— .l—.
2.5
So, the Hamiltonian is
»(9(]5
H=K- .l—.+
Zq o ¢ (19.57)

For the less general case where v2 = g,-.,-qiqf , this is
H=K-v-Vyp+¢ (19.58)

a conserved quantity with respect to the time derivative.
Similarly, for squared proper velocity v> = g; jqiqf , and derivatives with respect to proper
time

H=K-v-Vyp+¢ (19.59)
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is conserved with respect to proper time.
As an example, consider the Lorentz force Lagrangian. For proper velocity v, four potential
A, and positive time metric signature (y)> = 1, the Lorentz force Lagrangian is

1
L=§mv-v+qA-v/c (19.60)

We therefore have

d (1
0=— —mv2+v-Vv(qA'v/c)—qA-v/c (19.61)
dr\2
Or
1,
Emv +v-V,(gA-v/c)—qgA-v/c =« (19.62)

Where « is some constant. Since V,A* = 0, we have V,A -v = A, and

1
K= Emv2 +v-(gA/c)—qgA-v/c

(19.63)
1L,
= —my
2
At a glance this does not look terribly interesting, since by definition of proper time we

already know that %mv2 = %mc2 is a constant.

However, suppose that one did not assume proper time to start with, and instead considered
an arbitrarily parametrized coordinate worldline and their corresponding solutions

x = x(4)
1 dx dx dx
L= Emd_/l.d_/l+qA'a/C (19.64)
0L_doL
o1 d1 oA

The Hamiltonian conservation with respect to this parametrization then implies

d (1 dx dx ,

So that, independent of the parametrization, the quantity %m% . % is a constant. This then fol-

lows as a consequence of Noether’s theorem instead of by definition. Proper time then becomes

. . o _ 1, dx dx _ 1,2
that particular worldline parametrization A = 7 such that ;m%: - 2 = smc”.
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19.3.3  Covariant Lorentz force Lagrangian
The Hamiltonian was used above to extract v* invariance from the Lorentz force Lagrangian
under changes of proper time. The next obvious Noether’s application is for a Lorentz transfor-

mation of the interaction Lagrangian. This was interesting enough seeming in its own right to
treat separately and has been moved to 21.

19.3.4  Vector Lorentz force Lagrangian

FIXME: Try this with A - v form of the Lagrangian and rotation... cross product terms should
result.

19.3.5 An example where the transformation has to be evaluated at fixed point

FIXME: find an example of this and calculate with it.

19.3.6  Comparison to cyclic coordinates
FIXME: Also calculate with some examples where cyclic coordinates are discovered by ac-
tually computing the Euler-Lagrange equations ... see how to observed this directly from the

Lagrangian itself under transformation without actually evaluating the equations (despite the
fact that this is simple for the cyclic case).

19.4 APPENDIX
19.4.1 Noether’s equation derivation, multivariable case

Employing a couple judicious regular expressions starting from the text for the single variable
treatment, plus some minor summation sign addition does the job.

g -4 =fqg, e

. R - (19.66)
Lq.q. ) — L =Lq" .q.0)=LJS.f.D
Now as before consider the derivative
d.L’ 6£ f! 6£ aft
f —f (19.67)

6f’ da afi oa



In terms of the transformed coordinates the Euler-Lagrange equations require

oL _doc
aff ~ dAafi

and backsubstitution into eq. (19.67) gives

4> d (0L)f oL
da dA\ofi) o ofi O

This can be written as a total derivative if

’f

aft _ dof

da  dA da
0df o’ f!
dadl Z(’)qfaaq

8f’ 8f’ 3
aa 8qJ -

Z aZfi ~j+ 82f1d+afzaa,
4 Gadg) T7 602" da da

Thus given constraints of sufficient continuity

62 fi B 62 fz'
dadqgl  dqida

and also that & is not a function of @

O
oo
we have from eq. (19.69)

4L _ 4 [ oLof
da  dA l,{)f'iaa/

QED.

+ (aa)za

19.4 APPENDIX

(19.68)

(19.69)

(19.70)

(19.71)

(19.72)

(19.73)
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LORENTZ INVARIANCE OF MAXWELL LAGRANGIAN

20.1 WORKING IN MULTIVECTOR FORM
20.1.1 Application of Lorentz boost to the field Lagrangian

The multivector form of the field Lagrangian is

L=k(VAA?+A-J

_ &c (20.1)
2
Write the boosting transformation on a four vector in exponential form
L(X) = exp(@@/2)X exp(—ad/2) = AXAT (20.2)

where 4 = a'y; Ay is any unit spacetime bivector, and @ represents the rapidity angle.
Consider first the transformation of the interaction term with A’ = L(A), and J’ = L(J)

AT = (LALJ))
= (AAAT AJA*)
= (AAJAT) 003)
= (A"AAY) '
=<(AJ)
=A-J
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Now consider the boost applied to the field bivector F = E + IcB = V A A, by boosting both
the gradient and the potential

V' AA = L(V) A L(A)

= AV) A L(A)

= (AVA") A (AAAT)

= % ((AVATYAAAT) - (AAATYAVAD)) (20.4)
= % (AVAAT - AAVAT)
= A(VAAAT

The boosted squared field bivector in the Lagrangian is thus

(V' ANAY? = A(V AAPAT
= A(E + IcB)’AT
= A((E? = ¢*B?) + 2IcE - B)AT
= (E? = ?B>)AAT + 2(AIAT)CE - B)
= (E* - ¢*B?) + 2IAA'cE - B)
= (E*> = ’B?) + 2IcE - B)
= (E + IcB)?
= (VAA)?

(20.5)

The commutation of the pseudoscalar I with the boost exponential A = exp(aa/2) = cosh(a/2)+
asinh(a/2) is possible since I anticommutes with all four vectors and thus commutes with bivec-
tors, such as a. I also necessarily commutes with the scalar components of this exponential, and
thus commutes with any even grade multivector.

Putting all the pieces together this shows that the Lagrangian in its entirety is a Lorentz
invariant

L =k(VAAY+A T =k(VAA? +A-J=L (20.6)

FIXME: what is the conserved quantity associated with this? There should be one according
to Noether’s theorem? Is it the gauge condition V- A = 0?7



20.2 REPEAT IN TENSOR FORM

20.1.1.1  Maxwell equation invariance

Somewhat related, having calculated the Lorentz transform of F = V A A, is an aside showing
that the Maxwell equation is unsurprisingly also is a Lorentz invariant.

V(VAA)=J
AVATA(V A AAT = AJAT (20.7)
AV(VAAAT = AJAT

Pre and post multiplying with A, and A respectively returns the unboosted equation

V(VAA) =T (20.8)

20.1.2  Lorentz boost applied to the Lorentz force Lagrangian

Next interesting case is the Lorentz force, which for a time positive metric signature is:

1
L=qgA-v/c+ Emv -V (20.9)
The boost invariance of the A - J dot product demonstrated above demonstrates the general
invariance property for any four vector dot product, and this Lagrangian has nothing but dot

products in it. It thus follows directly that the Lorentz force Lagrangian is also a Lorentz invari-
ant.

20.2 REPEAT IN TENSOR FORM
Now, I can follow the above, but presented with the same sort of calculation in tensor form I am

hopeless to understand it. To attempt translating this into tensor form, it appears the first step is
putting the Lorentz transform itself into tensor or matrix form.

20.2.1 Translating versors to matrix form

To get the feeling for how this will work, assume & = o1, so that the boost is along the x-axis.
In that case we have

L(X) = (cosh(a/2) + 10 sinh(a/2))x"y,(cosh(a/2) + yo; sinh(e/2)) (20.10)
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Writing C = cosh(a/2), and S = sinh(e/2), and observing that the exponentials commute
with the y,, and y3 directions so the exponential action on those directions cancel.

LX) = X2 + y3 + (C +y108)(yo + x'y1)(C +y01S5) (20.11)

Expanding just the non-perpendicular parts of the above

(C +7105)(x"y0 + x'y1)(C +y01S)

= x2(C%y0 + 7100018 %) + x°S Cyoo1 +¥100) + X' (C*y1 + ¥101018 %) + x'S Cy101 +¥101)
= x°(C*y0 — y011008?) + 2x%8 Cypo1 + x'(C*y1 = y11001S %) — 2x'S Cyor1

= (o + x'yD(C? +8%) + 2(70)*S C(xy1 + x'0)

= (%0 + x'y1) cosh(@) + (y9)” sinh(@)(xy1 + x'y0)

= y0(x" cosh(a) + x' sinh((y9)*@)) + y1(x! cosh(e) + x° sinh((y)*@))

(20.12)
In matrix form the complete transformation is thus
x° cosh(a(yp)?) sinh(a(yp)?) 0 Of[x°
x| [sinh(a(y0)®) cosh(a(yp)?) 0 Of]x!
x? 0 0 1 0]|x?
x 0 0 0 1][+
(20.13)
1 tanh(a(y)?) 0 Of[x°
2 1
_ cosh(a(yo)z) tanh(a(yo)”) 1 0 Offx
0 1 0ffx?
0 0 0 1][+°
This supplies the specific meaning for the @ factor in the exponential form, namely:
@ = —tanh™! 2
_l(ﬂ(yo) ) X (20.14)
= —tanh™ (|v|/c(y0)")
Or
ah = — tanh™ ' (4v|/c(y0)?
@lvl/c(yo0)?) (20.15)

= —tanh™ (v/c(y0)?)
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Putting this back into the original Lorentz boost equation to tidy it up, and writing tanh(A) =
v/c, the Lorentz boost is

L0 { exp(-A/2)X exp(A/2)  for (yo)? = 1 20.16)

exp(A/2)X exp(-A/2)  for (yg)? = -1

Both of the metric signature options are indicated here for future reference and comparison
with results using the alternate signature.

20.2.1.1  Revisit the expansion to matrix form above

Looking back, multiplying out all the half angle terms as done above is this is the long dumb
hard way to do it. A more sensible way would be to note that exp(aa/2) anticommutes with
both yg and y; thus

exp(aa/2)(x"yo + x'y1) exp(—aa/2) = exp(@a)(x’yo + x'y1)

20.17
= (cosh(a) + a sinh(a))(xoyo + x1)’1) ( :

The matrix form thus follows directly.

20.3 TRANSLATING VERSORS TENSOR FORM

After this temporary digression back to the multivector form of the Lorentz transformation lets
dispose of the specifics of the boost direction and magnitude, and also the metric signature.
Instead encode all of these in a single versor variable A, again writing

L(X) = AXAT (20.18)

20.3.1 Expressing vector Lorentz transform in tensor form

What is the general way to encode this linear transformation in tensor/matrix form? The trans-
formed vector is just that a vector, and thus can be written in terms of coordinates for some
basis

LX) = (L(X) - e)e,,
= (AXy)AT) - e)ey (20.19)
= X (AyyAT) - ey,
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The inner term is just the tensor that we want. Write

A = (Ay,AT) - e
M AT (20.20)
Ny=ANY'A) e,

for
LX) = x"AJe,

20.21
= x, A7, et ( )

Completely eliminating the basis, working in just the coordinates X = x"#e, = x’,,e/ this is

xXH=x'AH
, (20.22)
xy=x,N

Now, in particular, having observed that the dot product is a Lorentz invariant this should
supply the index manipulation rule for operating with the Lorentz boost tensor in a dot product

context.
Write
LX) - L(Y) = (X" Afey) - (vaA"peP)
= Xy N Ngey - & (20.23)
= XVYQAV'M A(Y,u

Since this equals x”y,, the tensor rule must therefore be
NN =6, (20.24)

After a somewhat long path, the core idea behind the Lorentz boost tensor is that it is the
“matrix” of a linear transformation that leaves the four vector dot product unchanged. There is
no need to consider any Clifford algebra formulations to express just that idea.

20.3.2  Misc notes

FIXME: To complete the expression of this in tensor form enumerating exactly how to express
the dot product in tensor form would also be reasonable. ie: how to compute the reciprocal
coordinates without describing the basis. Doing this will introduce the metric tensor into the
mix.

Looks like the result eq. (20.24) is consistent with [18] and that doc starts making a bit more
sense now. I do see that he uses primes to distinguish the boost tensor from its inverse (using



20.3 TRANSLATING VERSORS TENSOR FORM

the inverse tensor (primed index down) to transform the covariant (down) coordinates). Is there
a convention for keeping free vs. varied indices close to the body of the operator? For the boost
tensor he puts the free index closer to A, but for the inverse tensor for a covariant coordinate
transformation puts the free index further out?

This also appears to be notational consistent with [23].

20.3.3  Expressing bivector Lorentz transform in tensor form

Having translated a vector Lorentz transform into tensor form, the next step is to do the same
for a bivector. In particular for the field bivector F = V A A.

Write
V' = Ay, AT
Tu (20.25)
A = Ay, AT
V- = (Ay, AT Lo = AL
Ayul) . (20.26)
AP = (Ay,AT)- LAY = A A
Then the transformed bivector is
F' =V AA = (V' -e%ey) A (A -8
(V" -eM)eq) A (( )eg) (20.27)

= (eq A eg) A" NP HAY

and finally the transformed tensor is thus

F® = F (" Ne
= (ea Aep) - (&7 N e NN SPHAY
= (829057 — 8570, )N NP HAY (20.28)
= ASANPHA - AN A
= AN (@AY - 97 AR

Which gives the final transformation rule for the field bivector in tensor form

F" = AN PR (20.29)

183



184 LORENTZ INVARIANCE OF MAXWELL LAGRANGIAN

Returning to the original problem of field Lagrangian invariance, we want to examine how
Fa'F . transforms. That is

F® Fap = NSNS A AP F o
= (AN APF Fop
= 0,6/ F" Fop
= F"F,,

(20.30)

which is the desired result. Since the dot product remainder of the Lagrangian eq. (20.1) has
already been shown to be Lorentz invariant this is sufficient to prove the Lagrangian boost or
rotational invariance using tensor algebra.

Working this way is fairly compact and efficient, and required a few less steps than the multi-
vector equivalent. To compare apples to applies, for the algebraic tools, it should be noted that if
only the scalar part of (V A A)*> was considered as implicitly done in the tensor argument above,
the multivector approach would likely have been as compact as well.



LORENTZ TRANSFORM NOETHER CURRENT (INTERACTION
LAGRANGIAN)

21.1 MOTIVATION

Here we consider Noether’s theorem applied to the covariant form of the Lorentz force La-
grangian. Boost under rotation or boost or a combination of the two will be considered.

21.2 COVARIANT RESULT

For proper velocity v, four potential A, and positive time metric signature (yo)> = 1, the Lorentz
for Lagrangian is

1
inmv-v+qA-v/c (21.1)

Let us see if Noether’s can be used to extract an invariant from the Lorentz force Lagrangian
eq. (21.1) under a Lorentz boost or a spatial rotational transformation.

Four vector dot products are Lorentz invariants. This can be thought of as the definition of a
Lorentz transform (ie: the transformations that leave the four vector dot products unchanged).
Alternatively, this can be shown using the exponential form of the boost

L(x) = exp(—aa/2)xexp(aa/2) (21.2)

L(x) - L(y) = {exp(—aa/2)xexp(ad/2) exp(—aa/2)y exp(ad/2))
= (exp(—aa/2)xyexp(ad/2))
= x - y(exp(—ad/2) exp(aa/2))
=x-y

(21.3)

Using the exponential form of the boost operation, boosting v, A leaves the Lagrangian un-
changed. Therefore there is a conserved quantity according to Noether’s, but what is it?

Also observe that the spacetime nature of the bivector 4 has not actually been specified, which
means that all the subsequent results apply to spatial rotation as well. Due to the negative spatial
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186 LORENTZ TRANSFORM NOETHER CURRENT (INTERACTION LAGRANGIAN)

signature ((y;)> = —1) used here, for a spatial rotation @ will represent a rotation in the negative
sense in the oriented plane specified by the unit bivector a.
Consider change with respect to the rapidity factor (or rotational angle) a

oL d (ox
= E(%'Wz) (21.4)

The boost spacetime plane (or rotational plane) 4 could also be considered a parameter in the
transformation, but to use that or the combination of the two we need the multivector form of
Noether’s. These notes were in fact originally part of an attempt 19 to get a feeling for the scalar
case as lead up to that so this is an exercise for later.

As for the derivatives in eq. (21.4) we have

ox’ 0
Y _ 9 exp(—ah/2)xexp(ad/2)
da Oa
1
= —— (ax’ — X'a) (21.5)
2
=-4-x
VoL =p +qgA’/c (21.6)
So the conserved quantity is
—@-x)-(pP+qgA’Jc)=—-a- (X AN(p' +qA'/c
@-x)-(p' +qA’/c) A( (" +qA’/c)) 217
=-a-«
So we have a conserved quantity
xXA(p+qgAjc) =« (21.8)

This has the looks of the three dimensional angular momentum conservation expression (with
an added term due to non-radial potential), but does not look like any quantity from relativistic
texts that I have seen (not that I have really seen too much).

As an example to get a feeling for this take x to be a rest frame worldline. Then we have

ctyg A (mtyg + gA/c) = —qtA =k (21.9)

Which indicates that the product of observer time and the observers’ three vector potential is
a constant of motion. Curious. Not a familiar result.



21.3 EXPANSION IN OBSERVER FRAME

Assuming these calculations are correct, then if this holds for all time for then x = 0 due
to the origin time of x. I would interpret this to mean that for the charged mass to be at rest,
the vector potential must also be zero. So while x = ctyy is simple for calculations, it does not
appear to be a terribly interesting case.

FIXME: try plugging in specific solutions to the Lorentz force equation here to validate or
invalidate this calculation.

One further thing that can be observed about this is that if we take derivatives of

xA(p+qAjc) =« (21.10)
we have
VA(p+qgAlc)+xAN(p+qgAjc)=0 (21.11)
Or
XAp= i(q/cA/\)c)
dr (21.12)

=qgAAvV/c+qlcAAx

So we have a relativistic torque expressed in terms of the potential, proper velocity and the
variation of the potential.

21.3 EXPANSION IN OBSERVER FRAME

This still is not familiar looking, but lets expand this in terms of a particular observable, and see
what falls out. First the LHS, with dt/dt =y

) i d dx/
XA p = (ctyo+xy) Ay |my(eyo+ ——-v)) (21.13)
dt dt
So
1 . dtyp) _d(mcy) d dx/
;(x/\p)=—ct ” +x ” +Xt%/\E my—-vj (21.14)
But
1
oiNTj= 5(%’707 Y0 = YiY0YiY0)
(v0)? (21.15)
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188 LORENTZ TRANSFORM NOETHER CURRENT (INTERACTION LAGRANGIAN)

for
1 . d(yp) _d(mcy) d(yp)
—~(xAp)=—ct + XA —2 21.16
GIAP) = —et = X XA (21.16)
Now, for the RHS of eq. (21.12), with A? = ¢
d(x A A) d . _
1 p7ami g“yd—t(ctyo +x'y:) A (¢yo + Aly))
¢ (21.17)

q d
cydt( CtA+ px —X A A)

Equating the vector and bivector parts, and employing a duality transformation for the bivec-
tor parts leaves two vector relationships

40op) _dimey) _ qd(ciA - ¢x) 21.18)
dt dt c dt
diyp) qd
aop) _qd 21.19
g = ea XA e

FIXME: the first equation looks like it could also be expressed in some sort more symmetric
form. Perhaps a grade two (commutator) product between the multivectors (mcy, p) = pyo, and

(6. A) = Ayp?
21.4 IN TENSOR FORM
As can be seen above, the four vector form of eq. (21.12) is much more symmetric. What does

it look like in tensor form? After first re-consolidating the proper time derivatives we can read
the coordinate form off by inspection

x/\p:%(q/cA/\x) (21.20)

v d (07
Yu Ay’ = — (q/cA*P) ya Ayp (21.21)

Which gives the tensor expression

€ (x”v" - % (iAﬂxV)) =0 (21.22)

mc



21.4 IN TENSOR FORM
This in turn implies the following six equations in u, and v

vt = LD g (21.23)
mc dt

Looking to see if I got the right result, I asked on PF, and was pointed to [1]. That ASCII
thread is hard to read but at least my result is similar. I will have to massage things to match
them up more closely.

What I did not realize until I read that is that my rotation was not fixed as either hyperbolic
or euclidean since I did not actually specify the specific nature of the bivector for the rotational
plane. So I ended up with results for both the spatial invariance and the boost invariance at the
same time. Have adjusted things above, but that is why the spatial rotation references all appear
as afterthoughts.

Of the six equations in eq. (21.23), taking space time indices yields the vector eq. (21.18) as
the conserved quantity for a boost. Similarly the second vector result in eq. (21.19) for purely
spatial indices is the conserved quantity for spatial rotation. That makes my result seem more
reasonable since I did not expect to get so much only considering boost.
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FIELD FORM OF NOETHER’S LAW

22.1 DERIVATION

It was seen in 19 that Noether’s law for a line integral action was shown to essentially be an
application of the chain rule, coupled with an application of the Euler-Lagrange equations.

For a field Lagrangian a similar conservation statement can be made, where it takes the
form of a divergence relationship instead of derivative with respect to the integration parameter
associated with the line integral.

The following derivation follows [3], but is dumbed down to the scalar field variable case,
and additional details are added.

The Lagrangian to be considered is

L=Ly, o), (22.1)
and the single field case is sufficient to see how this works. Consider the following transfor-
mation:
i , Q) = !
lﬂ, fW,o) =y (22.2)
L= L(f, 0u 1)

Taking derivatives of the transformed Lagrangian with respect to the free transformation
variable «, we have

dL dLof oL 90uf)
=7 T (22.3)
dae  Of Oa " 000,f) Oa
The Euler-Lagrange field equations for the transformed Lagrangian are
oL oL
— =) =

For some for background discussion, examples, and derivation of the field form of Noether’s
equation see 17.
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FIELD FORM OF NOETHER’S LAW

Now substitute back into eq. (22.3) for
ar’ Z 5 0 f 0L 00uf)
da H 6((')” 13 8a/ 6(8ﬂ f) Oa

_Z( "0 f))é’a Zé)(év 7 "aa

Using the product rule we have

dr oL of
=59, |—2=L

i = 2055550

- Zy" ’ ( ,,ang)gf) (22.6)
oL oy
' (”‘ 00 E)

Here the field does not have to be a relativistic field which could be implied by the use of the
standard symbols for relativistic four vector basis {y, } of STA. This is really a statement that one
can form a gradient in the field variable configuration space using any appropriate reciprocal
basis pair.

Noether’s law for a field Lagrangian is a statement that if the transformed Lagrangian is
unchanged (invariant) by some type of parametrized field variable transformation, then with
J’ = J™"y, one has

(22.5)

dL =V.-J7 =0 (22.7a)
da
oL oy
mo_
J" = 8(('3”1,0’) %0 (22.77b)

FIXME: GAFP evaluates things at @ = 0 where that is the identity case. I think this is what
allows them to drop the primes later. Must think this through.

22.2 EXAMPLES
22.2.1 Klein-Gordan Lagrangian invariance under phase change

The Klein-Gordan Lagrangian, a relativistic relative of the Schrodinger equation is

L =1"0,400" — miyy. (22.8)



22.2 EXAMPLES

FIXME: fixed sign above. Adjust the remainder below. This provides a simple example ap-
plication of the field form of Noether’s equation, for a transformation that involves a phase
change

S = 0
S 229

This transformation leaves the Lagrangian unchanged, so there is an associated conserved
quantity.

o

a0 W

0L (22.10)
a(ayw,)—fl” W' =0y

Summing all the field partials, treating i, and " as separate field variables the divergence
conservation statement is

JH
(22.11)
au[(a“w’*iw’ - aﬂ¢'i¢'*)] ~0
Dropping primes and writing J = y,J¥, this is
J =iy —y*V
IWVY™ =y V) (22.12)

V-J=0

Apparently with charge added this quantity actually represents electric current density. It will
be interesting to learn some quantum mechanics and see how this works.

22.2.2  Lorentz boost and rotation invariance of Maxwell Lagrangian

L= —<(V/\A)2> Y KA T
= O AN(P'A — AP + kAL TT

(22.13a)

K=— (22.13b)
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194 FIELD FORM OF NOETHER S LAW

The rotation and boost invariance of the Maxwell Lagrangian was demonstrated in 20.
Following 21 write the Lorentz boost or rotation in exponential form.

L(x) = exp(—ai/2)xexp(ai/2), A =exp(—ai/2) (22.14)

where i is a unit spatial bivector for a rotation of —a radians, and a boost with rapidity @ when
i is a spacetime unit bivector.
Introducing the transformation

A— A = AAAT (22.15)

The change in A” with respect to « is

0A’
o

Next we want to compute

=—iA"+A'i=2A"-i=2A"y" i (22.16)

oL 9
A0,A",)  O(BA’Y)

_ 4 ’ a A/ ra
- (—a(aﬂA'V)a"A ,3) (67" - Par)

(0aA"p(0"AP = PA') + kA’ )7

_9 (
A(D,A",)
d
— A’v A/V _ vA//l

(—a(a,, A,V)au )(5" d"A™") (22.17)

d
2 9
A0,A",) "
a9 o
A0,A) T

=2 (0"A” — A
= QRN

+dA"F OaA’g — 9pA’,))

+0"A”Y A,

Employing the vector field form of Noether’s equation as in eq. (22.39) the conserved current
C components are

CH =2(y,F")-(2A 1)
o (Y, F*") - (A1) (22.18)
o« (Y- F)-(A-Q)



22.2 EXAMPLES

Or
C=y(( F)-(A-1) (22.19)
Here C was used instead of J for the conserved current vector since J is already taken for the

current charge density itself.

22.2.3  Questions

FIXME: What is this quantity? It has the look of angular momentum, or torque, or an inertial
tensor. Does it have a physical significance? Can the i be factored out of the expression, leaving
a conserved quantity that is some linear function only of F, and A (this was possible in the
Lorentz force Lagrangian for the same invariance considerations).

22.2.4  Expansion for x-axis boost

As an example to get a feel for eq. (22.19), lets expand this for a specific spacetime boost plane.

Using the x-axis that is i = y; A yg
First expanding the potential projection one has

A-i= (A" (y1 Ayo) (22.20)
= Aryo — Aoy1. |

Next the u component of the field is
HoF = 1 FBH
VF=SFTY (e Ayp)
1 1
= EFﬂﬁy’g — EFW?’Q (22.21)

= F"%
So the 4 component of the conserved vector is
C'=0F)-(A-D)
= (F"%a) - (A1yo — Aoy1) (22.22)
= (F',) - (A% = AlY")

Therefore the conservation statement is

CH = FHAY - FrOAl

(22.23)
8,C" =0
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196 FIELD FORM OF NOETHER S LAW

Let us write out the components of eq. (22.23) explicitly, to perhaps get a better feel for them.

0= FYA" = _E.¢
C'=-F%A' = _E A,

C*=F?'A" - FYA' = B.¢ - E,\A,
C’=F'A’-FYA' = -B,¢ - E.A,

(22.24)

Well, that is not particularly enlightening looking after all.

22.2.5 Expansion for rotation or boost
Suppose that one takes i = y* A y”, so that we have a symmetry for a boost if one of y or v is

zero, and rotational symmetry otherwise.
This gives

A-i=(A%0) - (Y AYY)

HoV AV (22.25)

= Aty = ATy
C'=0"F)-(A-D) o
= (F%yp) - (Aly" - A" 2220
C” = F™A! — F™ A (22.27)

For a rotation in the a, b, plane with u = a, and v = b (say), lets write out the C* components
explicitly in terms of E and B components, also writing 0 < d, a # d # b. That is

CO — FObAa_FOaAb — EaAb_EbAa
Cl — Flea _ FlaAb
CZ — F2hAa _ F2aAb
CS — F3bAa _ F3aAb
Only the first term of this reduces nicely. Suppose we additionally write a = 1, b = 2 to make
things more concrete. Then we have

(22.28)

C’=F%2A'-FY"A? = E,A, - E,A, = (EXA),
Cl = 1241 _ plig2 “BA,

C2 — F22A1 _F21A2 — BzAx

C? = FPA' - F1A? = B,A, + ByA,

(22.29)



22.3 MULTIVARIABLE DERIVATION

The time-like component of whatever this vector is the z component of a cross product (spa-
tial component of the E X A product in the direction of the normal to the rotational plane), but
what is the rest?

22.2.5.1 Conservation statement

Returning to eq. (22.27), the conservation statement can be calculated as

0 = 0,C"
(22.30)
= Qo FY A — 9, FHAY + F0,AY — F*9,A”
But the grade one terms of the Maxwell equation in tensor form is
0, F" = J"/epc (22.31)
So we have
1
0=— (J'AHF = JFAY) + F 0 A — F M9 A”
e(ic (22.32)
= — (J'AF = JFAY) + F"F™ — F M FY
€C

This first part is some sort of current-potential torque like beastie. That second part, the
squared field term is what? I do not see an obvious way to reduce it to something more struc-
tured.

22.3 MULTIVARIABLE DERIVATION
For completion sake, cut and pasted with with most discussion omitted, the multiple field vari-

able case follows in the same fashion as the single field variable Lagrangian.

L=LWs 0¥s), (22.33)

The transformation is now:

Yo — f(r(lﬁow ) = lﬂ;_

! (22.34)
L= L(fo’a aﬂf(r)~
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198 FIELD FORM OF NOETHER S LAW

Taking derivatives:

Z 0L ofy 0L  3Dufy)

of O £ 00ufo)  Oa (22.35)

Again, making the Euler-Lagrange substitution of eq. (22.4) (with f — f,) back into eq. (22.35)
gives

dr oL |ofs 0L  00ufr)
= (S| 5 S
_ Z(( oL )afa oL, 8]2,)
H00ufo) IByufy) " Oa
=Y ( 0L %)
B o ! a(aﬂf(") Oa (2236)
N o [, 0L 0k
_Zﬂ:)’ya,u [;%’a(avfg-) an

) oL ow,
-V [; Y 5@) da ]

Or

dsL’
-Vv.J .

o (22.37a)
=0

T =Ty, (22.37b)

a /7
- Z 0L o (22.37¢)

L 50,0,) da

A notational convenience for vector valued fields, in particular as we have in the electrody-
namic Lagrangian for the vector potential, the chain rule summation in eq. (22.37) above can
be replaced with a dot product.

oL Y.

T =y, :
Y @) da

(22.38)



22.3 MULTIVARIABLE DERIVATION

Dropping primes for convenience, and writing ¥ = y“y for the vector field variable, the
field form of Noether’s law takes the form

oL oY )

—8((9#://(,) o (22.39a)

J =y (7’0'

V.-J=0. (22.39b)

That is, a current vector with respect to this configuration space divergence is conserved when
the Lagrangian field transformation is invariant.
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LORENTZ FORCE LAGRANGIAN WITH CONJUGATE MOMENTUM

23.1 MOTIVATION

The covariant Lorentz force Lagrangian (for metric + — ——)

L= %mvz +gA-(v/c) (23.1)

Can be used to find the Lorentz force equation (here in four vector form)

mv =qgF-(v/c) (23.2)

A derivation of this can be found in 16.
However, in [20] the Lorentz force equation (in non-covariant form) is derived as a limiting
classical case via calculation of the expectation value of the Hamiltonian

3
1 2
H= (pk - fAk) LV (23.3)
2m = c

This has a much different looking structure than £ above, so reconciliation of the two is
justifiable.

23.2 LORENTZ FORCE LAGRANGIAN WITH CONJUGATE MOMENTUM

Is there a relativistic form for the interaction Lagrangian with a structure similar to eq. (23.3)?
Let us try

1
L= . (mv —kA)?
1
2m

2
(m2v2 —2mkA - v+ K2A2) (23.4)

1
= (mzx“xa — 2mKkA L& + KZAQAQ)
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202 LORENTZ FORCE LAGRANGIAN WITH CONJUGATE MOMENTUM

where « is to be determined.
For this Lagrangian the Euler-Lagrange calculation for variation of § = f d*xLis

0 1
9L _ ~K(0A) X + =1 (DA ) A”
OxH m (23.5)
d oL d . n o
dram ~ dr " kA
Assembling and shuffling we have
1
miy = K(OgAp)x™ — K(OuAa) X" + =Kk (0,A0)A®
m
1
= k(0 Ay — 04 A)XY + n—1K2(3/JAa)Aa (23.6)
1
= KF X% + —K* (9, A ) A”
m
Comparing to the Lorentz force equation (again for a + — —— metric)
_4 v
My = ~Fpv (23.7)
We see that we need k = —¢/c, but we have an extra factor that does not look familiar. In
vector form this Lagrangian would give us the equation of motion
q 7
my = =F-v+——(VA, A" (23.8)
c mc

Assuming that this extra term has no place in the Lorentz force equation we need to adjust
the original Lagrangian as follows

2 2
L= zi(mw ‘—’A) e (23.9)

m c 2mc?

Expressing this energy density in terms of the canonical momentum is somewhat interesting.
It provides some extra structure, allowing for a loose identification of the two terms as
L=K-V (23.10)

(ie: K = p?/2m, where p is the sum of the (proper) mechanical momentum and electromag-
netic momentum).



23.3 ON TERMINOLOGY. THE USE OF THE TERM CONJUGATE MOMENTUM

However, that said, observe that expanding the square gives

1
.£=§mVZ+C—]A~v (23.11)
C

which is exactly the original Lorentz force Lagrangian, so in the end this works out to only
differ from the original cosmetically.

23.3 ON TERMINOLOGY. THE USE OF THE TERM CONJUGATE MOMENTUM

[5] uses the term conjugate momentum in reference to a specific coordinate. For example in

L(p,p) = f(p,p) (23.12)
the value

of

6_p (23.13)

is the momentum canonically conjugate to p. Above I have called the vector quantity mv +
gA/c = (mv + gA*/c)y, the canonical momentum. My justification for doing so comes from a
vectorization of the Euler-Lagrange equations.

Equating all the variational derivatives to zero separately

oL oL _doL_, (23.14)

SxH Oxt dt It
can be replaced by an equivalent vector equation (note that summation is now implied)

5 oL d o
yﬂé_jzyu_f__ oL _ (23.15)

oxt dr’ OxH

This has two distinct vector operations, a spacetime gradient, and a spacetime ““velocity gra-
dient”, and it is not terribly abusive of notation to write

O (23.16)

203



204
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with which all the Euler Lagrange equations can be summarized as

VL= iVv.lj (23.17)
dr
It is thus natural, in a vector context, to name the quantity V, £, the canonical momentum. It
is a vectorized representation of all the individual momenta that are canonically conjugate to
the respective coordinates.
This vectorization is really only valid when the basis vectors are fixed (they do not have to
be orthonormal as the use of the reciprocal basis here highlights). In a curvilinear system where
the vectors vary with position, one cannot necessarily pull the y* into the d/drt derivative.



TENSOR DERIVATION OF MAXWELL EQUATION (NON-DUAL
PART) FROM LAGRANGIAN

24.1 MOTIVATION
Looking through my notes for a purely tensor derivation of Maxwell’s equation, and not finding

one. Have done this on paper a number of times, but writing it up once for reference to refer to
for signs will be useful.

24.2 LAGRANGIAN
Notes containing derivations of Maxwell’s equation

VF =J/ec (24.1)

From the Lagrangian

L= —%(V ANAY + % ‘A (24.2)

can be found in 17, and the earlier 15.
We will work from the scalar part of this Lagrangian, expressed strictly in tensor form

1
L= %FﬂyF‘”’ oA (24.3)

24.3 CALCULATION
24.3.1 Preparation

In preparation, an expansion of the Faraday tensor in terms of potentials is desirable
Fy F*" = (0,A, — 0,A)(0"AY — 0"AH)

= 0,A,0'A” = B,A,0 A — 8,A,0"A” + 0,A,0" A" (24.4)
= 2(8,A,0"A” — 3,A,0"A)
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206 TENSOR DERIVATION OF MAXWELL EQUATION (NON-DUAL PART) FROM LAGRANGIAN

So we have

L= %aﬂAv(aﬂAv — AR + %JH  AH (24.5)

24.3.2  Derivatives

We want to compute

oL oL
T > O 50 v (24.6)

Starting with the LHS we have

oL 1
— =-J 24.7
0A, ¢ ( )
and for the RHS
oL e O
= — A (AT — 9" AF
(0pAs) 2 0(BpAa) " 3 )
€ 0
= — [FP* + 04A” A, - 8,A
2 ( ’ 8(8ﬂAa)( e “)) (24.8)
= 9 (pp B
= E(F "+ AT - 07 AF)
= E()F’B @
Taking the § derivatives and combining the results for the LHS and RHS this is
1
ApFP* = —J° (24.9)

€)C

24.3.3  Compare to STA form

To verify that no sign errors have been made during the index manipulations above, this result
should also match the STA Maxwell equation of eq. (24.1), the vector part of which is

V-F =J/ec (24.10)



Dotting the LHS with y* we have

(V- F) " = (048 GF0P Ay 7"
= %%Fﬁ"()f“ “(Yp NYe)) V"
= 2 (5P ~ B0 y5) "
- % (0pFP = 0,F7)
= OgFP”

This gives us

aﬁFﬂ“ =J%ec

In agreement with eq. (24.9).

24.3 CALCULATION

(24.11)

(24.12)
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CANONICAL ENERGY MOMENTUM TENSOR AND LAGRANGIAN
TRANSLATION

25.1 MOTIVATION AND DIRECTION

In [13] we saw that it was possible to express the Lorentz force equation for the charge per unit
volume in terms of the energy momentum tensor.
Repeating

1
V-T(y,) = E<FyﬂJ>

A (25.1)
T(a) = EFaF

While these may not appear too much like the Lorentz force equation as we are used to seeing
it, with some manipulation we found

1 .
—(FyoJ) =-j-E
i (25.2)
Z(Fyk-D = (PE+jxB)- o

where we now have an energy momentum pair of equations, the second of which if integrated
over a volume is the Lorentz force for the charge in that volume.
We have also seen that we can express the Lorentz force equation in GA form

mx =qF - x/c (25.3)
This was expressed in tensor form, toggling indices that was

miy, = qF o X" (25.4)
We then saw in [12] that the the covariant form of the energy momentum tensor relation was

1
™" = ¢ |F™F’, + ~F°F V)
0( a 4 aﬁﬂﬂ (25.5)

0,TH = F™J,/c
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this has identical structure (FIXME: sign error here?) to the covariant Lorentz force equation.

Now the energy momentum conservation equations above did not require the Lorentz force
equations at all for their derivation, nor have we used the Lorentz force interaction Lagrangian
to arrive at them. With Maxwell’s equation and the Lorentz force equation together ( or the
equivalent field and interaction Lagrangians) we have the complete specification of classical
electrodynamics. Curiously it appears that we have most of the structure of the Lorentz force
equation (except for the association with mass) all in embedded in Maxwell’s equation or the
Maxwell field Lagrangian.

Now, a proper treatment of the field and charged mass interaction likely requires the Dirac
Lagrangian, and hiding in there if one could extract it, is probably everything that could be said
on the topic. It will be a long journey to get to that point, but how much can we do considering
just the field Lagrangian?

For these reasons it seems desirable to understand the background behind the energy momen-
tum tensor much better. In particular, it is natural to then expect that these conservation relations
may also be found as a consequence of a symmetry and an associated Noether current (see 22).
What is that symmetry? That symmetry should leave the field equations as calculated by the
field Euler-Lagrange equations Given that symmetry how would one go about actually showing
that this is the case? These are the questions to tackle here.

25.2 ON TRANSLATION AND DIVERGENCE SYMMETRIES
25.2.1  Symmetry due to total derivative addition to the Lagrangian

In [3] the energy momentum tensor is treated by considering spacetime translation, but I have
unfortunately not understood much more than vague direction in that treatment.

In [24] it is also stated that the energy momentum tensor is the result of a Lagrangian space-
time translation, but I did not find details there.

There are examples of the canonical energy momentum tensor (in the simpler non-GA tensor
form) and the symmetric energy momentum tensor in [8]. However, that treatment relies on
analogy with mechanical form of Noether’s theorem, and I had rather see it developed explicitly.

Finally, in an unexpected place (since I am not studying QFT but was merely curious), the
clue required to understand the details of how this spacetime translation results in the energy
momentum tensor was found in [26].

In Tong’s treatment it is pointed out there is a symmetry for the Lagrangian if it is altered by
a divergence.

L— L+0,FF (25.6)



25.2 ON TRANSLATION AND DIVERGENCE SYMMETRIES

It took me a while to figure out how this was a symmetry, but after a nice refreshing motorcy-
cle ride, the answer suddenly surfaced. One can add a derivative to a mechanical Lagrangian and
not change the resulting equations of motion. While tackling problem 5 of Tong’s mechanics
in 9.1, such an invariance was considered in detail in one of the problems for Tong’s classical
mechanics notes 9.1 .

If one has altered the Lagrangian by adding an arbitrary function f to it.

L'=L+f (25.7)

Assuming to start a Lagrangian that is a function of a single field variable £ = L(¢,0,¢),
then the variation of the Lagrangian for the field equations yields

oL 3 or’ B oL’
6p 3 7 0(0s9)
oL oL of 5 of (25.8)

~1 36 00,0 | 90 T 00,9)
=0

So, if this transformed Lagrangian is a symmetry, it is sufficient to find the conditions for the
variation of additional part to be zero

of _

5 " 0 (25.9)

25.2.2  Some examples adding a divergence

To validate the fact that we can add a divergence to the Lagrangian without changing the field
equations lets work out a few concrete examples of eq. (25.9) of for Lagrangian alterations by
a divergence f = 0,F*.

Each of these examples will be for a single field variable Lagrangian with generalized coor-
dinates x' = x, and x! = y.

25.2.2.1 Simplest case. No partials

Let

(25.10)
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With this the divergence is

f=0F"+0,F
_ o
"~ Ox

Now the variation is

ﬁ_(i_i 9
5¢p

Okay, so far so good.

25.2.2.2  One partial

Now, let
o¢
F'=—
Ox
F?=0

With this the divergence is

f=0F"+0,F
_09
"~ Oxdx

And the variation is

dp  Oxd0p/dx)  dy d(D¢/dy)

Sf (6 @ 8
|
X
" 06 0x dx
8 8 d¢

T 9xdx 9
_oal

¢ Ixd@d¢/ox) Ay (Op/dy)

Again, assuming I am okay to switch the differentiation order, we have zero.
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25.2.2.3  Another partial

For the last concrete example before going on to the general case, try

pl =9
Ay (25.16)
F?=0

The divergence is

f=0F"+0,F
_ 009 (25.17)
~ Oxdy

And the variation is

Sf (0 8 0 g d 3 d¢
5 (% " 6x006/0x) a_ya<a¢/ay>) dx dy
__0d1 (25.18)
dy 0x
=0

25.2.2.4 The general case

Because of linearity we have now seen that we can construct functions with any linear combi-
nations of first and second derivatives

0
o E u
F! =d'¢ + 4 b, Ee (25.19)
and for such a function we will have

S@uF")
7 =0

How general can the function F* = F¥(¢,0,¢) be made and still yield a zero variational
derivative?

(25.20)
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To answer this, let us compute the derivative for a general divergence added to a single field
variable Lagrangian. This is

O [0 9 @ OF
5 2 [a¢ ; Ox” 5(8¢/8x")] Dt

U

N 00 0 9 [0F" g OFF _20¢/0xD | (2521

- ; o 06 ; 0x” 9(06]0x7) | 96 o ZQ: @0 o | )
oF” o (oF* OF

=095 " 50,9 ( ag 1 a<aa¢>‘9"“¢)

For tractability in this last line the shorthand for the partials has been injected. Sums over a,
U, and o are also now implied (this was made explicit prior to this in all cases where upper and
lower indices were matched).

Treating these two last derivatives separately, we have for the first

9 oF" _(3aﬂ)¢+aaﬂaa¢
T00s0) 09 T TT\0@sp) 9 )T T d¢ 0(0rg) " 2522)
_ 0 OFf), . 5 9 N
~T\00se) 98 )T T g
So our OF* /0¢’s cancel out, and we are left with
60 F") d OFH o oFH
oo ((a@r«m %)M " 90, (a@«m 6“”))
o0 OFH 0 OFH
=0 (‘W (awm) %) 0559 (6@,@ )) (2529
__ 9 9 9\ 9 0
=0 ((a"@ 9 OOy p) e (a" ax“) 3(0a) 0(0s9) Fﬂ)

Now there is a lot of indices and derivatives floating around. Writing g* = JF*/0(0,¢), we
have something a bit easier to look at

S@uF)

9g" 94 \ _og"
= =0, (0up)— +(9 — 25.24
o9 (( w030 +( “W) a(@m)) 2
But this is a chain rule expansion of the derivative d,,g"
dgt  0¢ agt 00pp OgH
g _ 9¢ o8 po O (25.25)

axi  Ox Op | O D00
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So, we finally have

88, F*)
e
5¢ nE (25.26)
This is
8(8,,F*) SFH
RO _ g 9T 25.27
59 D) (25:27)

I do not think we have any right asserting that this is zero for arbitrary F*. However if the Tay-
lor expansion of F* with respect to variables ¢, and d,¢ has no higher than first order terms in
the field variables d,¢, we will certainly have a zero variational derivative and a corresponding
symmetry.

25.2.2.5 More examples to confirm the symmetry requirements

As a confirmation that a zero in eq. (25.27) requires linear field derivatives, lets lets try two
more example calculations.

First with non-linear powers of ¢ to show that we have more freedom to construct the function
first powers. Let

25.2
F>=0 (229
We have
8(9,F¥) (a P )
= __80'— 2 x
56 \as  “a@,9) " .
= 26, — 6,(29) (25.29)

Zero as expected. Generalizing the function to include arbitrary polynomial powers is no
harder.
Let
Fl = ¢t
F?=0 (25.30)
aﬂFﬂ = k¢k_1¢x
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So we have

(9 F™) k-2 k-1
———— =k(k—1)¢" ", — 0x(k¢"™
56 (k= D¢™ “¢x = 0x(kg¢™ ") (2531)
=0
Okay, now moving on to the derivatives. Picking a divergence that should not will not gener-
ate a symmetry, something with a non-linear derivative should do the trick. Let us Try

F' = (g0
25.32
I ( )
5(0,F*) (a 5 )
= __a(r— 2 xPxx
0\ aw.m) " .
= —20¢xx (25.33)
= _2¢xxx

So, sure enough, unless additional conditions can be imposed on ¢, such a transformation
will not be a symmetry.

25.2.3  Symmetry for Wave equation under spacetime translation

The Lagrangian for a one dimensional wave equation is

1 (0¢)\* 1 [0¢\*
_ 2_V2(E) _5(5) (25.34)

Under a transformation of variables

x—>x =x+a
(25.35)

t—=t=t+71

Employing a multivariable Taylor expansion (see [10] ) for our Lagrangian having no explicit
dependence on f and x, we have

*

(25.36)
£ = £l s L)



25.2 ON TRANSLATION AND DIVERGENCE SYMMETRIES

That first order term of the Taylor expansion *, can be written as a divergence d,F*, with
F! = af, and F? = 7L, however both of these are quadratic in ¢,, and ¢,, which is not linear.
That linearity in the derivatives was required for eq. (25.27) to be definitively zero for the
transformation to be a symmetry. So after all that goofing around with derivatives and algebra
it is defeated by the simplest field Lagrangian.

Now, if we continue we find that we do in fact still have a symmetry by introducing a lin-
earized spacetime translation. This follows from direct expansion

(x) = (ady +10)L

X ] (25.37)
=a (‘7¢tax¢t - ¢x5x¢x) +7 (v_2¢tat¢t = $x0,px

Next, calculation of the variational derivative we have

66 \0p 0px o
= —3x (—aaxx¢ — Tatx¢) - %6[ (aaxt¢ + T@,t(zﬁ) (2538)

1 1
=a (6)C (¢xx - v_2¢tt)) +7T (81‘ (¢xx - v_2¢tt))

Since we have ¢, = vlz¢,, by variation of eq. (25.34). So we do in fact have a symmetry from
the linearized spacetime translation for any shift (¢, x) — (¢ + 7, x + a).

5(*):(6 ai aa)(*)

25.2.4  Symmetry condition for arbitrary linearized spacetime translation

If we want to be able to alter the Lagrangian with a linearized vector translation of the gener-
alized coordinates by some arbitrary shift, since we do not have the linear derivatives for many
Lagrangians of interest (wave equations, Maxwell equation, ...) then can we find a general con-
dition that is responsible for the translation symmetry that we have observed must exist for the
simple wave equation.

For a general Lagrangian £ = £(¢(x), d,¢(x)) under shift by some vector a

x> xX =x+a (25.39)

we have

L,:(ea-V)£:£+(a.v)£+%(a.v)zbr... (25.40)
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Now, if we have

=0

o((a-V)L) 2 2w L 0L (25.41)
5¢ 5

then this would explain the fact that we have a symmetry under linearized translation for the
wave equation Lagrangian. Can this interchange of differentiation order be justified?
Writing out this variational derivative in full we have

o@D _ (0 5 D) o
59

9 6¢ (25.42)

0¢ Ox*  0x7 Opy OxH
Now, one can impose continuity conditions on the field variables and Lagrangian sufficient
to allow the commutation of the coordinate partials. Namely

0
T oo 543
O Ox Vf(¢ Os@) = ox” O pf(¢ 0s®) (25.43)

However, we have a dependence between the field variables and the coordinates

o 0 9 Za%a

o o ap | La D gy (25.44)
Given this, can we commute the field partials and the coordinate partials like so
9008 20839
Ap dxt — Axt O
6¢ PR z (25.45)

Oy OX O Dby
This is not obvious to me due to the dependence between the two.
If that is a reasonable thing to do, then the variational derivative of this directional derivative
is zero

Ma-WVL) _ pd (0 0 9
o¢ - 8xf‘
(25.46)



25.3 NOETHER CURRENT

To make any progress below I had to assume that this is justifiable. With this assumption
or requirement we therefore have a symmetry for any Lagrangian altered by the addition of a
directional derivative, as is required for the first order Taylor series approximation associated
with a spacetime (or spatial or timelike) translation.

25.2.4.1 An error above to revisit

In an email discussing what I initially thought was a typo in [26], he says that while it is correct
to transform the Lagrangian using a Taylor expansion in ¢(x + a) as I have done, this actually
results from x — x — a, as opposed to the positive shift given in eq. (25.39). There was discus-
sion of this in the context of Lorentz transformations around (1.26) of his QFT course notes,
also applicable to translations. The subtlety is apparently due to differences between passive
and active transformations. I am sure he is right, and I think this is actually consistent with the
treatment of [3] where they include an inverse operation in the transformed Lagrangian (that
minus is surely associated with the inverse of the translation transformation). It will take further
study for me to completely understand this point, but provided the starting point is really con-
sidered the Taylor series expansion based on ¢(x) — ¢(x + a) and not based on eq. (25.39) then
nothing else I have done here is wrong. Also note that in the end our Noether current can be
adjusted by an arbitrary multiplicative constant so the direction of the translation will also not
change the final result.

25.3 NOETHER CURRENT
25.3.1 Vector parametrized Noether current

In 17 the derivation of Noether’s theorem given a single variable parametrized alteration of the
Lagrangian was seen to essentially be an exercise in the application of the chain rule.

How to extend that argument to the multiple variable case is not immediately obvious. In GA
we can divide by vectors but attempting to formulate a derivative this way gives us left and right
sided derivatives. How do we overcome this to examine change of the Lagrangian with respect
to a vector parametrization? One possibility is a scalar parametrization of the magnitude of the
translation vector. If the translation is along @ = au, where u is a unit vector we can write

L'=L+6L
=L+@- VL (25.47)
=L+au-V)L
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So we have

drl’

da
Now our previous Noether’s current was derived by considering just the sort of derivative on
the LHS above, but on the RHS we are back to working with a directional derivative. The key

is finding a logical starting point for the chain rule like expansion that we expect to produce the
conservation current.

=w-V)L (25.48)

oL=(a- V)L
=d'0,L

0p 0.L O0py 0L
(8x/‘ 0¢ Z OxH a¢o’]
a-V)p+ Z —(a Vo
= [; 60%) V)¢ + Z _(a V)¢0'
oL
) oL
= ; O (@(d : V)¢)

So far so good, but where to go from here? The trick (again from Tong) is that the difference
with itself is zero. With a switch of dummy indices o — u, we have

(25.49)

0=0L-0L
oL
= 0, | —( -V)¢)— 1oL
; #(a‘ﬁ# ’ oo
) oL
= ;6# (%(a . V)¢ —a“l:)

Now we have a quantity that is zero for any vector a, and can say we have a conserved current
T (a) with coordinates

(25.50)

T(a) = %(a V) —d'L (25.51)
y7)
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Finally, putting this back into vector form

T(a) =y, T"(a)

25.52
= (yy oL ) (a-V)p—y,a'L ( )
0o,

So we have

0
T(a) = ((yﬂw)L) (a-Vyp—al
1
V-T@) =0

(25.53)

So after a long journey, I have in eq. (25.53) a derivation of a conservation current associated
with a linearized vector displacement of the generalized coordinates. I recalled that the treatment
in [3] somehow eliminated the a. That argument is still tricky involving their linear operator
theory, but I have at least obtained their equation (13.15). They treat a multivector displacement
whereas I only looked at vector displacement. They also do it in three lines, whereas building
up to this (or even understanding it) based on what I know required 13 pages.

25.3.2  Comment on the operator above

We have something above that is gradient like in eq. (25.53). Our spacetime gradient operator
is

0
V = yH— 25.54
Y OxH ( )

Whereas this unknown field variable derivative operator

something 9 (25.55)
= ’yﬂ— J.c
0dy

is somewhat like a velocity gradient with respect to the field variable. It would be reasonable
to expect that this will have a role in the field canonical momentum.
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25.3.3 Intensor form

The conserved current of eq. (25.53) can be put into tensor form by considering the action on
each of the basis vectors.

9
T(yy) -y = ((—) 15) Yy - Y0P =y - V'L (25.56)
EYy

Thus writing T#, = T(y,) - ¥ we have

0L
T'uv = _81/ - 61/#-5 2557

25.3.4  Multiple field variables

In order to deal with the Maxwell Lagrangian a generalization to multiple field variables is
required. Suppose now that we have a Lagrangian density £ = L(¢%, dg¢”). Proceeding with
the chain rule application again we have after some latex search and replace adding in indices
in all the right places (proof by regular expressions)

0L=(@a - V)L
=d"'0,L

“(%£+ 00,0% 0L )
Oxt Ogp” 0t 90 5P”

= %(‘;;W " asjzsa @ -ai)ﬁm" (25.58)
= (a“W) (a-V)¢" + e V)dr9”

_ (30%) (@ V) + %aa«a )

Ry

In the above manipulations (and those below), any repeated index, regardless of whether
upper and lower indices are matched implies summation.
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Using this we have a multiple field generalization of eq. (25.51). The Noether current and its
conservation law in coordinate form is

L
V)oY — d' L
da,en @ VY (25.59)

8,T(a) = 0

TH(a) =

Or in vector form, corresponding to eq. (25.53)

0
T(a) = ((’)/IJ W) L) (a . V)(]ﬁa — Cl.L
u

(25.60)
V-T@) =0
And finally in tensor form, as in eq. (25.57)
T, = £ g 6L
009" (25.61)
0,TH, =0

25.3.5 Spatial Noether current

The conservation arguments above have been expressed with the assumption that the Lagrangian
density is a function of both spatial and time coordinates, and this was made explicit with the
use of the Dirac basis to express the Noether current.

It should be pointed out that for a purely spatial Lagrangian density, such as that of electro-
statics

L= —%(V@Z + o (25.62)

the same results apply. In this case it would be reasonable to summarize the conservation
under translation using the Pauli basis and write

0L
T@) = o ——a-Vé —
@) =TG5 V2L (25.63)

V-T@@)=0

Without the time translation, calling the vector Noether current the energy momentum tensor
is not likely appropriate. Perhaps just the canonical energy momentum tensor? Working with
such a spatial Lagrangian density later should help clarify how to label things.
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25.4  FIELD HAMILTONIAN

A special case of eq. (25.57) is for time translation of the Lagrangian.
For that, our Noether current, writing H* = T is

H = Cp- 1
¢ (25.64)
H* = gcﬁ
Oy

These are expected to have a role associated with field energy and momentum respectively.
For the Maxwell Lagrangian we will need the multiple field current

HO = —aSLQ dogp” — L
éf (25.65)
00rp”

25.5 WAVE EQUATION
Having computed the general energy momentum tensor for field Lagrangians, this can now be

applied to some specific field equations. The Lagrangian for the relativistic wave equation is an
obvious first candidate due to simplicity.

25.5.1 Tensor components and energy term

1 1 1 21 . 2
L= 25u¢5“¢ = 2¢u¢“ = 2(V¢) = 2(¢ (Ve)?) (25.66)

In the explicit spacetime split above we have a split into terms that appear to correspond to
kinetic and potential terms

L=K-V (25.67)

To compute the tensor, we first need 0.L/d¢, = ¢*, which gives us

TH, = ¢f'¢y —0,/' L (25.68)
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Writing this out in matrix form (with rows y, and columns v), we have

57+ 63+ 67+ 62) b by b
~¢rh 5(=¢ = g1+ 67+ 62) —drby —¢xp-
~¢yp ~¢yhx F(=* + ¢ — g7 +¢7) ~¢y9:
~¢.¢ ~¢:px ~¢-¢y 3= + P2+ 62 - ¢2)

(25.69)

As mentioned by Jackson, the canonical energy momentum tensor is not necessarily symmet-
ric, and we see that here. Do do however, have what is expected for the wave energy in the 0,0
element

% =K+V
1. (25.70)
= 5@+ (Vo))
25.5.2  Conservation equations
How about the conservation equations when written in full. The first is
0=0,THy
1 SRt s d?+dd) N9 ) O (bd
= 5 t(¢ + ¢x + ¢y + ¢Z) - x(¢x¢) - y(¢y¢) - Z(¢Z¢) (25'71)
= ¢¢ + Pxx + ¢y¢yt + ¢y — ‘lb)cx‘]-j - ¢yy¢ - ¢zz¢ = Pxrx — ¢y¢ty — ¢:0r;
= ¢(¢ —Pxx — ¢yy —¢z)
So our first conservation equation is
0= ¢(V2¢) (25.72)

But V2¢ = 0 is just our wave equation, the result of the variation of the Lagrangian itself. So
curiously the divergence of energy-momentum four vector 7#( ends up as another method of
supplying the wave equation!
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How about one of the other conservation equations? The pattern will all be the same, so
calculating one is sufficient.

0= 8,T"
_ y l 32 42 2 2y _ _
= 01(¢gx) + 2<3x( " — ¢y + )+ ¢7) — 0y($ydx) — 0:(h:9x)

= ¢¢x + ¢¢xt - ¢¢tx - ¢x¢xx + ¢y¢yx + ¢z¢zx - ¢yy¢x - ¢y¢xy - ¢zz¢x - ¢z¢xz
= ¢x(¢ = Prx — ¢yy - ¢zz)

(25.73)

It should probably not be surprising that we have such a symmetric relation between space
and time for the wave equations and we can summarize the spacetime translation conservation
equations by

0=0,T",

25.74
= (V%) (279

25.5.3 Invariant length

It has been assumed that 7'(y,,) are four vectors. If that is the cast we ought to have an invariant
length.

Let us calculate the vector square of 7'(yg). Picking off first column of our tensor in eq. (25.69),
we have

(T(y0)* = yuT"0) - (1 T"0)
= (T%)* = (T'0)* = (T?0)* = (T°0)*

1,. . . .
= (P4 B+ g4 8) - 8 - 8 - 2
4 X 'y b ) x y z ) xPy y¢z 7 Px

1,.
= (#-2-g-a)
(25.75)

But this is just our (squared) Lagrangian density, and we therefore have

(T(y0))* = L2 (25.76)
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Doing the same calculation for the second column, which is representative of the other two
by symmetry, we have

(T ()’ =-L (25.77)
Summarizing all four squares we have
Tw)* = )L (25.78)

All of these conservation current four vectors have the same length up to a sign, where 7' (yy)
is timelike (positive square), whereas T (yy) is spacelike (negative square).

Now, is L2 a Lorentz invariant? If so we can justify calling T(y,) four vectors. Reflection
shows that this is in fact the case, since £ is a Lorentz invariant. The transformation properties
of £ go with the gradient. Writing V/ = RVR, we have

Ll — %V’(b . Vl¢
= %(RVR¢RVR¢>
= %(vafe(p)

=1 (25.79)

- fsens)

1

=L
25.5.4  Diagonal terms of the tensor

There is a conjugate structure evident in the diagonal terms of the matrix for the tensor. In
particular, the 7% can be expressed using the Hermitian conjugate from QM. For a multivector
F, this was defined as

F' = yFyo (25.80)
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We have for 79

1
T% = (V)" - (V¢)

2
= S00V709Y9)
= %((70%)2)
= {000 80 +3007) (25.81)
= 2@~V y0i007)
= 2@+ v07)
= 2@+ o)

Now conjugation with respect to the time basis vector should not be special in any way, and
should be equally justified defining a conjugation operation along any of the spatial directions
too. Is there a symbol for this? Let us write for now

Flu =y, Fy! (25.82)

There is a possibility that the sign picked here is not appropriate for all purposes. It is hard
to tell for now since we have a vector F that equals its reverse, and in fact after a computation
with both u indices down I have raised an index altering an initial choice of F'x = y#F Yu

Applying this, for i # 0 we have

(Ve - (Vo) = ~(7,V7,4V¢)

= _<((aﬂ T Yu Z#: Vvav)¢)2>
V£
= —((0u0)* + ;(yﬂyv)z(ﬁvqﬁ)z)
=
= (0,0 - ;(m%yy)z(am)z) o
=
= —((0,0)* + ;(Vﬂamﬁ
VEL

= —(0u$)’ = 09y’ + Y, ()’

ki k0
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This recovers the diagonal terms, and allows us to write (no sum)

T, = %(V@“ (Vo) (25.84)

25.5.4.1 As a projection?

As a vector (a projection of 7'(y,) onto the y,, direction) this is (again no sum)

1
Yl = 5¥u(V9)'™ - (V9)

= %w(v“%n%)

1 (25.85)
= Z?’u(yllv¢'y,uv¢ + V¢7/JV¢7#)

1
= 1((V97.9) + 7Yy, Vo)

Intuition says this may have a use when assembling a complete vector representation of 7'(y,,)
in terms of the gradient, but what that is now is not clear.

25.5.5 Momentum

Now, let us look at the four vector T'(yo) = v, Ty more carefully. We have seen the energy term
of this, but have not looked at the spatial part (momentum).

We can calculate the spatial component by wedging with the observer unit velocity yp, and
get

T(y0) Ao = vevoT o
= —oddr (25.86)
= -¢V¢
Right away we have something interesting! The wave momentum is related to the gradient

operator, exactly as we have in quantum physics, despite the fact that we are only looking at the
classical wave equation (for light or some other massless field effect).

25.6  WAVE EQUATION. GA FORM FOR THE ENERGY MOMENTUM TENSOR

Some of the playing around above was attempting to find more structure for the terms of the
energy momentum tensor. For the diagonal terms this was done successfully. However, doing
so for the remainder is harder when working backwards from the tensor in coordinate form.
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25.6.1 Calculate GA form

Let us step back to the defining relation eq. (25.60), from which we see that we wish to calculate

oL
Y Yud'¢
H 88,,¢“ H ,
= YD (25.87)
= V¢
This completely removes the indices from the tensor, leaving us with
a 2
T(a) = (V¢)a- V¢ - =(V4)
1 a (25.88)
= (V)| 5(aVe + Véa) - V¢§)
Thus we have
1
T(a) = §(V¢)a(V¢) (25.89)

This meets the intuitive expectation that the energy momentum tensor for the wave equation
could be expressed completely in terms of the gradient.
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25.6.2  Verify against tensor expression

There is in fact a surprising simplicity to the result of eq. (25.89). It is somewhat hard to believe
that it summarizes the messy matrix we have calculated above. To verify this let us derive the
tensor relation of eq. (25.68).

T, =T(y) ¥

= (T (Vo)

- %(yaaa¢7v7ﬁég¢7’u>

_ %aawﬁqb(y"yﬁm")
- %aaqsaﬁqb (6506 + (Y Avy) - (yg AY)
= 2 (20000 + 000500 A 1) 0P AY)

- 5Vﬁ7ﬂ - 5vu7ﬁ

1
= 5 |9499" ¢+ (" $0pd)ve - (v @AY )

(25.90)

1
= 5 (0000 + 0" 90p9)(0./ 0. = 5,5.F))

1
7 (0996 + #9069 - 6,/ $0a9))

= 0,¢90"'p - 5,1 L ]
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25.6.3 Invariant length

Putting the energy momentum tensor in GA form makes the demonstration of the invariant
length almost trivial. We have for any a

(T(a))* = %VqﬁquﬁVqﬁquﬁ
1 29,4 2
= (VO Veave (25.91)
= 2V
= £242

This recovers eq. (25.78), which came at considerably higher cost in terms of guesswork.

25.6.4  Energy and Momentum split (again)

By wedging with yy we can extract the momentum terms of 7'(yp). That is

1
T(y0) Ayo = ((70 Vo)V — §(V¢)270) Ao

=0

1 (25.92)
= (70 V)V A y0) = 5 (V)" (o A7)
= 37 y00u9)
AL

For the energy term, dotting with yg we have
1
T(y0) - y0 = ((70 V)V = 5(V8)*10) 0
1
= (0 V9)' = 5(V9)?
(25.93)

. 1 .
=¢* - 5<¢2 — (V)%
1

= 5@52 +(V$)?)
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Wedging with vy itself does not provide us with a relative spatial vector. For example, con-

sider the proper time velocity four vector (still working with ¢ = 1)

dt d X
V= %d_t (l’)/() + YiX )
i . dik (25.94)
T\
We have
dt
Veyo = o =y (25.95)
T
and
dt  dx*
AV = — O —— (25.96)
vAYo dra—k dt
Or
v dxk
=0k——
dt
YA Y0 (25.97)

vy
This suggests that the form for the relative momentum (spatial) vector for the field should

therefore be

T(yo) ANyo
T(yo0)-v0
TS
2(¢” + (Vo)~)
___ 2 V9 (25.98)
Vo) ¢
1+ p )
B 2
A7
Vot o
This has been written in a few different ways, looking for something familiar, and not re-
ally finding it. It would be useful to revisit this after considering in detail wave momentum
in a mechanical sense, perhaps with a limiting argument as given in [5] (ie: one dimensional

Lagrangian density considering infinite sequence of springs in a line).

P=
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25.7 SCALAR KLEIN GORDON

A number of details have been extracted considering the scalar wave equation. Now lets move
to a two field variable Lagrangian.

m
2

1 22,
L= 5 o'y — ) 14 (25.99)
This forced wave equation will have almost the same energy momentum tensor. The excep-
tion will be the diagonal terms for which we have an additional factor of m2c2y?/2 I*.
This also means that the conservation equations will be altered slightly

0=9,T",
22 (25.100)
=dy (V2¢ + 7415)

Again the divergence of the individual canonical energy momentum tensor four vectors re-
produces the field equations that we also obtain from the variation.

25.8 COMPLEX KLEIN GORDON

25.8.1 Tensorin GA form

m?c?

L =00y - " ' (25.101)

We first want to calculate what perhaps could be called the field velocity gradient

0L
=
G~ ™ v (25.102)
=Vy
Similarly
oL
= U
Sy~ v (25.103)

= vy



25.8 COMPLEX KLEIN GORDON

Assembling results into an application of eq. (25.60), we have

T(a) =Vy(a- V)" +Vy'(a- Vi —al
2.2

1
= VUV T @V - ay (VT TV e

N . 1 m2c? | (25.104)
= Vy(a-Vy —Eth a)+Vy (a-V¢—§V¢a)+a 2 Y

2.2

1
=5 (V)a(Vy™) + (VyH)a(Vy)) +amh§ Yy

Since vectors equal their own reverse this is just

m?c?

T(a) = (V)a(Vy™) +a — e (25.105)

25.8.2  Tensor in index form

Expanding the energy momentum tensor in index notation we have

TH, = T(y,) - ¥*

* 04 m2C2 *
= Dot0py” (YY) + 6/ v (25.106)

2.2
= WY + YO — YO0 + M%W

So we have
T, = Mo ™ + Y o — 6,1 L (25.107)

This index representation also has a nice compact elegance.

25.8.3 Invariant Length?

Writing for short b = Vi, and working in natural units m>c> = k%, we have

(T(a))* = (bab* + ayy’)* 25.108)
= (ab*bab*b) + a*y*(W*)* + 2a - (bab*) '

Unlike the light wave equation this does not (obviously) appear to have a natural split into
something times a?. Is there a way to do it?
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25.8.4  Divergence relation

Borrowing notation from above to calculate the divergence we want

V - (bab") = (V(bab"))
- <(b*§b)a> (25.109)
=a- <b*<€b>1

Here cyclic reordering of factors within the scalar product was used. In order for that to be
a meaningful operation the gradient must be allowed to operate bidirectionally, so this is really
just shorthand for

b*Vb = b*Vb + b*V (25.110)

Where the more conventional overdot notation is used to indicate the scope of the operation.
In particular, for b = Vi, we have

<b*$b>l = (V") (V) + (V" )(V20) (25.111)

Our tensor also has a vector scalar product that we need the divergence of. That is

V- (ayy”) = (Viayy™))

(25.112)
=a- V")
Putting things back together we have
o 2.2

V.-T@=a- (<(V»,_//“)v(w)>1 + %V(m&*)) (25.113)

This is
m2c2
0=V-T(=a- ((Vzw*)(vw +(VY)(VPy) + 7V<w*>) (25.114)

Again, we see that the divergence of the canonical energy momentum tensor produces the
field equations that we get by direct variation! Put explicitly we have zero for all displacements
a, so must also have

2.2 2.2

0 = (Vi) (Vzw* + %” + (Vi) (Vzw + mhg w) (25.115)




25.9 ELECTROSTATICS POISSON EQUATION

Also noteworthy above is the adjoint relationship. The adjoint F of a an operator F was
defined via the dot product

a-F()=b-F(a) (25.116)

So we have a concrete example of the adjoint applied to the gradient, and for this energy
momentum tensor we have

_ 2.2
T(V) = (Vy")V(Vp)), + %vw*) (25.117)

Here the arrows notation has been dropped, where it is implied that this derivative acts on all
neighboring vectors either unidirectionally or bidirectionally as appropriate.

Now, this adjoint tensor is a curious beastie. Intuition says this this one will have a Lorentz
invariant length. A moment of reflection shows that this is in fact the case since the adjoint was
fully expanded in eq. (25.115). That vector is zero, and the length is therefore also necessarily
invariant.

25.8.5 TODO

How about the energy and momentum split in this adjoint form? Could also write out adjoint in
index notation for comparison to non-adjoint tensor in index form.

25.9 ELECTROSTATICS POISSON EQUATION
25.9.1 Lagrangian and spatial Noether current

L:—%w@%¢¢ (25.118)

Evaluating this yields the desired V2¢ =—ple,or V-E =p/e.
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25.9.2  Energy momentum tensor
In this particular case we then have
T(a) = ow(—€odkp)a- Vo —aLl

= —a(Vé)a- Vo - a(-7(V9)’ + po)

= —a(Vo)a- Vo + (Vo) 'aT —apg

= %(vw (—2a- V¢ + Vga) —apg B
- %(vfp) (-aVe — Voa + Vea) — apd
= -Z(V)ave - apg
It in terms of E = —V¢ this is
T(a) = —%EaE —ap¢ (25.120)

This is not immediately recognizable (at least to me), and also does not appear to be easily
separable into something times a.

25.9.3 Divergence and adjoint tensor

What will we get with the divergence calculation?

V . (EaE) = (V(EaE))

. 25.121
=a- <EVE>1 ( )
Also want
V- (apg) = (V(apg)) (25.122)
=a- V(p¢)

Assembling these we have

V.T(a)=-a- (<%E;E>l + V(p¢)) (25.123)



From this we can pick off the adjoint
T(V) = —%<E3E>l —V(o4)
- —% (& V)EE(V - E)) - V(o$)

= —&(V*¢)V¢ — V(pg)
= —&V(V¢)* - V(pg)
=V (-e(Ve) - pg)

If we write £ = K — V, then we have in this case

T(V)=V(K+V)=0

25.10 SCHRODINGER EQUATION

(25.124)

(25.125)

Since the gradient of this quantity is zero everywhere it must be constant

K + V = constant

(25.126)

We did not have any time dependence in the Lagrangian, and blindly following the math
to calculate the associated symmetry with the field translation, we end up with a conservation

statement that appears to be about energy.

TODO: am used to (as in [4]) seeing electrostatic energy written

1 1
= — E2d = — dV
U 2eof \%4 2fp¢

Reconcile this with eq. (25.126).

25.10 SCHRODINGER EQUATION

7’[2
L= om

— (V) (V) + Vg + i (Yo" — g o)

(25.127)

While not a Lorentz invariant Lagrangian, we do not have a dependence on that, and can still
calculate a Noether current on spatial translation.

(25.128)

For this Lagrangian density it is worth noting that the action is in fact

S :fd3x£

(25.129)
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... ie: Oy is not a field variable in the variation (this is why there is no factor of 1/2 in the
probability current term).
Calculating the Noether current for a vector translation a we have

2 2

T(a) = ;—mvtﬁa VY + ;—szﬁ*a -Vy —al (25.130)

Expanding the divergence is messy but straightforward

V-

T(a)
2
TV (VU VU Vyar V) - V(TY Vi)

—a-V (Vyy" + i (™ — ')
2
:’—m(v (Vy(aVy™ + Viy*a) + V' (aVy + Vya)) — 2V(Vy - Vii')a)

—a-V (Vg™ + ih(™ = "))
h = s
A <V1//*VV1// + VY VYY" + V(VY V™) + V(Y Vi) — 2V(Vy - VW*)>1 (25.131)

—a-V (Vyy + ih” =)

hz © ©

o <V¢*VV¢ + V¢VV¢*>1

—a-V (Vyu +ih” =)

i . , .
-2 2(VU VR VYY) - (Vg + il — )

2

L . ,
7.8V (V¢ - Vy) —a-V (Vyy" +ih(pd" — y"y))

Which is, finally,

v

2
‘T@)=a- v(zh—mw* VY — Vg — i B — w*m) (25.132)

Picking off the adjoint we have

2
T(V) = ;’—mvlp* VY = Vgt — it — ) (25.133)



25.11 MAXWELL EQUATION

Just like the electrostatics equation, it appears that we can make an association with Kinetic
(K) and Potential (¢) energies with the adjoint stress tensor.

h2
K=—Vy" Vy
2m

¢ = Vyy' +ih(™ — ) (25.134)
L=K-¢
TV)=K+¢

FIXME: Unlike the electrostatics case however, there is no conserved scalar quantity that
is obvious. The association in this case with energy is by analogy, not connected to anything
reasonably physical seeming. How to connect this with actual physical concepts? Can this be
written as the gradient of something? Because of the time derivatives perhaps the space time
gradient would be required, however, because of the non-Lorentz invariant nature I had expect
that terms may have to be added or subtracted to make that possible.

25.11 MAXWELL EQUATION

Wanting to see some of the connections between the Maxwell equation and the Lorentz force

was the original reason for examining this canonical energy momentum tensor concept in detail.

25.11.1 Lagrangian

Recall that the Lagrangian for the vector grades of Maxwell’s equation

VF =J/egc (25.135)
is of the form

L=x(VAA) - (VAA+J A

(25.136)
= k(' AY") - (Vo NYp)OuAOAP + J7 A,

We can fix the constant « by taking variational derivatives and comparing with eq. (25.135)

oL . oL
A "00,Ar) (25.137)
=J7 = 2k(Y* AY7) - (ya A yﬁ)ﬁﬂaaAﬁ

0=
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Taking y“ dot products with eq. (25.135) we have

0=vy"-(J—€cV-F)

” N o 4B (25.138)
=J" —ecy” - (V" - (Yo Ayp))0u 0" A
So we have 2k = —eyc, and can write our Lagrangian density as
€ J
L=——(VAA-(VAA+—--A
62 ¢ . (25.139)
0
= =S AY) a A p)OuAI AP + — Ay
25.11.2  Energy momentum tensor
For the Lagrangian density we have
oL
— =~V (Y AY) - (Yo Ayp)dAP
Vi ) 0Yu (Y AY) - (Ya A yp)
= —€yu(650" 0 — 828" 5)0" AP (25.140)
= —€yy(0"A" — 9"'AY)
= ey "

One can guess that the vector contraction of F*” above is an expression of a dot product with
our bivector field. This is in fact the case

F-y' = (Yo Ayp) -y 0"AP
= (o0 — yp0a" )" AP

(25.141)
=y (0'AY — 0"AF)
= fyﬂFﬂV
We therefore have
T(a) = e(F -y))a-VA, —al
(25.142)

:eo((F-yV)a-VAV+gF-F)—a(A-J/c)



25.11 MAXWELL EQUATION

25.11.3  Index form of tensor

Before trying to factor out a, let us expand the tensor in abstract index form. This is
Tv'u = T(')/v) : yﬂ
= e [F0,45+ 22 F F) =547 /e
0 vApt = v o (25.143)

oM
=6 (FﬂﬁayAﬂ - %F‘IﬁF&ﬁ) —-61A% s /c

In particular, note that this is not the familiar symmetric tensor from the Poynting relations.

25.11.4  Expansion in terms of E and B

TODO.

25.11.5 Adjoint

Now, we want to move on to a computation of the adjoint so that a can essentially be factored out.

Doing so is resisting initial attempts. As an aid, introduce a few vector valued helper variables

FH = F-y’“
(25.144)
G, = VA,
Then we have
V-T(a) = % ((V(F"(aG, + Gya)) +a- (V(FP)) ) —a-V (A-J/c)
(25.145)

_ %a : <GV§FV +V(F'G,) + V(F2)> —a-V(A-Jjc)
1

This provides the adjoint energy momentum tensor, albeit in a form that looks like it can be
reduced further

0=T(V)= %<GV$FV +V(F'Gy) + V(F2)>1 ~V(A-J/c) (25.146)
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We want to write this as a gradient of something, to determine the conserved quantity. Getting
part way is not too hard.

%

@ (25.147)

v =3 (<GV$FV>1 LV (FY A GV)) + V(%(F" G, +F-F)—A- J/c)

It would be nice if these first two terms * cancel. Can we be so lucky?

() = <GV§FV> +V-(F' AG))
1
=(GmF+ GV&’FV)}1 +(V-F")G, - F'(V-G,)

=(V-G)F +F - (VAG)+G,(V-F)+ G, - (VAF")+(V-F")G, - F'(V-G,)
=2G,(V-F")+G, - (VA F")
(25.148)

This is not obviously zero. How about F” - G,,?

F"-Gy = (((va AYp) -y )3 APO,A,
= (04705" — 657650 AP, A,
= 0" AP (0o Ap — 0pAa) (25.149)
= 0"APF o5

= % FopF

Ah. Up to a sign, this was F - F. What is the sign?

F-F = (ya Nyp) - (0 AV AP A,
= (0" 0" — 85"0,")0"APD,A,
= 0"AP(0pAn — DaAp)
= 0"APFg,

1
= EFﬁa(af’Aﬂ - PA")

1
= EFﬁ(,F“ﬁ

=-F"-G,

(25.150)



25.12 NOMENCLATURE. LINEARIZED SPACETIME TRANSLATION

Bad first guess. It is the second two terms that cancel, not the first, leaving us with

T(V) = % (<GV§FV>1 +V-(F A Gv)) ~V(A-J/c) (25.151)

Now, intuition tells me that it ought to be possible to simplify this further, in particular, elim-
inating the v indices.
Think I will take a break from this for a while, and come back to it later.

25.12 NOMENCLATURE. LINEARIZED SPACETIME TRANSLATION

Applying the translation x* — x* + ¢, is what I thought would be called “spacetime translation”.
But to do so we need higher order powers of the exponential vector translation operator (ie:
multivariable Taylor series operator)

D (ke 5, (25.152)
k

The transformation that appears to result in the canonical energy momentum tensor has only
the linear term of this operator, so I called it “linearized spacetime translation operator”’, which
seemed like a better name (to me). That is all. My guess is that what is typically referred to as
the spacetime translation that generates the canonical energy momentum tensor is really just the
first order term of the translation operation, and not truly a complete translation. If that is the
case, then dropping the linearized adjective would probably be reasonable.

It is somewhat odd that the derived conditions for a divergence added to the Lagrangian are
immediately busted by the wave equation. I think the saving grace is the fact that an arbitrary
d,F* is not necessarily a symmetry is the fact the translation of the coordinates is not an arbi-
trary divergence. This directional derivative operator is applied to the Lagrangian itself and not
to an arbitrary function. This builds in the required symmetry (you could also add in or subtract
out additional divergence terms that meet the derived conditions and not change anything).

Now, if the first order term of the Taylor expansion is a symmetry because we can commute
the field partials and the coordinate partials then the higher order terms should also be sym-
metries. This would mean that a true translation £ — exp(e#d,)L would also be a symmetry.
What conservation current would we get from that? Would it be the symmetric energy momen-
tum tensor?
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COMPARISON OF TWO COVARIANT LORENTZ FORCE
LAGRANGIANS

26.1 MOTIVATION

In [21], the covariant Lorentz force Lagrangian is given by

L:anf’d“x—mfdr (26.1)

which is not quadratic in proper time as seen previously in 16 , and 23

L= %mv2 +qgA-(v/c)
(26.2)

1 9.V ¢
= — + _A) —
2m (mv c 2mc?

A2

These two forms are identical, but the second is expressed explicitly in terms of the conjugate
momentum, and calls out the explicit kinetic vs potential terms in the Lagrangian nicely. Note
that both forms assume 7(2) = 1, unlike eq. (26.1), which must assume a time negative line
element.

26.2 LAGRANGIAN WITH QUADRATIC VELOCITY

For review purposes lets once again compute the equations of motion with an evaluation of
the Euler-Lagrange equations. With hindsight this can also be done more compactly than in
previous notes.

We carry out the evaluation of the Euler-Lagrange equations in vector form

d
0=VL-—V,L
dr

vy (L2 saa.
—(V dTVv)(zmv +gA (v/c)) (26.3)

d 1
= qV(A-(v/) = Vs (5"”2 +qA - (v/c))
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The middle term here is the easiest and we essentially want the gradient of a vector square.

Vi = Y0, x" x4
=29"x,
This is

(26.4)

Vx? = 2x (26.5)

The same argument would work for V2 = YHO(Xx¥X,)/0XH, but is messier to write and read.
Next we need the gradient of the A - v dot product, where v = 7,4 is essentially a constant.
We have

V(A -v) =(V(A-v)),

1,. . ,
= 5(V(Av + vA))1
v(V-A)—-V(A-) (26.6)
1
=5 V-Av+(VAA) - v+ (- V)A-|(vAV)-A
Canceling v(V - A) terms, and rearranging we have
VA-v)=(VAA)-v+(¥-V)A (26.7)
Finally we want
0A VY
Vy(A-v) =y —2
WA =Y (26.8)
= YA,
Which is just
Vi(A-v)=A (26.9)

Putting these all together we have

O:q((V/\A)-V/c+(v/c-V)A)—%(mv+qA/c) (26.10)



26.3 LAGRANGIAN WITH ABSOLUTE VELOCITY

The only thing left is the proper time derivative of A, which by chain rule is

dA _ oA ot
dr  Ox* Ot
= V9,A (26.11)
=@W-V)A

So our (v - V)A terms cancel and with F = V A A we have our covariant Lorentz force law

=qF -v/c (26.12)

26.3 LAGRANGIAN WITH ABSOLUTE VELOCITY

Now, with

dr= %0 (26.13)
al

it appears from eq. (26.1) that we can form a different Lagrangian

L =amv|+qgA-v/c (26.14)

where « is a constant to be determined. Most of the work of evaluating the variational deriva-
tive has been done, but we need V,|v|, omitting dots this is

Vix| = Y9, Vx¥x,
1

2vVx2
1 (26.15)

= ’yﬂ 8# (xaxa)

| (26.16)
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which gives us

d(mv/c)
dr

a =qF -v/c (26.17)

This fixes the constant @ = ¢, and we now have a new form for the Lagrangian

L =m|c+qgA-v/c (26.18)

Observe that only after varying the Lagrangian can one make use of the |[v| = ¢ equality.



TRANSLATION AND ROTATION NOETHER FIELD CURRENTS

27.1 MOTIVATION

The article [19] details the calculation for a conserved current associated with an incremental
Poincare transformation. Instead of starting with the canonical energy momentum tensor (aris-
ing from spacetime translation) which is not symmetric but can be symmetrized with other
arguments, the paper of interest obtains the symmetric energy momentum tensor for Maxwell’s
equations directly.

I believe that I am slowly accumulating the tools required to understand this paper. One
such tool is likely the exponential rotational generator examined in [11], utilizing the angular
momentum operator.

Here I review the Noether conservation relations and the associated Noether currents for a sin-
gle parameter alteration of the Lagrangian, incremental spacetime translation of the Lagrangian,
and incremental Lorentz transform of the Lagrangian.

By reviewing these I hope that understanding the referenced article will be easier, or I in-
dependently understand (in my own way) how to apply similar techniques to the incremental
Poincare transformed Lagrangian.

27.2 FIELD EULER-LAGRANGE EQUATIONS

The extremization of the action integral

S = fz:d“x (27.1)

can be dealt with (following Feynman) as a first order Taylor expansion and integration by
parts exercise. A single field variable example serves to illustrate. A first order Lagrangian of a
single field variable has the form

L= L($.0,0) (272)
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Let us vary the field § — ¢ + ¢ around the stationary field ¢, inducing a corresponding
variation in the action

S +6S = f L($+ ¢, 0,(phi + )d*x

(27.3)
= o= 20L oL
= | a .0 0 -
Neglecting any second or higher order terms the change in the action from the assumed
solution is
- 0L )
o9~ (27.4)
s = (i " 5@
This is now integrable by parts yielding
- oL 0L
= | &x(¢d d* -9, 27.5
f *(80Llp) f ¢(a¢ “a(am)) =7

Here d>x is taken to mean that part of the integration not including dx. The field ¢ is always
required to vanish on the boundary as in the dynamic Lagrangian arguments, so the first integral
is zero. If the remainder is zero for all fields g_b, then the inner term must be zero, and we the
field Euler-Lagrange equations as a result

oL oL

% - “—8(6y¢) = (27.6)

When we have multiple field variables, say A,, the chain rule expansion leading to eq. (27.4)
will have to be modified to sum over all the field variables, and we end up instead with

4 oL
oS = fd ZA (aA “6(8AV)) (27.7)

So for 6S = 0 for all A, we have a set of equations, one for each v

oL p oL
dA,  "8(8,A,)

=0 (27.8)
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27.3 FIELD NOETHER CURRENTS

The single parameter Noether conservation equation again is mainly application of the chain
rule. Illustrating with the one field variable case, with an altered field variable ¢ — ¢’(6), and

L= L(¢,0.¢) (27.9)
Examining the change of £’ with 6 we have
ar’ o0 ! 00,9
L _ L 0¢ N oL (0u9”) (27.10)
do  0¢’ 00  0(0,¢') 06
For the last term we can switch up the order of differentiation
Hud) 0 89’
86 36 0x
27.11
o o
©Ox* 90

Additionally, with substitution of the Euler-Lagrange equations in the first term we have
dL (9 0L \oy 9L 5 9 (27.12)
do Oxt 0(0u¢’)] 060 0(0,.¢") Ox+ 06

But this can be directly anti-differentiated yielding the Noether conservation equation

df' 0 (oL o¢
do — Ox+ (G(é)ﬂgb’) 39) (27.13)

With multiple field variables we will have a term in the chain rule expansion for each field
variable. The end result is pretty much the same, but we have to sum over all the fields

ar

0 oL 0A,
=Yl )

EYCRITES 27.14
L 9 \ 8(0, A7) 08 (27.14)
Unlike the field Euler-Lagrange equations we have just one here, not one for each field vari-

able. In this multivariable case, expression in vector form can eliminate the sum over field
variables. With A" = A’,y”, we have

L o oL oA
-9, 9L oA 27.15
49~ o (7 A(D,A"y) ae) 27.15)
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With an evaluation at 8 = 0, we have finally

ar’
do

0 L
-0 v\ 8@,A,) 90

) (27.16)
6=0

When the Lagrangian alteration is independent of 8 (i.e. is invariant), it is said that there is
a symmetry. By eq. (27.16) we have a conserved quantity associated with this symmetry, some
quantity, say J that has a zero divergence. That is

oL oA
8(3,A,) 90 lo=o (27.17)
0= 8,

J'u:'}/v

27.4 SPACETIME TRANSLATION SYMMETRIES AND NOETHER CURRENTS

Considering the effect of spacetime translation on the Lagrangian we examine the application
of the first order linear Taylor series expansion shifting the vector parameters by an increment
a. The Lagrangian alteration is

LoV LrxL+a-VL (27.18)

Similar to the addition of derivatives to the Lagrangians of dynamics, we can add in some
types of total derivatives d, F* to the Lagrangian without changing the resulting field equations
(i.e. there is an associated “symmetry” for this Lagrangian alteration). The directional deriva-
tive a-V.L = a"0,.L appears to be an example of a total derivative alteration that leaves the
Lagrangian unchanged.

27.4.1  On the symmetry

The fact that this translation necessarily results in the same field equations is not necessarily
obvious. Using one of the simplest field Lagrangians, that of the Coulomb electrostatic law, we
can illustrate that this is true in at least one case, and also see what is required in the general
case

1 1 1 1
L= 5(\7¢)2 —aPP=5 ;(&mﬁ)z o (27.19)
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With partials written d,,,f = f,, we summarize the field Euler-Lagrange equations using the
variational derivative

5¢ a¢ Z ma¢m (27.20)
Where the extremum condition 6.£L/d¢ = 0 produces the field equations.
For the Coulomb Lagrangian without (spatial) translation, we have
oL 1
— =—-——p-0 27.21
50 & mm® ( )
So the extremum condition 6.L/d¢ = 0 gives
2 1
Vg =——p (27.22)
€
Equivalently, and probably more familiar, we write E = —V¢, and get the differential form
of Coulomb’s law in terms of the electric field
1
V.-E=—p (27.23)
€

To consider the translation case we have to first evaluate the first order translation produced
by the directional derivative. This is

a-VL = Z andn L
" (27.24)
=T PV +¢Vp)

For the translation to be a symmetry the evaluation of the variational derivative must be zero.

In this case we have
L——— — (V¢ + ¢V
5¢ o ¢(p ¢+ ¢Vp)

- _ Z E_%(pa,m + ¢0mp) (27.25)

=—;Z—;”{a zk] 5 ](p¢m+¢pm>
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We see that the ¢ partials select only p derivatives whereas the ¢y partials select only the p
term. All told we have zero

0 0
(% - Zk] akafm] (Obm + Bpm) = Pm — ; OPOkm

= Pm — OmpP
=0

(27.26)

This example illustrates that we have a symmetry provided we can “commute” the variational
derivative with the gradient

0 oL
%a -VL=a- V% (27.27)

Since 6.L/6¢ = 0 by construction, the resulting field equations are unaltered by such a modi-
fication.

Are there conditions where this commutation is not possible? Some additional exploration on
symmetries associated with addition of derivatives to field Lagrangians was made previously in
25. After all was said and done, the conclusion motivated by this simple example was also
reached. Namely, we require the commutation condition eq. (27.27) between the variational
derivative and the gradient of the Lagrangian.

27.4.2  Existence of a symmetry for translational variation

Considering an example Lagrangian we found that there was a symmetry provided we could
commute the variational derivative with the gradient, as in eq. (27.27)

What this really means is not clear in general and a better answer to the existence question
for incremental translation can be had by considering the transformation of the action directly
around the stationary fields.

Without really any loss of generality we can consider an action with a four dimensional
spacetime volume element, and apply the incremental translation operator to this

f d*xa-VLAP + AP, 5,AP + 6,AP)
(27.28)

A IL— oL | —
= 4ya - B B xa-V|=—=AB+ ——= 9, AB|+---
fd xa-VLAP,3,A )+fd xa V(aAﬁA * S )+
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For the first term we have a - V f d*xL(AP,0,AP), but this integral is our stationary action.

The remainder, to first order in the field variables, can then be expanded and integrated by parts

L— AL | —
* xa” AB + B
f 4 xa 0y (aAﬂ P )
oL oL oL — L —
= 4 xat — |AB + - By —— B
fd xat ((aﬂaAﬁ) o (0,47) + (aﬂa(aaAﬁ))aaA + 0P (600 ))

oL oL oL oL —
- 4 H H = — B
fd x((a 0 6Aﬁ) ((9 aAﬁ)A +(6”8(8aAﬁ))a”A ((9 at 9. Aﬁ))a(,A )

(27.29)

Since a* are constants, this is zero, so there can be no contribution to the field equations by
the addition of the translation increment to the Lagrangian.

27.4.3  Noether current derivation

With the assumption that the Lagrangian translation induces a symmetry, we can proceed with
the calculation of the Noether current. This procedure for deriving the Noether current for an
incremental spacetime translation follows along similar lines as the scalar alteration considered
previously.

We start with the calculation of the first order alteration, expanding the derivatives. Let us
work with a multiple field Lagrangian £ = £(A#, ,AP) right from the start

a-VL=d"0,L
_ 0L 0A7 . 0L  0(0,AP) (27.30)
T \0AT dxt T H(D,AB)  OxH

Using the Euler-Lagrange field equations in the first term, and switching integration order in
the second this can be written as a single derivative

oL AP AL . 0AP

-VL=d"|0, —t ——— 0, —

a-vL “( 00, AP) x| 3(0.AP) axu)
_ g, (9L ¥
0BuAP) O

(27.31)
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In the scalar Noether current we were able to form an similar expression, but one that was a
first order derivative that could be set to zero, to fix the conservation relationship. Here there is
no such freedom, but we can sneakily subtract a - V.L from itself to calculate such a zero

8
9L ,ﬁi_a%) (27.32)

0=00|7=%—7
(a(aaAﬁ)“ O

Since this must hold for any vector a, we have the freedom to choose the simplest such vector,
a unit vector a = v, for which a* = 6. Our current and its zero divergence relationship then

becomes
oL
T = 0yAP = 6%, L
(D AP) (27.33)
0=09,T%,

This is not the symmetric energy momentum tensor that we want in the electrodynamics
context although it can be obtained from it by adding just the right zero.

27.4.4  Relating the canonical energy momentum tensor to the Lagrangian gradient

In [3] many tensor quantities are not written in index form, but instead using a vector notation.
In particular, the symmetric energy momentum tensor is expressed as
€0
T(a) = —EFaF (27.34)

where the usual tensor form following by taking dot products with y* and substituting a = ".
The conservation equation for the canonical energy momentum tensor of eq. (27.33) can be put
into a similar vector form

oL
T(a) = Yo———=(a- V)AP -
@ =7 6(80Aﬂ)(a el (27.35)

0=V-T(a)

The adjoint 7' of the tensor can be calculated from the definition

V-T@)=a -T(V) (27.36)
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Somewhat unintuitively, this is a function of the gradient. Playing around with factoring
out the displacement vector a from eq. (27.35) that the energy momentum adjoint essentially
provides an expansion of the gradient of the Lagrangian. To prepare, let us introduce some
helper notation

0L
I = yg st 27.37
With this our Noether current equation becomes
V-T(a) =(VI(a))
- VAP —
= (V(IIg(a- V)A¥ - aV L)) 27.38)

= <v (%Hﬁ(a(mﬁ) + (VAP )a) - a£)>

Cyclic permutation of the vector products {abc) = {cab) can be used in the scalar selection.
This is a little more tractable with some helper notation for the A? gradients, say ¥ = VAP,

Because of the operator nature of the gradient once the vector order is permuted we have to
allow for the gradient to act left or right or both, so arrows are used to disambiguate this where
appropriate.

V-T(a) = <V (%Hﬂavﬂ + Hﬁ\ﬁa) - V£a>
_ <(%w‘€nﬁ%wnﬁ\ﬁ) - w:) a> (27.39)

~a- (%<&§Hﬁ + VL) - VL)

This dotted with quantity is the adjoint of the canonical energy momentum tensor

7(V) = %<\ﬁ$nﬁ + V(HBVB)>1 -vL (27.40)

This can however, be expanded further. First tackling the bidirectional gradient vector term
we can utilize the property that the reverse of a vector leaves the vector unchanged. This gives
us

<\ﬁ§nﬂ>l - <vﬂ(€nﬁ)>l ; <(vﬂ€)nﬁ>l

_ <vﬁ(€nﬁ)>l ; <Hﬁ(€vﬁ)>l e
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In the remaining term, using the Hestenes overdot notation clarify the scope of the operator,
we have

T(V) = % ((F(VTI)), + (TIe(V#)), +((VTTpWF) +(VTIp#") ) - VL (27.42)

The grouping of the first and third terms above simplifies nicely

%(ﬁ(vn@) ot %((Vnﬁ)ﬁ) =V T + %(VB(V ATIg)), +((VATIgn#)  (2743)

Since a(b A ¢) + (b A c)a = 2a A b A ¢, which is purely a trivector, the vector grade selection
above is zero. This leaves the adjoint reduced to

_ 1 , ,
T(V) = AV -T1) + 3 ((Hﬁ(wﬁ))1 +(VTIp# >1) -VL (27.44)
For the remainder vector grade selection operators we have something that is of the following
form
1
E(abc + bac); = (a- b)c (27.45)

And we are finally able to put the adjoint into a form that has no remaining grade selection
operators

T(V) = (VAP)(V - Tlg) + (I - V)(VAP) -V L
= (VAP)(V - Tlp) + (VAPY(V - T1p) - VL (27.46)
= (VAP)(Y - Tlg) - VL

Recapping, we have for the tensor and its adjoint

0=V-T()=a-TV)
oL
Il = "YPEITN
A= e 5 (0,AP) (27.47)
T(a) = g(a-V)AP —aV L

T(V) = (VAP)(V - TIg) - V.L
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For the adjoint, since a - T(V) = 0 for all @, we must also have T(V) = 0, which means the
adjoint of the canonical energy momentum tensor really provides not much more than a recipe
for computing the Lagrangian gradient

VL = (VAHV - Tlp) (27.48)

Having seen the adjoint notation, it was natural to see what this was for a multiple scalar field
variable Lagrangian, even if it is not intrinsically useful. Observe that the identity eq. (27.48),
obtained so laboriously, is not more than syntactic sugar for the chain rule expansion of the
Lagrangian partials (plus application of the Euler-Lagrange field equations). We could obtain
this directly if desired much more easily than by factoring out a from V- T'(a) = 0.

oL oL
= —9 AP+ ——=
a8 N 50 am Ok

(o 9L\, . 0L ;
= (aam)a#A + maaa#A (2749)

_ 0L B
= ((awaAﬂ))a“A )

Summing over u for the gradient, this reproduces eq. (27.48), with much less work

0,L Do AP

VL =90,L

_ 0L 5
= 0a (( 20, Aﬁ))(VA )) (27.50)

= (I - V)(VAP)

Observe that the Euler-Lagrange field equations are implied in this relationship, so perhaps
it has some utility. Also note that while it is simpler to directly compute this, without having
started with the canonical energy momentum tensor, we would not know how the two of these
were related.

27.5 NOETHER CURRENT FOR INCREMENTAL LORENTZ TRANSFORMATION

Let us assume that we can use the exponential generator of rotations

e(i~x)~V =1 +(i-x)-V+--- (27.51)
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to alter a Lagrangian density.
In particular, that we can use the first order approximation of this Taylor series, applying the
incremental rotation operator (i - x) - V =i - (x A V) to transform the Lagrangian.

L—>L+(G(-x)-VL (27.52)

Suppose that we parametrize the rotation bivector i using two perpendicular unit vectors u,
and v. Here perpendicular is in the sense uv = —vu so that i = u A v = uv. For the bivector
expressed this way our incremental rotation operator takes the form

(- x)V=((uAv)-x)-V
= -x)—v(u-x)-V (27.53)
=w-x)u-V—(u-x)-V

The operator is reduced to a pair of torque-like scaled directional derivatives, and we have
already examined the Noether currents for the translations induced by the directional derivatives.
It is not unreasonable to take exactly the same approach to consider rotation symmetries as we
did for translation. We found for incremental translations

oL

a - V_L: = ('ia (—(’)(aaAﬁ)

(a- V)Aﬂ) (27.54)

So for incremental rotations the change to the Lagrangian is

oL oL
i) - =(y- = (u- Bl _ (4. = (v-VAP
i x)- VL= -x)0, ( 30.AP) u-V)A ) (u-x)0q (5(3aA ﬁ)(v V)A ) (27.55)
Since the choice to make u# and v both unit vectors and perpendicular has been made, there is
really no loss in generality to align these with a pair of the basis vectors, say u =y, and v = v,

The incremental rotation operator is reduced to

() V=007 V= 0y -V

(27.56)
= x,0, — x,0,

Similarly the change to the Lagrangian is

VL = 0L o 8| 0L
(i-x)-VL= xyaa(a(aaAﬁ)aﬂA ) X,04 (8(6QA5)6VA ) (27.57)
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Subtracting the two, essentially forming (i - x) - VL — (i - x) - VL = 0, we have

oL oL

— B _ s _ B _ s«

0= xyé(,(a(aaAﬁ)aﬂA 0 ,1£) xﬂaa(a(aaAﬁ)a,,A 0L (27.58)
We previously wrote
oL
@, = 0,AP — 5° 27.59
v 6(6(2Aﬁ) V- V‘L ( )
for the Noether current of spacetime translation, and with that our conservation equation
becomes

0= x0T — x,0,T%, (27.60)

As is, this does not really appear to say much, since we previously also found 9,7%, =
0. We appear to need a way to pull the x coordinates into the derivatives to come up with a
more interesting statement. A test expansion of V - (i - x) L to see what is left over compared to
(i- x)- VL shows that there is in fact no difference, and we actually have the identity

i XAVL=(G-x)- VL=V (i X)L (27.61)

This suggests that we can pull the x coordinates into the derivatives of eq. (27.60) as in

0 =20, (T%x,—T%x,) (27.62)

However, expanding this derivative shows that this is fact not the case. Instead we have

Oo (Tuxy =T xy) = T 100Xy — T,y
= Ta/ﬂ]av - Tavnay (27.63)
=dyu— T/JV

So instead of a Noether current, following the procedure used to calculate the spacetime
translation current, we have only a mediocre compromise

(04 — (o4 @
M.uV=T uXV—T VX#

« (27.64)
OaM®yy = Ty — Ty
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Jackson [8] ends up with a similar index upper expression

MPY = 7By _ TV, B (27.65)

and then uses a requirement for vanishing 4-divergence of this quantity

0 = d,MP" (27.66)
to symmetries this tensor by subtracting off all the antisymmetric portions. The differences

compared to Jackson with upper verses lower indices are minor for we can follow the same
arguments and arrive at the same sort of 0 — 0 = 0 result as we had in eq. (27.60)

0= x"0o T — 10, T (27.67)

The only difference is that our not-really-a-conservation equation becomes

O MY = T — TH (27.68)

27.5.1 An example of the symmetry

While not a proof that application of the incremental rotation operator is a symmetry, an example
at least provides some comfort that this is a reasonable thing to attempt. Again, let us consider
the Coulomb Lagrangian

L= %(V«ﬁ)z - lp¢ (27.69)
€0

For this we have

L' =L+(i-x)-VL
. 1 (27.70)
= L—(Z-X)-G—O (pVé + ¢Vp)
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If the variational derivative of the incremental rotation contribution is zero, then we have a
symmetry.

o .
%(I'X)~V.£

) 1 . 1
- (l~x)-6—OVp—zml(9m ((1~X)~ E—O,Oem) (27.71)

= (i-x)-in—V-((i-x)lp)
€ €0

As found in eq. (27.61), we have (i-x) - V = V- (i - x), so we have

%(i.x).vgzo (27.72)

for this specific Lagrangian as expected.

Note that the test expansion I used to state eq. (27.61) was done using only the bivector
i = Yy Nyy. An expansion with i = uPy, A ¥ shows that this is also the case in shows that
this is true more generally. Specifically, this expansion gives

V(i 0L =G %) VLA (Oop — pa)u VP L
=(G(-x)-VL

(since the metric tensor is symmetric).

Loosely speaking, the geometric reason for this is that V - f(x) takes its maximum (or mini-
mum) when f(x) is colinear with x and is zero when f(x) is perpendicular to x. The vector i - x
is a combined projection and 90 degree rotation in the plane of the bivector, and the divergence
is left with no colinear components to operate on.

While this commutation of the i - x with the divergence operator did not help with finding the
Noether current, it does at least show that we have a symmetry. Demonstrating the invariance for
the general Lagrangian (at least the single field variable case) likely follows the same procedure
as in this specific example above.

(27.73)

27.5.2 General existence of the rotational symmetry
The example above hints at a general method to demonstrate that the incremental Lorentz trans-

form produces a symmetry. It will be sufficient to consider the variation around the stationary
field variables for the change due to the action from the incremental rotation operator. That is

68 = f d*x(i- x)- VLAP + AP, 6,4 + 5,AP) (27.74)
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Performing a first order Taylor expansion of the Lagrangian around the stationary field vari-
ables we have

68 = f d*x(i - x) - Y0, LAP + AP, 3, AP + 3,AP)

oL - 0L -
= 4. Y =B B
fd x(@-x)-y 6,1( ,BA + @ ﬁ) (0, A ))

(27.75)
:fd4x(i-x)-y”
LNz, 9Ly 30, (5 L Vgany e 9L g 0
((aﬂ A ﬁ)A Y 0,A” + (6/1 8(6QA/5)) (0,A7) + a(aaAﬁ)a“(a"A )
Doing the integration by parts we have
- 0L 0L
- A AP (- = -9,==q-
oS = fd XAPyH ((l x)(a“(')Aﬂ) 5”(814/3(1 x)))
- 0L oL
+ f d4x((9wAﬁ)y”-((i-x) (a,l )—a ( (i-x)))
B H B
0(0,,AP) 0(0,,AP) (27.76)

- 0L oL
= AP (%) V= —V . (] x)—
_fd XA ((z X) V@Aﬁ V-G -x 8Aﬁ)

- oL oL
+ (0P| x)-V -V
(0 )((z 0V =V ’C)a(aam)
Since (i-x)-Vf = V- (i-x)f for any f, there is no change to the resulting field equations due
to this incremental rotation, so we have a symmetry for any Lagrangian that is first order in its
derivatives.



LORENTZ FORCE FROM LAGRANGIAN (NON-COVARIANT)

28.1 MOTIVATION

Jackson [8] gives the Lorentz force non-covariant Lagrangian

L=-m\1-w2/2 +Su-A—eo (28.1)

Cc

and leaves it as an exercise for the reader to verify that this produces the Lorentz force law.
Felt like trying this anew since I recall having trouble the first time I tried it (the covariant
derivation was easier).

28.2 GUTS

Jackson gives a tip to use the convective derivative (yet another name for the chain rule), and
using this in the Euler Lagrange equations we have

d d oL
VL= VL= (E +u- v) Taza (28.2)

where {07} is the spatial basis. The first order of business is calculating the gradient and
conjugate momenta. For the latter we have

0 1
0'0(% =0y, (—71102)/5(—2)5(“/02 + EA”)
=myu+ -A (28.3)
=p+ ‘A
C
Applying the convective derivative we have
d 0L dp e0A e
—0,— = —+--—+-u-VA 28.4
ar’ 9% " dr o e =54
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For the gradient we have

0L

Tom— = e(lfcbVAb - V¢) (28.5)
x4 c

Rearranging eq. (28.2) for this Lagrangian we have

16A 1 1
D _ o (vp- 12 1, gas Lowar (28.6)
dt cot ¢ c

The first two terms are the electric field

__yp- 104 (28.7)

So it remains to be shown that the remaining two equal (u/c) X B = (u/c) X (V X A). Using
the Hestenes notation using primes to denote what the gradient is operating on, we have

iP’VA? —u.-VA =V'u-A’—u-VA
=—u-(VAA)

= % (VAAu-u(VAA))

= % (VxAu-u(VxA)) (28.8)

= —I(uAB)
= —[I(uxB)

=uxB

I have used the Geometric Algebra identities I am familiar with to regroup things, but this
last bit can likely be done with index manipulation too. The exercise is complete, and we have
from the Lagrangian

1
d_p = e(E+ —uxB) (28.9)
dt c



SPHERICAL POLAR PENDULUM FOR ONE AND MULTIPLE
MASSES, AND MULTIVECTOR EULER-LAGRANGE FORMULATION

29.1 MOTIVATION

The planar multiple pendulum problem proved somewhat tractable in the Hamiltonian formu-
lation. Generalizing this to allow for three dimensional motion is a logical next step. Here this
is attempted, using a Geometric Algebra scalar plus bivector parametrization of the spherical
position of each dangling mass relative to the position of what it is attached to, as in

2= lese!” (29.1)

The exponential is essentially a unit quaternion, rotating the vector /e from the polar axis
to its 6, ¢ angle dependent position. Two sided rotation operators are avoided here by requiring
of the unit bivector j = e3 A m, where m is a vector in the plane of rotation passing through
the great circle from ez through z. Note that we are free to pick m = e;¢®®?, the unit vector
in the x,y plane at angle ¢ from the x-axis. When that is done j = e3m since these are per-
pendicular. Setting up the Lagrangian in terms of the bivector j instead of the scalar angle ¢
will be attempted, since this is expected to have some elegance and will be a fun way to try the
problem. This should also provide a concrete example of a multivector Lagrangian in a context
much simpler than electromagnetic fields or quantum mechanics.

Note finally that a number of simplifying assumptions will be made. These include use of
point masses, zero friction at the pivots and rigid nonspringy massless connecting rods between
the masses.

29.2 KINETIC ENERGY FOR THE SINGLE PENDULUM CASE

Let us compute derivatives of the unit vector

2 =eze’? = e/, (29.2)
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This can be done with both the left and right factorization of ez, and are respectively

0} (29.3)

. o dj
5= (— j9e‘fe—d—isin9) es

e
dt J sin 6

These derivatives have been grouped into a matrix factors that allow a natural seeming con-
jugate operation to be defined. That is for a matrix of multivector elements a;;

A=la] (29.5)

define a conjugate matrix, as the transpose of the reversed elements

Af = [g,ﬁ] (29.6)

With this definition, plus two helpers

O = [9}
Jj (29.7)

R = [jeja sin 9]

Our velocity becomes

i = O'R'RO (29.8)

Explicitly, expanding the inner matrix product we can write

0= R'R
1 —je?sin 6
=| ., (29.9)
jel?sin@ sin” @

P =000



29.3 TWO AND MULTI PARTICLE CASE

This is a slightly unholy mix of geometric and matrix algebra, but it works to compactly
express the velocity dependence. Observe that this inner matrix Q = Q, so it is Hermitian with
this definition of conjugation.

Our Lagrangian for the one particle pendulum, measuring potential energy from the horizon-
tal, is then

L= @szle@) — mglcos 6 (29.10)

We also have a mechanism that should generalize fairly easily to the two or many pendulum
cases too.

Before continuing, it should be noted that there were assumptions made in this energy ex-
pression derivation that are not reflected in the Lagrangian above. One of these was the unit
bivector assumption for j, as well as a e3 containment assumption for the plane this represents
(e3 A j = 0). So for completeness we should probably add to the Lagrangian above some La-
grange multiplier enforced constraints

AP+ D+a-(e3A)) (29.11)

Here @ has got to be a trivector multiplier for the Lagrangian to be a scalar. Can we get away
with omitting these constraints?

29.3 TWO AND MULTI PARTICLE CASE

Having constructed a way that can express the velocity of a single spherical pendulum in a tidy
way, we can move on to consider the multiple pendulum case as shown in fig. 29.1

There are two bivectors depicted, j; and j, representing oriented planes passing through great
circles from a local polar axis (in direction e3). Let the positions of the respective masses be z;
and zp, where each mass is connected by a rigid massless rod of length /; and /, respectively.
The masses are rotated by angles 6; and 6, in the planes j; and j, from an initial direction of
e3. We can express the position of the second mass as

7 = 7| + e3el?” (29.12)

271



272 SPHERICAL POLAR PENDULUM FOR ONE AND MULTIPLE MASSES, AND MULTIVECTOR EULER-LAGRANGE FORMULATION

Figure 29.1: Double spherical pendulum

We can use the same factorization as previously used for the single mass case and write for
our collection of angular velocities

01

o=/ (29.13)
6>

J2

Using this the total Kinetic energy is

S
K=0 -00
2Q

Ry = [lljlejlgl lysin6; O 0] (29.14)
Ry = [l]j] ej191 [; sin 04 lzjzejzez b Sinez]

Q =mR, "Ry + myRy 'R,

Notation has been switched slightly from the single mass case, and the m/> factor is now
incorporated directly into Q for convenience.



29.3 TWO AND MULTI PARTICLE CASE

An expansion of Q is essentially one of block matrix multiplication (where we already have

to be careful with order of operations as we do for the geometric product elements themselves).

We have something like

Ri=[A, 0]

(29.15)

We have for the products

AiTA; 0O
0 0

R,'R, =

(29.16)

So our quadratic form matrix is

ArfA ATA
Qz{(m1+m2) 1A maA"A (29.17)

myAr A myA, Ay

In general for the multiple particle case this is

0= [(Zszmax(r,C) mk)A’TA“]

A =1 [jkejkgk sin Qk]

re (29.18)

Expanded explicitly this is

_jre_jrerjcejcgc _jre_jrer sin QC” (29.19)

0= {(Zszmax(r,c) mk) Irle [ . 2

Jee’<%e sin 6, sin 6, sin 6,

Observe that the order of products in this expansion is specifically ordered, since the j. and
Jr bivectors do not necessarily commute.
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The potential in the multiple particle case is also fairly straightforward to compute. Consider
the two particle case to illustrate the pattern. Using the lowest point as the potential reference
we have

¢ = gz mih; = myri(1 +cos0;) + my (ri(1+cos ) + ra(1 +cos 6,)) (29.20)

Alternately, dropping all the constant terms (using the horizon as the potential reference) we
have for the general case

b=2) {i mk] ri cos 6; (29.21)
k

i \k=i
Lets collect all the bits and pieces now for the multiple pendulum Lagrangian now, repeating

for coherency, and introducing a tiny bit more notation (mass sums and block angular velocity
matrices) for convenience

L=K-¢+) 4G+
k

0, = 9}
Ji
0-|o,,
N
B = kz Mk (29.22)
=i
— 're_.jrer / e.jcgc — 're_jrgr Sin@
0= ,umax(r,c)lrlc J ” .{C J. . ¢
Jeel<% sin 6, sin @, sin .. e
1. .
K= 5@TQ@)

N
¢ =g ) piricosb;

i=1
29.4 BUILDING UP TO THE MULTIVECTOR EULER-LAGRANGE EQUATIONS
Rather than diving right into any abstract math, lets consider a few specific examples of mul-

tivector Lagrangians to develop some comfort with non-scalar Lagrangian functions. The gen-
eralized “coordinates” in the Lagrangian for the spherical pendulum problem being considered



29.4 BUILDING UP TO THE MULTIVECTOR EULER-LAGRANGE EQUATIONS

include include bivectors, and we do not know how to evaluate the Euler Lagrange equations
for anything but scalar generalized coordinates.

The goal is to develop Euler-Lagrange equations that can handle a Lagrangian for these more
general functions, but until we figure out how to do that, we can at least tackle the problem
using variation of the action around a stationary solution.

29.4.1 A first example to build intuition

To help understand what we have to do, lets consider the very simplest bivector parametrized
Lagrangian, that of a spherical pendulum constrained (perhaps by a track or a surface) of moving
only in a ring. This is shown pictorially in fig. 29.2

Figure 29.2: Circularly constrained spherical pendulum

The potential energy is fixed on this surface, so our Lagrangian is purely kinetic

1
L= —Eml2 sin® 62 (29.23)

We would like to directly vary the action for the Lagrangian around a stationary solution

S = f Ldt (29.24)
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Introducing a bivector variation j = j + €, and writing I = mi? sin® 6, we have

_ 1 _
S+6S = —Elf(j’+e')2dt

1 ) 1 ) 4 1 "2
=—§If(j)dt—51f(je +EJ)dt—§1f(e)dt

The first term is just S. Setting the variation 6§ = 0 (neglecting the quadratic € term) and
integrating by parts we have

(29.25)

—fdt o A P

- a\2 [ T a2t (29.26)
d -

=f(EI])~edt

With e arbitrary it appears that the solutions of the variation problem are given by

d

dt

Has anything been lost by requiring that this is zero identically when all we had originally was

the dot product of this with the variation bivector was zero? If this zero describes the solution

set, then we should be able to integrate this, yielding a constant. However, following this to its

logical conclusion leads to inconsistency. Integrating eq. (29.27), producing a bivector constant
k we have

(1) =0 (29.27)

Ij =« (29.28)

The original constraint on j was the bivector spanning the plane from the polar axis to the
azimuthal unit vector in the x, y plane at angle a ¢. The ¢ dependence was not specified, and left
encoded in the bivector representation. Without words that was

j = esejet2? (29.29)

Inserting back into eq. (29.28) this gives

ieelzlﬁ — €163«

29.30
dt 1 ( )
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One more integration is trivially possible yielding

12000 — o 4 %3” (29.31)

There are two possibilities for the grades of «, one is k oc ezey, so that the time dependence is
a scalar, and the other is x o e3e; so that we have an x, y plane bivector component. Allowing
for both, and separating into real and imaginary parts we have

COS ¢ — CcoS Py = =Kt

1

1
sin ¢ — sin ¢pg = 7Kl'l

This is not anything close to the solution that is expected if we were to start with the scalar
Lagrangian for the same problem. That Lagrangian is

(29.32)

L= %Iq}z (29.33)

and the Euler Lagrange equations give us, for a scalar constant u

14 =pu (29.34)

So the solution for ¢ is just

¢—¢o = %t (29.35)

In the absence of friction this makes sense. Our angle increases monotonically, and we have
circular motion with constant angular velocity. Compare this to the messier eq. (29.32) derived
from the bivector “solution” to the variational problem. There is definitely something wrong
with the variational approach (or conclusion) when the variable is a bivector.

Does it help to include the constraints explicitly? The bivector parametrized Lagrangian with
the unit bivector multiplier constraint for this system is

1
L= —El(j’)z + A2+ 1) (29.36)
Doing the variation we get a set of two equations

~1j" =24

P (29.37)
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Once again re-inserting j = e3;¢%>% one gets

¢ = Asin(~\[1/211) + B cos(AJT/211) (29.38)

Setting A =1, A =i, B=1, we have

¢ ot (29.39)

This is now consistent with the scalar Lagrangian treatment. In both cases we have the an-
gle linearly proportional to time, and have a single parameter to adjust the angular velocity
(used u in the scalar treatment above and have A this time (although it was set to one here for
convenience). The conclusion has to be that the requirement to include the multipliers for the
constraints is absolutely necessary to get the right physics out of this bivector parametrized La-
grangian. The good news is that we can get the right physics out of a non-scalar treatment. What
is a bit disturbing is that it was fairly difficult in the end to get from the results of the variation
to a solution, and that this will not likely get any easier with a more complex system.

29.4.2 A second example

The scalar expansion eq. (29.80) of the kinetic term in our spherical polar Lagrangian shows a
couple of other specific multivector functions we can consider the variation of.

We have considered an specific example of a Lagrangian function £ = f(j’ - j*) without (yet)
utilizing or deriving a multivector form of the Euler-Lagrange equations. Let us consider a few
more specific simple examples motivated by the expansion of the kinetic energy in eq. (29.80).
Lets start with

L=0a- ] (29.40)

where a is a bivector constant, 6 a scalar, and j a bivector variable for the system. Expanding
this around stationary points j = j+ €, and 6§ = 6 + ¢ we have to first order

f&.[dt ~ f((p'a-}" +é’a-e')dt

(29.41)
d '-/ d n
= f((ﬁa(—a -] ) + E(—H Cl) . E)d[



29.4 BUILDING UP TO THE MULTIVECTOR EULER-LAGRANGE EQUATIONS

In this simple system where both scalar variable 8 and bivector variable j are cyclic “coordi-
nates”, we have solutions to the variational problem given by the pair of equations

—a - j’ = constant
' (29.42)
—60'a = constant
As to what, if anything, this particular Lagrangian (a fragment picked out of a real Kinetic
energy function) represents physically that does not matter so much, since the point of this
example was to build up to treating the more general case where we are representing something
physical.

29.4.3 A third example

If we throw a small additional wrench into the problem above and allow a to be one of the
variables our system is dependent on.

LO,0,a,d,j,j)=0a-] (29.43)

It is less obvious how to do a first order Taylor expansion of this Lagrangian required for the
variation around the stationary solution. If all the coordinates in the Lagrangian were scalars as
in

L0,6,a,d,j,j)=0aj (29.44)

(dropping dot products now that these are all scalar variables), then the variation requires
nothing abnormal. Suppose our stationary point has coordinates 6, a, j, with variations «, 8,y
that vanish at the extremes of the integral as usual.

With scalar variables our path is clear, and we just form

6S:f6£

—f a/%+o/%+ﬂ%+,8’a£+ %+ 0L
- 00 "o Pad TP Ve T by

Here is it implied that all the partials are evaluated at the stationary points 6, a, j. Doing the
integration by parts we have

0oL doL oL doL oL doL
08 = f (“(%‘m)”(%‘d‘raaf)”(a—fd—ta—f)) (29.40)

(29.45)

279



280 SPHERICAL POLAR PENDULUM FOR ONE AND MULTIPLE MASSES, AND MULTIVECTOR EULER-LAGRANGE FORMULATION

Setting 65 = 0 this produces the Euler-Lagrange equations for the system. For our specific
Lagrangian this procedure gives

f&[ fa/aj +0B) +6ay
faj(_ )+9B] +i( Ga)y

Each time we do the first order expansion we are varying just one of the coordinates. It seems
likely that the correct answer for the multivariable case will be

(29.47)

f&L fa— —a-j)+p- (9’,)+—(— a)-y (29.48)

Thus the variational problem produces solutions (the coupled equations we still have to solve)
of

—a - j = constant
g7 =0 (29.49)

—8'a = constant

29.5 MULTIVECTOR EULER-LAGRANGE EQUATIONS
29.5.1 Derivation

Having considered a few specific Lagrangians dependent on multivector generalized “coordi-
nates”, some basic comfort that it is at least possible has been gained. Let us now move on to
the general case. It is sufficient to consider Lagrangian functions that only depend on blades,
since we can write any more general multivector as a sum of such blades

Write

L=L(X. X}) (29.50)

where X; € A™ is a blade of grade m;. We can do a regular old chain rule expansion of this
Lagrangian if coordinates are (temporarily) introduced for each of the blades X;. For example,
if X is a bivector in R3, we can write

X = epa'? +ep3al® + exza® (29.51)



29.5 MULTIVECTOR EULER-LAGRANGE EQUATIONS

and then we can do a first order Taylor series expansion of £(X + €) in terms of these co-

ordinates. With € = ejp€e'? + e13€'® + ex3€%3, for this specific single variable Lagrangian we
have

SL=LX+e - LX)

~ €l? 0L 23 0L K 0L (29.52)
If we write the coordinate expansion of our blades X; as
X = > xoy, (29.53)

by
where by, is some set of indices like {12, 23, 13} from the IR? bivector example, then our chain

rule expansion of the Lagrangian to first order about a stationary point becomes

oL
+ > (&™) ——
XX, ; © 7 Baby

(29.54)

Xi.X;,

oL

oL = Z &
axkbk

by

Trying to write this beastie down with abstract indexing variables is a bit ugly. There is
something to be said for not trying to be general since writing this for the single variable bivec-
tor example was much clearer. However, having written down the ugly beastie, it can now be
cleaned up nicely by introducing position and velocity gradient operators for each of the grades

b0
(')xk”k

0
Vy = o —"—
7T Aty

VXkEO'

(29.55)

Utilizing this (assumed) orthonormal basis pair o’* - Op; = 5k j we have

6S:f6.£

= fzk: € - VXk£|)?k,)?,’( t € VX2‘£|5(,0§L (29.56)

d
= fz (R (VXk'£|Xk,X,'( - E Vx]’{L Xk,X;()
k
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Setting 6§ = 0 we have a set of equations for each of the blade variables, and the Euler-
Lagrange equations take the form

d
Vi L=V L (29.57)

29.5.2  Work some examples

For the pendulum problem we are really only interested in applying eq. (29.57) for scalar and
bivector variables. Let us revisit some of the example Lagrangians, functions of bivectors, al-
ready considered and see how we can evaluate the position and velocity gradients. This gener-
alized Euler-Lagrange formulation does not do much good if we can not work with it.

Let us take the bivector gradient of a couple bivector functions (all the ones considered pre-
viously leading up to the multivector Euler-Lagrange equations).

f(By=A-B

29.
o(B) = B (29.58)

It is actually sufficient (in a less than 4D space) to consider only the first,

Vaf = Vp(AB)

— Z O'Gb%<Aba,b,0'afb/>

- Z TPAT ) (29.59)

a<b

= Z Ao

a<b

=A

a<b

For g we then have

VBg = VBBB
= V(BB) (29.60)
=2B



29.6 EVALUATING THE PENDULUM EULER-LAGRANGE EQUATIONS (SCALAR, BIVECTOR PARAMETRIZED KE)

This is now enough to evaluate our bivector parametrized Lagrangian from the first example,
eq. (29.36), reproducing the result obtained by direct variation (as in Feynman’s lectures)

d
_Ij// —
=24j

(29.61)

By inspection we can see that this works for the remaining two motivational examples too.
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KE)

We now have the tools to evaluate the Euler-Lagrange equations for the pendulum problem
eq. (29.22). Since all the d6,/dt and dj,/dt dependence is in the kinetic energy we can start
with that. For

K = %@*Q@ (29.62)

9K

We want each of 5% and V; K. Of these the 6 derivative is easier, so lets start with that

. T o
oK 1(007) . 1. (96
oK _1[90 lofo(?® 29.63
s 2[@@ ]Q®+2® Q(aéu) (269

Each of these are scalars and thus equal their Hermitian conjugate. This leaves us with just
one term doubled

oK .+ (0O
—_-0'0(= 29.64
06, Q (aea) ( )

A final evaluation of the derivatives, in block matrix form over rows r, gives us

0K e 1
6—% =0 Q[(Sar [OH (29.65)

For the bivector velocity gradients, we can do the same,

VK= 5 (VJLGT) 00 + EGTQ(GVA) (29.66)
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Only the j/ parts of @ contribute to the velocity gradients, so we need to know how to
evaluate a bivector gradient (as opposed to the square which was done earlier). Expanding in
coordinates

.1 » 01 ab
Vii = 2 Z o d jab b} Z; Tap']
ab a'b
1
=3 Z oo (29.67)
ab
=3

(three here because we are in R?, and our bivectors have three independent coordinates).

Vik = 3o -1]] 00+ §®*Q[6ar l(l)” (29.68)

These terms are both one-by-one bivector matrices, and negate with Hermitian conjugation,
so we can again double up and eliminate one of the two terms, producing

N
VK =30 Q[éar

(1)” (29.69)

Completing the Euler-Lagrange equation evaluation we have for the 6, coordinates

4 orols [1]] ]2 Lo 92¢ _ 2
o] |- 1020 2

plus one equation for each of the bivectors j,

d| .+ 0 1 ~7 00 . .
3d—t[® Q[&,H] ]_ 3D ere.® 57 7O+ 2o (29.71)

e<f a

Because the bivector ese, does not (necessarily) commute with bivectors ji, that are part of
O there does not look like there is much hope of assembling the left hand j, gradients into a
nice non-coordinate form. Additionally, looking back at this approach, and the troubles with
producing meaningful equations of motion even in the constrained single pendulum case, it
appears that a bivector parametrization of the kinetic energy is generally not a good approach.
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This is an unfortunate conclusion after going through all the effort to develop intuition that led
to the multivector Euler-Lagrange formulation for this problem.

Oh well.

The Hermitian formulation used here should still provide a nice compact way of expressing
the kinetic energy, even if we work with plain old scalar spherical polar angles 8, and ¢. Will
try this another day, since adding that to these notes will only make them that much more
intractable.

29.7 APPENDIX CALCULATION. A VERIFICATION THAT THE KINETIC MATRIX PRODUCT IS A
REAL SCALAR

In the kinetic term of the rather scary looking Lagrangian of eq. (29.22) we have what should
be a real scalar, but it is not obvious that this is the case. As a validation that nothing very bad
went wrong, it seems worthwhile to do a check that this is in fact the case, expanding this out
explicitly in gory detail.

One way to try this expansion is utilizing a block matrix summing over the diagonal and
paired skew terms separately. That is

24 Jjrel¥% sin 6y, sin® 6,
1
3 Zﬂblalb
a<b
@;_ _jae_jagajbejbgb _jae_jaga Sin Qb @ N @.-'L _jbe_jbgbjaejaga _jbe_jbgb SlIl Ha @
. b b )
Jjpelr% sin 6, sin 8, sin G, Jjaela% sin 6y, sin 8y, sin 6, ¢
(29.72)

Examining the diagonal matrix products and expanding one of these (dropping the k suffix
for tidiness), we have

N2 . .
. dj\ dj d
' ‘@ - Gz—sinze(d—;) —Qsinecose(j—] —]j) (29.73)

jel?sin@ sin® 6 dr dt

. 1 —je /% sin@
o [ j

Since we are working in 3D this symmetric sum is twice the dot product of the bivector j
with its derivative, which means that it is a scalar. We expect this to be zero though, and can

observe that this is the case since j was by definition a unit bivector

. . .2 _
4j di._di _dh (29.74)

Tac T ad T e T T
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(thus j and its derivative represent orthogonal oriented planes rather like £ and its derivative
are orthogonal on a circle or sphere). The implication is that the diagonal subset of the kinetic
energy expansion contains just

N 2 . \2
1 Aoy . d ji
= L= | —sin® 6 (== 29.75
zkzz;ﬂkk((dt) sin k(dt)] ( )
If we are going to have any complex interaction terms then they will have to come from the
off diagonal products. Expanding the first of these

@T _jue_jagajbejhgb _jue_j“B" sin 6, o
. b
‘1 jpei® sing, sin @, sin 6,
R e |
“ jpel?% sin 6, sinf, sin6, || j), (29.76)
s
“ Jjpe® sin 6,0, + sin 0, sin 6 j,

= —jae % jLeh% G0, — j.e % sin 6,8, 1, — jl,jpe’?® sin 6,8, — sin @, sin By ., j,

Adding to this the a <> b exchanged product and rearranging yields

~6,0,(jae™ % jpe® + jpe= % juele%) — sin 6, sin O, Ji, + ) 2077,
. P v iaba . . —0 0 ) :
—sin 0,0, (jae " j, + jp, jae?™) — sin 6,6, (jre ™ ji, + ji jpe’*™)
Each of these multivector sums within the brackets is of the form A + A, a multivector plus
its reverse. There can therefore be no bivector or trivector terms since they negate on reversal,
and the resulting sum can have only scalar and vector grades. Of these the second term, j ji +
Jpda = 2Jq - J, s it is unarguably a scalar as expected, but additional arguments are required to
show this of the other three terms. Of these remaining three, the last two have the same form.
Examining the first of these two

Joe % j+ jljve™™ = (jp cos O + sin 0y) j,, + ji,(ji COS Oy — sin 6)
= oS O], + Joib) (29.78)
=2¢080p(jp - Ji)
The first term actually expands in a similarly straightforward way. The vector terms all cancel,
and one is left with just

b0 _

Jae % jueitt 4 g e™b0 j glaba = 2 cos 6, cos B, - jp —2sinb, sin b (29.79)
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Writing S g, = sin 6 and Cg, = cos 6 (for compactness to fit things all in since the expanded
result is messy), all of this KE terms can be assembled into the following explicit scalar expan-
sion

K =330, mdi® (02 - (Sq.ip)?)
= 2ia<b Mblalp
(%%(Ceaceb(ja “Jo) —Sa,56,) +S6,56,(s " Jp) +S6,Co, 0, - jo) +S6,Co,0,(ja j;))
(29.80)

Noting that all the bivector, bivector dot products are scalars really completes the desired
verification. We can however, be more explicit using j, = e3e®?%e, which gives after a bit of
manipulation

Ja* Jb = —cos(¢q — dp)
(o)* = —(¢)?

Ja+ 7y = &) sin(@a — ¢p)
Ja+Jy = ~Gudy, cOS(ba — $1)

(29.81)

These can then be inserted back into eq. (29.80) in a straightforward fashion, but it is not any
more illuminating to do so.
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SPHERICAL POLAR PENDULUM FOR ONE AND MULTIPLE
MASSES (TAKE II)

30.1 MOTIVATION

Attempting the multiple spherical pendulum problem with a bivector parametrized Lagrangian
has just been attempted 29, but did not turn out to be an effective approach. Here a variation
is used, employing regular plain old scalar spherical angle parametrized Kinetic energy, but
still employing Geometric Algebra to express the Hermitian quadratic form associated with this

energy term.
The same set of simplifying assumptions will be made. These are point masses, zero friction
at the pivots and rigid nonspringy massless connecting rods between the masses.

30.2 THE LAGRANGIAN

A two particle spherical pendulum is depicted in fig. 30.1

h, -'—,el(“' “’50">

Figure 30.1: Double spherical pendulum
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290 SPHERICAL POLAR PENDULUM FOR ONE AND MULTIPLE MASSES (TAKE II)

The position vector for each particle can be expressed relative to the mass it is connected to
(or the origin for the first particle), as in

k-1 + €3 lkejkgk

e3 A (e1e) (30.1)

<k

Jk

~.
Il

e Ner

To express the Kinetic energy for any of the masses iy, we need the derivative of the incre-
mental difference in position

d ; . dj
E (e3ejk9") =e3 (jkekejkgk + % sin Gk)
=e3 (jkgkejke" + e3e2¢kei¢" sin Qk) (30.2)

B (d [9 ’ ]) e 'k eikOk
dt g g 62€i¢" sin Hk

Introducing a Hermitian conjugation A" = AT, reversing and transposing the matrix, and

writing

Ay = e1€i¢kejk9k

ege"”" sin Qk
(30.3)

6

Or=|"
P

We can now write the relative velocity differential as
(G- 2e1) = LOAATO; (30.4)

Observe that the inner product is Hermitian under this definition since (AkA}:)Jr = AkAz. !

1 Realized later, and being too lazy to adjust everything in these notes, the use of reversion here is not necessary. Since
the generalized coordinates are scalars we could use transposition instead of Hermitian conjugation. All the matrix
elements are vectors so reversal does not change anything.



30.2 THE LAGRANGIAN

The total (squared) velocity of the kth particle is then
>®1

0,
[On

LA (30.5)

A

kA
[ 0|
)’ = 6'BB[O

(where the zero matrix in By is a N — k by one zero). Summing over all masses and adding in
the potential energy we have for the Lagrangian of the system

N
1
=3 kZ m.©® BB/ ©
N
Mk = m;
; (30.6)
N
D= gzuklk COos Hk
k=1
L=K-O

There is a few layers of equations involved and we still have an unholy mess of matrix and
geometric algebra in the kernel of the kinetic energy quadratic form, but at least this time all the
generalized coordinates of the system are scalars.
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30.3 SOME TIDY UP

Before continuing with evaluation of the Euler-Lagrange equations it is helpful to make a couple
of observations about the structure of the matrix products that make up our velocity quadratic
forms

[ 2aAT  nbAAl L LRAA]
LhAAT  BAAL L. bIAA] 0
0'BB6O=6 : e (30.7)
KOAAT LbAAL ... RAA
0 0

Specifically, consider the AaAZ products that make up the elements of the matrices Oy =
BkBZ. Without knowing anything about the grades that make up the elements of Q, since it is
Hermitian (by this definition of Hermitian) there can be no elements of grade order two or three
in the final matrix. This is because reversion of such grades inverts the sign, and the matrix
elements in Qy all equal their reverse. Additionally, the elements of the multivector column
matrices A are vectors, so in the product AaAZ we can only have scalar and bivector (grade two)
elements. The resulting one by one scalar matrix is a sum over all the mixed angular velocities
0.0y, G.dp, and d.pp, so once this summation is complete any bivector grades of AQAZ must
cancel out. This is consistent with the expectation that we have a one by one scalar matrix result
out of this in the end (i.e. a number). The end result is a freedom to exploit the convenience
of explicitly using a scalar selection operator that filters out any vector, bivector, and trivector
grades in the products AaAZ. We will get the same result if we write

[ 2(aA])  nh(AA]) ... Li(AA])
| bi(AAT)  B(AAL) ... Li(AA])
O BB 6O=06 : 0 (30.8)
kh(AAD)  Uh(AAL) .. B(AA])
0 0,

Pulling in the summation over m; we have

Z m® BB[© = @T[umax(,,c)lrlc<ArAZ>] ¢} (30.9)
X F

(4



30.3 SOME TIDY UP

It appears justifiable to label the pimax-c)lrlc factors of the angular velocity matrices as mo-
ments of inertia in a generalized sense. Using this block matrix form, and scalar selection, we
can now write the Lagrangian in a slightly tidier form

N
Hie = Z m;
Jj=k
Q= [/Jmax(r,c)lrchrAI]rc
K = %@TQQ - %®T<Q>® (30.10)

N
D= 8 Z/,lklk COos 9k
k=1

L=K-

After some expansion, writing S¢ = sinf, C4 = cos ¢ and so forth, one can find that the scalar
parts of the block matrices A,AZ contained in Q are

<ArAI> — C¢l‘_¢VC6rC0L‘ + SQ"SQL _S ¢L‘_¢VC6I”SHC (301 1)
S ¢C_¢r CBL‘S 0y C¢C_¢rS erS Oc
The diagonal blocks are particularly simple and have no ¢ dependence
1
(A.A]) = 0 (30.12)
0 sin6,
.;< T -i- .
Observe also that <A,Ac> = <ACA,>, so the scalar matrix
(0) = [tmascrohle{A,AT) | (30.13)
rc

is a real symmetric matrix. We have the option of using this explicit scalar expansion if de-
sired for further computations associated with this problem. That completely eliminates the
Geometric algebra from the problem, and is probably a logical way to formulate things for nu-
merical work since one can then exploit any pre existing matrix algebra system without having
to create one that understands non-commuting variables and vector products.
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30.4 EVALUATING THE EULER-LAGRANGE EQUATIONS

For the acceleration terms of the Euler-Lagrange equations our computation reduces nicely to a
function of only (Q)

doL 1d(e®", . 1 90
1 o6, 55(6@ (@0+0 <Q>6_9a) (30.14)
d .
= 2o ]| «@0)
and
d oL 00" 1 00
e 0+6 :
dt ¢, 2dt(6¢a 00+ <Q>8¢a] (30.15)

= = ([oclo 1]] @0)

The last groupings above made use of (Q) = (Q)T, and in particular ((Q) + (Q)T)/2 ={(0).
We can now form a column matrix putting all the angular velocity gradient in a tidy block matrix

representation
oL
.= || % — :
VoL = s =(0)0 (30.16)
(')(.ﬁr r

A small aside on Hamiltonian form. This velocity gradient is also the conjugate momentum
of the Hamiltonian, so if we wish to express the Hamiltonian in terms of conjugate momenta,
we require invertability of (Q) at the point in time that we evaluate things. Writing

Po =VoL (30.17)

and noting that ((Q)_1 )y = (Q)‘l, we get for the kinetic energy portion of the Hamiltonian

K = %P®T<Q>-1P@ (30.18)

Now, the invertability of (Q) cannot be taken for granted. Even in the single particle case we
do not have invertability. For the single particle case we have

0 sin%@

<Q>=ml2{1 0 } (30.19)



30.4 EVALUATING THE EULER-LAGRANGE EQUATIONS

so at 8 = +m/2 this quadratic form is singular, and the planar angular momentum becomes a
constant of motion.

Returning to the evaluation of the Euler-Lagrange equations, the problem is now reduced to
calculating the right hand side of the following system

8£

(<Q>®) o (30.20)

¢,

With back substitution of eq. (30.11), and eq. (30.13) we have a complete non-multivector ex-
pansion of the left hand side. For the right hand side taking the 6, and ¢, derivatives respectively
we get

0 1. )
% = 50 lmceolrle( AL+ 4. 55)| @ gualasin, (30.21)
0L 1. AL AT | A OAc :
5. = 30 ot Geal+4.5")] © (30.22)

So to proceed we must consider the <A,AZ> partials. A bit of thought shows that the matrices
of partials above are mostly zeros. Illustrating by example, consider d{Q) /36, which in block
matrix form is

HQ)
00,
[0 %y21112<A1%T> 0 0
2/121211<8A2A;> 2M21212<A28A2 Z@jAT> %M3lzl3<%222AT> %,UNZZZN<%322AT>
- 0 bushsbo(As 2) 0 0
zﬂNlN12<AN0A2 > 0
(30.23_)

Observe that the diagonal term has a scalar plus its reverse, so we can drop the one half factor
and one of the summands for a total contribution to £/d6, of just

. 0A> =\ .
u2122@§<8722A;>®2 (30.24)
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Now consider one of the pairs of off diagonal terms. Adding these we contributions to 0.£/06,
of

0A, 1 0A
—ﬂzlllz®l<A1 a >®2 + ﬂ21211®2< 2AT>®

0A,T 04,7\ .
u21112®1<A1 2 A 2>®2

(30.25)
00, 06

~2

0A
_u21112®1<A18 2 >®2

This has exactly the same form as the diagonal term, so summing over all terms we get for
the position gradient components of the Euler-Lagrange equation just

0L 1) 0ALT\ . :

e Zumax(k,a)lklaGk <Ak 50 >®a — 8lalg SInb, (30.26)
a k a

0L dA,

i D Hmaxtka lla©y <Ak 3 >®a (30.27)
a k a

The only thing that remains to do is evaluate the <Akc')Aa / 6¢a4'> matrices.
It should be possible but it is tedious to calculate the block matrix derivative terms from the
A, partials using

0Aa _ | —esel (30.28)
890 _e28i¢acea o
0As _ | e2e™Co, (30.29)
9¢a |—eje%Sy, )

However multiplying this out and reducing is a bit tedious and would be a better job for a
symbolic algebra package. With eq. (30.11) available to use, one gets easily

<Ak‘9AaT> _|7Coi-6:CoS 6, + Sa.Co, =S p,-0,CaCo,
00,

-5 ¢a—¢k59a59k C¢a—¢kS Ok Cﬁa

(30.30)




30.5 HAMILTONIAN FORM AND LINEARIZATION

<Ak‘9AaT> _|=Ss-0:Ca.Co, —Co,-6,CaSa, (3031)
0. Cs.-6:.Co.S0.  —Sg,~0SaSa,
The right hand side of the Euler-Lagrange equations now becomes
. T 1‘ .
.umax(k,r)lklr@k <Ak?9_13: >®r . 1
VoL = ) g\ — g|luyly sin 6, (30.32)
T || Hmaxe,n il -Oy <Aka7; >®, 0f]
,

Can the ©, matrices be factored out, perhaps allowing for expression as a function of @?
How to do that if it is possible is not obvious. The driving reason to do so would be to put things
into a tidy form where things are a function of the system angular velocity vector @, but this is
not possible anyways since the gradient is non-linear.

30.5 HAMILTONIAN FORM AND LINEARIZATION

Having calculated the Hamiltonian equations for the multiple mass planar pendulum in 34 ,
doing so for the spherical pendulum can now be done by inspection. With the introduction
of a phase space vector for the system using the conjugate momenta (for angles where these
conjugate momenta are non-singular)

z=|F® (30.33)
0
we can write the Hamiltonian equations
d \%
dz _| Vel (30.34)
U (O

The position gradient is given explicitly in eq. (30.32), and that can be substituted here. That
gradient is expressed in terms of @; and not the conjugate momenta, but the mapping required
to express the whole system in terms of the conjugate momenta is simple enough

O = |51c1| (@' Po (30.35)
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It is apparent that for any sort of numerical treatment use of a angular momentum and angular
position phase space vector is not prudent. If the aim is nothing more than working with a first
order system instead of second order, then we are probably better off with an angular velocity
plus angular position phase space system.

VoL
(¢}

(30.36)

d (00
dt| @

This eliminates the requirement for inverting the sometimes singular matrix (Q), but one is
still left with something that is perhaps tricky to work with since we have the possibility of
zeros on the left hand side. The resulting equation is of the form

Mx = f(x) (30.37)

where M = [<g> (1)] is a possibly singular matrix, and f is a non-linear function of the compo-
nents of ®, and ®. This is conceivably linearizable in the neighborhood of a particular phase
space point Xg. If that is done, resulting in an equation of the form

My’ = f(x¢) + By (30.38)

where X = y + Xg and B is an appropriate matrix of partials (the specifics of which do not
really have to be spelled out here). Because of the possible singularities of M the exponentiation
techniques applied to the linearized planar pendulum may not be possible with such a lineariza-
tion. Study of this less well formed system of LDEs probably has interesting aspects, but is also
likely best tackled independently of the specifics of the spherical pendulum problem.

30.5.1 Thoughts about the Hamiltonian singularity

The fact that the Hamiltonian goes singular on the horizontal in this spherical polar represen-
tation is actually what I think is the most interesting bit in the problem (the rest being a lot
mechanical details). On the horizontal ¢ = 0 or ¢ = 37000 radians/sec makes no difference to
the dynamics. All you can say is that the horizontal plane angular momentum is a constant of
the system. It seems very much like the increasing uncertainty that you get in the corresponding
radial QM equation. Once you start pinning down the 6 angle, you loose the ability to say much
about ¢.

It is also kind of curious how the energy of the system is never ill defined but a choice of
a particular orientation to use as a reference for observations of the momenta introduces the
singularity as the system approaches the horizontal in that reference frame.



30.6 A SUMMARY

Perhaps there are some deeper connections relating these classical and QM similarity. Would
learning about symplectic flows and phase space volume invariance shed some light on this?

30.6 A SUMMARY

A fair amount of notation was introduced along the way in the process of formulating the spher-
ical pendulum equations. It is worthwhile to do a final concise summary of notation and results
before moving on for future reference.

The positions of the masses are given by

2k = k-1 + eslgelt
ji = €3 A (ere™) (30.39)
i=e ANey

With the introduction of a column vector of vectors (where we multiply matrices using the
Geometric vector product),

O = le"] (30.40)
Pk
o-le, @ ... (30.41)

and a matrix of velocity components (with matrix multiplication of the vector elements using
the Geometric vector product), we can form the Lagrangian

Pk o Jibk
Ap=|51¢¢ (30.42)
ezel¢k59k
N
Mk = Z mj
=k
(Q) = [mascrotte{AraT)|
1. .
K= 5@T<Q)® (30.43)
N
P=g Z,Uklkcek
k=1

L=K-D
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An explicit scalar matrix evaluation of the (symmetric) block matrix components of (Q) was
evaluated and found to be

(a,AT) = | CoorCoCo-* 5050 =SamarCoSo. (30.44)
S ¢.-9,Co.S6, Cp-4,506,5 .

These can be used if explicit evaluation of the Kinetic energy is desired, avoiding redundant
summation over the pairs of skew entries in the quadratic form matrix (Q)

K= % Zk] uBO(AAT) O+ tmasiro O, (A,AT) O, (30.45)

r<c

We utilize angular position and velocity gradients

_ | 06k
Ve, = 2
| Oy |
o]
. _ | o6
Vo, = |y (30.46)
L Oy, |

r T
T T T
Vo =|Vg, Vo, - VQN]

T
V(;) [VGIT VGZT V@NT]

and use these to form the Euler-Lagrange equations for the system in column vector form

%VG)L = Vol (30.47)

For the canonical momenta we found the simple result

Vol =(0)0 (30.48)

For the position gradient portion of the Euler-Lagrange equations eq. (30.47) we found in
block matrix form

. T T\ -
Hmax(k,) il O <Ak ?93: >®r
. -8

Vol = T T
k ﬂmax(k,r)lklr(ak <Ak 32: >®r

pl,S, [IH (30.49)
0 r



0A.T\
<Ak 3 > )

30.6 A SUMMARY

_|Co-6:Co S0, + S6,.Co,  —S4,~4.Co,Co, (30.50)
=S ga-trS 0,5 0 Cou-0:5 0, Co,
_S¢a_¢k CHI\' Cea _C¢a_¢k CHkS ea (3()5 1)
| Cou-0Co.S00 =S p-siS 015 0,

A set of Hamiltonian equations for the system could also be formed. However, this requires
that one somehow restrict attention to the subset of phase space where the canonical momenta
matrix (Q) is non-singular, something not generally possible.
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Part IV

RANDOM INDEPENDENT STUDY NOTES






POTENTIAL AND KINETIC ENERGY

31.1

Attempting some Lagrangian calculation problems I found I got all the signs of my potential
energy terms wrong. Here is a quick step back to basics to clarify for myself what the definition
of potential energy is, and thus implicitly determine the correct signs.

Starting with kinetic energy, expressed in vector form:

K ! r-r ! r
= —-m . = —D - s
2 2P

one can calculate the rate of change of that energy:

dK 1

o . l" +p- r//
=5 (P pr’)
Lo 31.1
=5 -r+r-p) (1D
— p/ . rl.
Note that the mass has been assumed constant above.
Integrating this time rate of change of kinetic energy produces a force line integral:
12
dK
K, -K; = —dt
2 1 j;l i
12
= f p’-r'dt
l (31.2)

12 ’
dr

= f o —dt
fn P

)
:f F.dr
r|
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For the path integral to depend on only the end points or the corresponding end times requires
a conservative force that can be expressed as a gradient. Let us say that F = V f, then integrating:

T
KQ_K]=f F.dr
r|

)
:f Vf-dr
r|

_— R (31.3)
= Timit__q f (rM) dr
r|

€

= handwaving
= f(r2) - f(ry).

Assembling the quantities for times 1, and 2, we have

K> — f(rp) = K; — f(r;) = constant. (31.4)

This constant is what we give the name Energy. The quantities —f(r;) we label potential
energy V;, and finally write the total energy as the sum of the kinetic and potential energies for
a particle at a point in time and space:

K+V,=Ki+V=E (31.5)

F=-Vv (31.6)

31.1.1  Work with a specific example. Newtonian gravitational force

Take the gravitational force:

GmM
F=_ ’"2 # (31.7)
I
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The rate of change of kinetic energy with respect to such a force (FIXME: think though signs
... with or against?), is:

dK - r/
ar P
GmM , dr
= F.o— 31.8
2 (31.8)
_ GmM , dr
s dt
The vector dot products above can be eliminated with the standard trick:
dr? _r-r
e dt (31.9)
= 2ﬂ T
dr
Thus,
dK  GmM dr?
dt 23 dt
_ _GmM dr (31.10)
r2  dt
_d (GmM )
Cdt\ )

This can be integrated to find the kinetic energy difference associated with a change of posi-
tion in a gravitational field:

2 d (GmM
KQ_K]=f d—( m )dt
n t r

31.11
1 1 ( )
=GmM|—-—|.
rnon
Or,
GmM GmM
K- g - (31.12)
r 1
Taking gradients of this negative term:
GmM .0 ( GmM
V(=)= ()
r
GmM (31.13)

Il
>

2’
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returns the negation of the original force, so if we write V = —-GmM/r, it implies the force is:

F=-VV. (31.14)

By this example we see how one arrives at the negative sign convention for the potential
energy. Our Lagrangian in a gravitational field is thus:

1 GmM
Lzsz2+ m .

Now, we have seen strictly positive terms mgh in the Lagrangian in the Tong and Goldstein
examples. We can account for this by Taylor expanding this potential in the vicinity of the
surface R of the Earth:

(31.15)

GmM B GmM
r  R+h
B GmM
" R(1+h/R)

GmM
~ 1-h/R
R ( /R)

The Lagrangian is thus:

(31.16)

I , GmM GmM
L~ _-mv'+———
2 R R?

but the constant term will not change the EOM, so can be dropped from the Lagrangian, and

with g = %4 we have:

2 omh (31.17)

L' = lmv
2
Here the potential term of the Lagrangian is negative, but in the Goldstein and Tong examples
the reference point is up, and the height is measured down from that point. Put another way, if
the total energy is

E=V

when the mass is unmoving in the air, and then drops gaining Kinetic energy, an unchanged
total energy means that potential energy must be counted as lost, in proportion to the distance
fallen:
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1
E=Vo=K +V; = Emvz—mgh.

So, one can write

V = —-mgh
and
’ 1 2
L = Emv + gmh (31.18)

BUT. Here the height # is the distance fallen from the reference point, compared to eq. (31.17),
where i was the distance measured up from the surface of the Earth (or other convenient local
point where the gravitational field can be linearly approximated)!

Care must be taken here because it is all too easy to get the signs wrong blindly plugging into
the equations without considering where they come from and how exactly they are defined.






COMPARE SOME WAVE EQUATION’S AND THEIR LAGRANGIANS

32.1 MOTIVATION

Compare the Lagrangians for the classical wave equation of a vibrating string/film with the
wave equation Lagrangian for electromagnetism and Quantum mechanics.

Observe the similarities and differences, and come back to this later after grasping some of
the concepts of Field energy and momentum (energy in vibration and electromagnetism and
momentum in quantum mechanics). Do the ideas of field momentum carry in quantum have
equivalents in electromagnetism?

32.2 VIBRATING OBJECT EQUATIONS
32.2.1 One dimensional wave equation

[5] does a nice derivation of the one dimensional wave equation Lagrangian, using a limiting
argument applied to an infinite sequence of connected masses on springs.

1 on 2 on 2
=—|ul=] -Y|[= 32.1
£=3 (“ ( az) (ax G2
here 1 was the displacement from the equilibrium position, u is the mass line density and Y
is Young’s modulus.

Taking derivatives confirms that this is the correct form. The Euler-Lagrange equations for
this equation are:

0L _90L 9oL
on 8t3% axa?

(32.2)
_ 0,0 0,0
~ oo T ox ox
Which has the expected form
2 2
On _y 0 (32.3)

Hae ™ Yo =0
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32.2.2 Higher dimension wave equation

For a string or film or other wavy material with more degrees of freedom than a string with back
and forth motion one can guess the Lagrangian from eq. (32.1).

et 312

Calculating the Euler-Lagrange equations gives

oL _ 9 61: d 4L
on 81‘53’1 axlaa
x 2.
o Z 0, on o
ot o ox! ax’

Which also has the expected form

6277 6277
g ™ YZ i (32.6)

32.3 ELECTRODYNAMICS WAVE EQUATION

From eq. (32.4) one can guess the Lagrangian for the electrodynamic potential wave equations.
Maxwell’s equation in potential form are:

VA = J/ec (32.7)
Which has the following split into four scalar equations

VZA")/# = MMy, /ec

32.8
VZA* = JH/€yc 025
For the A* coordinate try the Lagrangian
L=), Ly (2 . A [ec
2 ox¥
v (32.9)

1
=> SO (0,4) 4 A e



32.3 ELECTRODYNAMICS WAVE EQUATION

With evaluation of the Euler-Lagrange equations we have

0 0
—
Tfeoc = ), 0uly" 0aA" B0
= 090,A*

= V2AH

Which recovers Maxwell’s equation. Having done that the Lagrangian can be tidied slightly
introducing the spacetime gradient:

1
L= (VA?)? + J¥A® Jeyc (32.11)

32.3.1 Comparing with complex (bivector) version of Maxwell Lagrangian

Previously, in 15 and 15, Maxwell’s equation

V(VAA)=J/ec (32.12)

was seen as the result of evaluating the Lagrangian

L:—%(V/\A)ZA-J-A (32.13)

Equation (32.12) with the gauge condition V-A = 0 is where we get the potential form
eq. (32.7) from.

For comparison it should be possible to reconcile this with eq. (32.11). We can multiply by
(ya)2, which is (1) dependent on «, as well as multiply by eyc

€C

£=3

VA®VA, + J%A, (32.14)

No sum need be implied here, but since the field variables are independent we can sum them
without changing the field equations. So, instead of having four independent Lagrangians, we
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are now left with a (sums now implied) single density that can be evaluated for each of the
potential coordinate variables:

L= %VA“VAQ +J-A (32.15)

This is looking more like eq. (32.13) now. It is expected that the gauge condition can be used
to complete the reconciliation. However, I have had trouble actually doing this, despite the fact
that both Lagrangians appear to correctly lead to equivalent results.

Also notable perhaps is a comparison to the four potential Lagrangian in Goldstein:

1 0A,  0A,\ 1 0A,\? vy
L= (5 - 5] ‘gz(a—) "2 (32.16)

TR

This one is considerably more complex looking, and it should be possible to see how exactly
this is related to the wave equation guessed by comparison to the vibrating string.

32.4 QUANTUM MECHANICS
32.4.1 Non-relativistic case

The non-relativistic Lagrangian given by Goldstein (problem 11.3) is

2
L= 0 (VU)- (V)4 Vi + 0 (6" ~°00) (32.17)

Again we see the square of the spatial gradient so we expect a (spatial) Laplacian in the field
equation, which one has:

-7 ) e
(%v +v)¢_m5 (32.18)

32.4.2 Relativistic case. Klein-Gordon

The Klein-Gordon Lagrangian is

2.2
L=-Vy)- (W) + %ww* (32.19)



32.5 SUMMARY COMPARISON OF ALL THE SECOND ORDER WAVE EQUATIONS

from which we can recover the Klein-Gordon scalar wave equation which applies to a specific
subset of quantum phenomena (what exactly?)

R > 1 5
—Vi+—mc* |y =0 (32.20)
2m 2

32.4.3 Dirac wave equation

The Dirac wave equation, for vector wave function v can be formally obtained by taking vector
roots of the scalar operators in the Klein-Gordon equation to yield:

iV = tmey (32.21)

The Lagrangian for this field equation is

S _
L =meyp - 51 Iy (O — (00" ¥) (32.22)

Where i = yoi, and i/ is the reversed field spinor.

32.5 SUMMARY COMPARISON OF ALL THE SECOND ORDER WAVE EQUATIONS

e Vibration wave equation.

(32.23)

o Maxwell wave equation.

1 2
L= = (VAY)? 4 JoA®

5 (VA9) [ €oc (32.24)
VZA(I — J(Y/E()C
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316 COMPARE SOME WAVE EQUATION’S AND THEIR LAGRANGIANS

e Schrodinger non-relativistic wave equation.

hZ
L= o
-h oy
—V? = hiZ
(Zm + V)w hi Ey

¢ Klein-Gordon wave equation.

m?c?

L==(V)- (V) + 2

m?c?

_Vzw: - W

Yy

(Vi) (V™) + V™ + i (o)™ — o)

(32.25)

(32.26)



SHORT METRIC TENSOR EXPLANATION

33.1

PF thread.

I have found it helpful to think about the metric tensor in terms of vector dot products, and a
corresponding basis.

You can cut relativity completely out of the question, and ask the same question for Euclidean
space, where the metric tensor it the identity matrix when you pick an orthonormal basis.

That diagonality is due to orthogonality conditions of the basis chosen. For, example, in 3D
we can express vectors in terms of an orthonormal frame, but if we choose not to, say picking
e1 + ey, e; — ey, and e + e3 as our basis vectors then how do we calculate the coordinates?

The trick is to calculate, or assume calculated, an alternate set of basis vectors, called the
reciprocal frame. Provided the initial set of vectors spans the space, one can always calculate
(and that part is a linear algebra exercise) this second pair such that they meet the following
relationships:

So, if a vector is specified in terms of the e;

X = Zejaj

Dotting with e’ one has:

x-e = Z(ejaj)-ei = Zéj,-aj =aq;

It is customary to write @; = x', which allows for the entire vector to be written in the mixed
upper and lower index method where sums are assumed:

- = eix/
x—Ze‘,x =ejx

Now, if one calculates dot product here, say with x, and a second vector
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y=ep’

you have:

xey= ) (ej- en)xly*

The coefficient of this x/y* term is symmetric, and if you choose, you can write g k= ej- e,
and you have the dot product in tensor form:

xey= ) guxlyt = gyt

Now, for relativity, you have four instead of three basis vectors, so if you choose your spatial
basis vectors orthonormally, and a timelike basis vector normal to all of those (ie: no mixing
of space and time vectors in anything but a Lorentz fashion), then you get a diagonal metric
tensor. You can choose not to work in an "orthonormal" spacetime basis, and a non-diagonal
metric tensor will show up in all your dot products. That decision is perfectly valid, just makes
everything harder. When it comes down to why, it all boils down to your choice of basis.

Now, just like you can think of a rotation as a linear transformation that preserves angles
in Euclidean space, the Lorentz transformation preserves the spacetime relationships appropri-
ately. So, if one transforms from a "orthonormal” spacetime frame to an alternate "orthonormal”
spacetime frame (and a Lorentz transformation is just that) you still have the same "angles" (ie:
dot products) between an event coordinates, and the metric will still be diagonal as described.
This could be viewed as just a rather long winded way of saying exactly what jdstokes said, but
its the explanation coming from somebody who is also just learning this (so I had need such a
longer explanation if I was explaining to myself).



HAMILTONIAN NOTES

34.1 MOTIVATION

I have now seen Hamiltonian’s used, mostly in a Quantum context, and think that I understand
at least some of the math associated with the Hamiltonian and the Hamiltonian principle. I have,
however, not used either of these enough that it seems natural to do so.

Here I attempt to summarize for myself what I know about Hamiltonian’s, and work through
a number of examples. Some of the examples considered will be ones already treated with the
Lagrangian formalism 9.1.

Some notation will be invented along the way as reasonable, since I had like to try to also
relate the usual coordinate representation of the Hamiltonian, the Hamiltonian principle, and
the Poisson bracket, with the bivector representation of the 2N complex configuration space
introduced in [3]. (NOT YET DONE).

34.2 HAMILTONIAN AS A CONSERVED QUANTITY

Starting with the Lagrangian formalism the Hamiltonian can be found as a conserved quantity
associated with time translation when the Lagrangian has no explicit time dependence. This
follows directly by considering the time derivative of the Lagrangian £ = £(¢', §").

dL _0Ldg  OLd]
dt — dq' dt 8¢ dt
0L 0L

= -+ — 34.1
Taroq " o4 dr (34.1)
_d (0L
~ar\1og
We can therefore form the difference

d{(.0L

—\|¢= - =0 34.2

dt (q g’ L) (34.2)
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320 HAMILTONIAN NOTES

and find that this quantity, labeled H, is a constant of motion for the system

H = c‘]ia—{ — L = constant (34.3)
g
We will see later that this constant is sometimes the total energy of the system.
The ¢ partials of the Lagrangian are called the canonical momentum conjugate to ¢'. Quite a
mouthful, so just canonical momenta seems like a good compromise. We will write (reserving
p' = mq' for the non-canonical momenta)

oL
g

P; (34.4)

and note that these are the coordinates of a sort of velocity gradient of the Lagrangian. We
have seen these canonical momenta in velocity gradient form previously where it was noted that
we could write the Euler-Lagrange equations in vector form in an orthonormal reciprocal frame
space as

ve=2yr (34.5)
dt

where V, = €'0L/0x' = €'P;, V = €'0/0x', and x = ¢;x".
34.3 SOME SYNTACTIC SUGAR. IN VECTOR FORM

Following Jackson [8] (section 12.1, relativistic Lorentz force Hamiltonian), this can be written
in vector form if the velocity gradient, the vector sum of the momenta conjugate to the ¢'’s is
given its own symbol P. He writes

H=v-P-Z (34.6)

This makes most sense when working in orthonormal coordinates, but can be generalized.
Suppose we introduce a pair of reciprocal frame basis for the generalized position and velocity
coordinates, writing as vectors in configuration space

q=eiq

‘ (34.7)
v=fid



34.4 THE HAMILTONIAN PRINCIPLE

Following [3] (who use this for their bivector complexification of the configuration space),
we have the freedom to impose orthonormal constraints on this configuration space basis

ei-ej = (5ij
Fiofi=6, (34.8)
ei-]“j = 5ij

We can now define configuration space position and velocity gradients

V=eé i
0q*
P (34.9)
Vv, = i—‘
= Fo
so the conjugate momenta in vector form is now
0
P=V, L= f’%ﬁ_ (34.10)
0q'
Our Hamiltonian takes the form
H=v-P-L (34.11)

34.4 THE HAMILTONIAN PRINCIPLE

We want to take partials of eq. (34.3) with respect to P; and ¢'. In terms of the canonical mo-
menta we want to differentiate

H=q'Pi- L4 (34.12)
for the P; partial we have

OH

oP;
and for the ¢ partial

q (34.13)

OH _ 0L
dq g
L or (34.14)

dt dg'

321



322 HAMILTONIAN NOTES

These two results taken together form what I believe is called the Hamiltonian principle

OH
B_Pi_q
a—H.z—P,- (34.15)
0q'
0L
" ag

A set of 2N first order equations equivalent to the second order Euler-Lagrange equations.
These appear to follow straight from the definitions. Given that I am curious why the more
complex method of derivation is chosen in [5]. There the total differential of the Hamiltonian is
computed

| | oL 0L AL
dH = §dP; +di'P; - dg 2= — g o= — a2
GACiTAq T = a5 = 44 50~ gy

; ; 0 0 0
= qldPi + dql (P,' - (‘);[l:) - dqla;ll: - dla—.f
K K (34.16)
; | 0L oL
=q¢'dP;—dq'| — |- dt—
Tarimad aq ot
=dP;/dt
A term by term comparison to the total differential written out explicitly
OH . OH o0H
dH = —dq' + —dP; + —dt 34.17
a1 T ap T o (34.17)
allows the Hamiltonian equations to be picked off.
OH
op, 1
0H .
B_qi =-P; (34.18)
OH 0L
at ot

I guess that is not that much more complicated and it does yield a relation between the
Hamiltonian and Lagrangian time derivatives.



34.5 EXAMPLES

34.5 EXAMPLES

Now, that is just about the most abstract way we can start things off is not it? Getting some
initial feel for this constant of motion can be had by considering a sequence of Lagrangians,
starting with the very simplest.

34.5.1 Force free motion

Our very simplest Lagrangian is that of one dimensional purely kinetic motion

1 1
L= 5mv2 = zme (34.19)

Our Hamiltonian is in this case just
1 1,

H = xmx— —mx = —my

34.20
3 3 ( )

The Hamiltonian is just the kinetic energy. The canonical momentum in this case is also equal
to the momentum, so eliminating v to apply the Hamiltonian equations we have

I,

H=—p (34.21)
2m
We have then
OH _p _ .
a— = — =X
pom (34.22)
OH 0= —p
ox P
Just for fun we can put this simple linear system in matrix form
d 1
dip|_ 1 lo 0l1p (34.23)
dt m|1 ollx

A linear system of this form y’ = Ay can be solved by exponentiation with solution

y =ty (34.24)
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In this case our matrix is nilpotent degree 2 so we can exponentiate only requiring up to the
first order power

A =1+ At (34.25)
specifically

pi_|1 Offpo (34.26)

X L 1]]xo

Written out in full this is just

PP 34.27)
34.27
x=@t+XQ (
m

Since the canonical momentum is the regular momentum p = mv in this case, we have the
usual constant rate change of position x = vyt + x( that we could have gotten in many easier
ways. I had hazard a guess that any single variable Lagrangian that is at most quadratic in
position or velocity will yield a linear system.

The generalization of this Hamiltonian to three dimensions is straightforward, and we get

H= lp2 (34.28)
m
p.] [0 0 |[p:]
X 1 0 X
dip|_ 1 Py (34.29)
dt y m y
Pz 0 Of|p;
| 2 | | 1 0]]z]

Since there is no coupling (nilpotent matrices down the diagonal) between the coordinates
this can be treated as three independent sets of equations of the form eq. (34.23), and we have

pi(t) = pi(0)

. 34.30
xi(t) = %Z + X,'(O) ( )



34.5 EXAMPLES
Or just

p(®) = p(0)
34.31
x(?) = %O)t + x(0) ( )

34.5.2  Linear potential (surface gravitation)

For the gravitational force F' = —mgZ = —V¢, we have ¢ = mgz, and a Lagrangian of

1 1
L=-mv’—¢=—-mv’—mgz (34.32)
2 2
Without velocity dependence the canonical momentum is the momentum mv, and our Hamil-
tonian is
I 5
H=—p +mgz (34.33)
2m

The Hamiltonian equations are

oH . 1
il
op; i mpz
34.34
oH , ( )
Oi7— =—0ip; =
mg
In matrix form we have
Px 0 0 Px 0
X X 0
d | py 1
dipy|_1 0 py|,| O (34.35)
dr| y m 0 y 0
p: 0 Offp.| |[-mg
Z 1 | 7 | 0
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So our problem is now reduced to solving a linear system of the form

V= Ay+b (34.36)

That extra little term b throws a wrench into things and I am no longer sure how to integrate
by inspection. What can be noted is that we really only have to consider the z components since
we have solved the problem for the x and y coordinates in the force free case. That leaves

d
dt

Pz Pz

m Z

om0 0

_1[0 0

+ [_mg} (34.37)

Is there any reason that we have to solve in matrix form? Except for a coolness factor, not
really, and we can integrate each equation directly. For the momentum equation we have

pz = —mgt + p;(0) (34.38)

This can be substituted into the position equation for

7= l(pz(O) — mgt) (34.39)
m

Direct integration is now possible for the final solution

1
z=Zwmm—mgHm+m

p:0) g,
=—t—=t
m 2

(34.40)
+ 20

Again something that we could have gotten in many easier ways. Using the result we see that

the solution to eq. (34.37) in matrix form, again with A = % {0 0‘ is
1 0

Pz
Z

ZWP©
z(0)

t
—mg { ] (34.41)
A2
2m

I thought if I wrote this out how to solve eq. (34.36) may be more obvious, but that path is
still unclear. If A were invertible, which it is not, then writing b = Ac would allow for a change
of variables. Does this matter for consideration of a physical problem. Not really, so I will fight

the urge to play with the math for a while and perhaps revisit this later separately.



34.5 EXAMPLES

34.5.3 Harmonic oscillator (spring potential)

Like the free particle, the harmonic oscillator is very tractable in a phase space representation.
For a restoring force F = —kx& = —V¢, we have ¢ = kx?/2, and a Lagrangian of

| |
L=omv’ = Sk (34.42)

Our Hamiltonian is again just the total energy

1 1
He L2l 34.43
P T (34.43)

Evaluating the Hamiltonian equations we have

OH

6_p:xi:pi/m
l

34.
y . (34.44)
OH _ . _ i
ox; Di i

Considering just the x dimension (the others have the free particle behavior), our matrix phase
space representation is

N 1 (34.45)
dr | x I/m 0 |]|x

So with
a| 0 F (34.46)

1/m O

Our solution is
p|_ e |po (34.47)
x Xo

The stateful nature of the phase space solution is interesting. Provided we can make a simul-
taneous measurement of position and momentum, this initial state determines a next position
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and momentum state at a new time ¢ = fo + At;, and we have a trajectory through phase space
of discrete transitions from one state to another

{P = AB P} (34.48)
X|. X|.
i+1 1
Or
{p = ABI1 AN AL p (34.49)
x|. X
i+1 0

As for solving the system, we require again the exponential of our matrix. This matrix being
antisymmetric, has complex eigenvalues and again cannot be exponentiated easily by diagonal-
ization. However, this antisymmetric matrix is very much like the complex imaginary and its
square is a negative scalar multiple of identity, so we can proceed directly forming the power

series
- - k
a0 KO Kk, (34.50)
1/m 0O||1/m O m
The first few powers are
A=k
m
w=_ky
m
2 (34.51)
A* = (f) I
m
2
Ad = (f) A
m

So exponentiating we can collect cosine and sine terms
3 5
ki (k) o m( [k kY 2 [k) P
At
= I 1 —_——— —_— — .. A — — — — — — —
¢ ( m2!+(m)4!+ TN NE T\ V) 31T (Vi) 3
[k / [k
=Icos( —t]+ TAsin( —t)
m k m

] (34.52)
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As a check it is readily verified that this satisfies the desired d(e?’)/dt = Ae*! property.
The full solution in phase space representation is therefore

k As m
cos| 4/ — A
m k
Written out separately this is clearer

P = Pocos —t|- 4 /—kxo sin —t

m k m

[k [ [ k
X = xocos{ —t]+ mpo sin( —tJ

m k m m

One can readily verify that mx = p, and mX = —kx as expected.

r|_ —kxo

Po

X0

sin[ Et] (34.53)

m

X po/m

(34.54)

Let us pause before leaving the harmonic oscillator to see if eq. (34.54) seems to make sense.

Consider the position solution. With only initial position and no initial velocity po/m we have
oscillation that has no dependence on the mass or spring constant. This is the unmoving mass
about to be let go at the end of a spring case, and since we have no damping force the magnitude
of the oscillation is exactly the initial position of the mass. If the instantaneous velocity is
measured at position zero, it makes sense in this case that the oscillation amplitude does depend
on both the mass and the spring constant. The stronger the spring (k), the bigger the oscillation,
and the smaller the mass, the bigger the oscillation.

It is definitely no easier to work with the phase space formulation than just solving the second
order system directly. The fact that we have a linear system to solve, at least in this particular
case is kind of nice. Perhaps this methodology can be helpful considering linear approximation
solutions in a neighborhood of some phase space point for more complex non-linear systems.

34.5.4  Harmonic oscillator (change of variables.)

It was pointed out to me by Lut that the following rather strange looking change of variables
has nice properties

(34.55)
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In particular the Hamiltonian is then just

H=P+Q (34.56)

Part of this change of variables, which rotates in phase space, as well as scales, looks like just
a way of putting the system into natural units. We do not however, need the rotation to do that.
Suppose we write for just the scaling change of variables

p = V2mPg
2 (34.57)

X = %Qs

or

V2m 0 P,

Qs

(34.58)

This also gives the Hamiltonian eq. (34.56), and the Hamiltonian equations are transformed
to

a [P, [1/V2m 0 {0 _ka 0 |(p,
alol” k \ﬁ
o) | o \E im0l o 2los
) (34.59)
k
I I ] 12
E 0 Qs
m

This first change of variables is nice since it groups the two factors k and m into a reciprocal
pair. Since only the ratio is significant to the kinetics it is nice to have that explicit. Since vk/m
is in fact the angular frequency, we can define

w= X (34.60)

m

and our system is reduced to

d

dt

Py
Qs

Py
Qs

(34.61)
1 0

[o -1
=w
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Solution of this system now becomes particularly easy, especially if one notes that the matrix
factor above can be expressed in terms of the y axis Pauli matrix 0. That is

0'2:1'[0 _1} (34.62)
1 0

Inverting this, and labeling this matrix 7 we can write

-1
I= 0 = —io) (34.63)

1 0
Recalling that 0'% = I, we then have 72 = —1, and see that this matrix behaves exactly like a

unit imaginary. This reduces the Hamiltonian system to

d
d1Ps] 2 Py (34.64)
dt | g, Qs
We can now solve the system directly. Writing z; = ( Si ), this is just
z,(1) = e?“'2,(0) = (I cos(wt) + I sin(wt)) z,(0) (34.65)

With just the scaling giving both the simple Hamiltonian, and a simple solution, what is the
advantage of the further change of variables that mixes (rotates in phase space by 45 degrees
with a factor of two scaling) the momentum and position coordinates? That second transforma-
tion is

P=0Q;+P;
Qs+ P, (34.66)
0=0,-F;
Inverting this we have
1 _
R L (34.67)
o] Z1 1]lo
The Hamiltonian after this change of variables is now
d|P 11 -1 -1||P
a|\p_e 0 (34.68)
drlogl 21-1 1{[1 offl1 1|0
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But multiplying this out one finds that the equations of motion for the state space vector are
unchanged by the rotation, and writing z = ( 5) for the state vector, the Hamiltonian equations
are

7 =JTwz (34.69)

This is just as we had before the rotation-like mixing of position and momentum coordinates.
Now it looks like the rotational change of coordinates is related to the raising and lowering
operators in the Quantum treatment of the Harmonic oscillator, but it is not clear to me what the
advantage is in the classical context? Perhaps the point is, that at least for the classical Harmonic
oscillator, we are free to rotate the phase space vector arbitrarily and not change the equations
of motion. A restriction to the classical domain is required since squaring the results of this 45
degree rotation of the phase space vector requires commutation of the position and momentum
coordinates in order for the cross terms to cancel out.

Is there a deeper meaning to this rotational freedom? It seems to me that one ought to be able
to relate the rotation and the quantum ladder operators in a more natural way, but it is not clear
to me exactly how.

34.5.5 Force free system dependent on only differences

In gravitational and electrostatic problems are forces are all functions of only the difference
in positions of the particles. Lets look at how the purely kinetic Lagrangian and Hamiltonian
change when one or more of the vector positions is reexpressed in terms of a difference in
position change of variables. In the force free case this is primarily a task of rewriting the
Hamiltonian in terms of the conjugate momenta after such a change of variables.

The very simplest case is the two particle single dimensional Kinetic Lagrangian,

1 1
L= Emlff + Emzfg (34.70)

With a change of variables

X=r-r
2 (34.71)
y=n
and elimination of r;, and r, we have
P, 1 5
L==-m©@y—-Xx"+=-my (34.72)
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We now need the conjugate momenta in terms of x and y. These are

Px: Z;L =—m1(}"—5€)
* (34.73)
oL o .
P, = o =m@y —x)+myy
y

We must now rewrite the Lagrangian in terms of P, and P, essentially requiring the inversion
of this which amounts to the inversion of the two by two linear system of eq. (34.73). That is

H _ l me om Px (34.74)
y -my (my+mp)| |Py
This is
X 11 P
X _ b mp+mp mp X (34'75)
y|o oMz om my || Py
Of these only y and y — x are of interest and after a bit of manipulation we find
. 1
y= m_(Px + Py)
12 | (34.76)
X = ——((m1 + mg)Px + mle)
mi myp
From this we find the Lagrangian in terms of the conjugate momenta
1 2 1 2
L=—P " +—(P,+P)) (34.77)
2m1 2m2
A quick check shows that P, + Py, = myi», and P, = —mi, so we have agreement with the

original Lagrangian. Generalizing to the three dimensional case is straightforward, and we have

1 1
L= Emll"% + Emzfg — ¢(X] —X2) (34.78)
With
X =X1 —X
e (34.79)

y=x»
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The 3D generalization of the above (following by adding indices then summing) becomes

oL ..
szaj@ = -—m(y —X)

P, = U'j@ =m(y —X) + may
L=t P2 @ PR - p(x)
T 2myp Y 2mp Y
1 2 1 2
H = %PX + 2_}/)12(Px +Py) +¢(X)

Finally, evaluation of the Hamiltonian equations we have

oH .
O'j—j =X
0P
ol Lpis Lpiipi
=0 m_l x+m_2( ¥t y)
1 1
=—P,+—([P,+Py)
mi ny
o0H y
O'J— =
oP)
1 . .
= a,-m—z(P{C+P§)
1
= _(Px+Py)
)
.aH f—
Tigw =
o¢
=—-0;—
T 9xi
= = Vxé(x)
.8H —
J@ - y
__ 9
= ](')yf

(34.80)

(34.81)

(34.82)

(34.83)

(34.84)

(34.85)
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Summarizing we have four first order equations

1 1 1
yk:(—+—)Px+—Py

my my my

1

y= m—z(Px +Py) (34.86)
Px = Vx¢(x)
P, =0

FIXME: what would we get if using the center of mass position as one of the variables. A
parametrization with three vector variables should also still work, even if it includes additional
redundancy.

34.5.6  Gravitational potential

Next I had like to consider a two particle gravitational interaction. However, to start we need the
Lagrangian, and what should the potential term be in a two particle gravitational Lagrangian?
I had guess something with a 1/x form, but do we need one potential term for each mass or
something interrelated? Whatever the Lagrangian is, we want it to produce the pair of force
relationships

Force on 2 = —Gmlmzw
(r|l'2_; r)” (34.87)
Forceon 1 = Gmlmz#
Ir2 — 1]
Guessing that the Lagrangian has a single term for the interaction potential
¢ ! (34.88)
21 = K .
Iry — 1y
so that we have
1 2 1 2
L= Emvl + EmVQ — ¢ (34.89)
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We can evaluate the Euler-Lagrange equations and see if the result is consistent with the
Newtonian force laws of eq. (34.87). Suppose we write the coordinates of r; as x*;. There are
then six Euler-Lagrange equations

0L diL
oxi;  dtgi
i ox; (34.90)
_0¢a1 _
6xf,» S
Evaluating the potential derivatives separately. Consider the i = 2 derivative
-1/2
Oy 0 Z(xk _ )2
8xj2 a Kasz P 2 !
P S 3 (k- RPN (34.91)
-nP 4T T N T
k
1 .
== 5 (/2 = x71)
Iry — 1y
Therefore the final result of the Euler-Lagrange equations is
L L
Kk—————(x/5 — X)) = mok
vy = ?
| _ (34.92)
—Kﬁ(sz -x) = mp’c’{
rp—ri

which confirms the Lagrangian and potential guess and fixes the constant k = —Gmm,. With
the sign fixed, our potential, Lagrangian, and Hamiltonian are respectively

Gmoym
$o1 = ———
[ry — 1y
1 1
L= En’l]Vl2 + §m2V22 - ¢21 (34.93)
H= L o2 + L2 +¢
= 2m1P1 2m2P2 21

There is however an undesirable asymmetry to this expression, in particular a formulation
that extends to multiple particles seems desirable. Let us write instead a slight variation

Gmimj

bij =

—_ (34.94)
|r,- - rj|



34.5 EXAMPLES

and form a scaled by two double summation over all pairs of potentials

L= %mivﬂ - % D i (34.95)

i+

Having established what seems like an appropriate form for the Lagrangian, we can write the
Hamiltonian for the multiparticle gravitational interaction by inspection

1,1
H = Z P 3 2 % (34.96)
l

i#j

This leaves us finally in position to evaluate the Hamiltonian equations, but the result of doing
so is rudely nothing more than the Newtonian equations in coordinate form. We get, for the kth
component of the ith particle

gki = xl- = Ep i (3497)

OH ) X = xk;

o = k=G Y mm——— (34.98)
! J#i ri = /]

The state space vector for this system of equations is brutally ugly, and could be put into the
following form for example

_p 1_
P
P
X1
X7
z=|x (34.99)
P2
P2
P2

X2
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Where the Hamiltonian equations take the form of a non-linear function on such state space
vectors We have a somewhat sparse equation of the form

dz

Z-A 34.100
7 - A® ( )
One thing that is possible in such a representation is calculating the first order approximate

change in position and momentum moving from one time to a small time later

z(tg + Ar) = z(tg) + A(z(ty)) At (34.101)

One could conceivably calculate the trajectories in phase space using such increments, and
if a small enough time increment is used this can be thought of as solving the gravitational
system. I recall that Feynman did something like this in his lectures, but set up the problem in
a more computationally efficient form (it definitely did not have the redundancy built into the
Hamiltonian equations).

FIXME: should be able to solve this for an arbitrary At later time if this was extended to the
higher order terms. Need something like the ¢V chain rule expansion. Think this through. Will
be a little different since we are already starting with the first order contribution.

What does this system of equations look like with a reduction of order through center of mass
change of variables?

34.5.7 Pendulum

FIXME: picture. x-axis down, y-axis right.
The bob speed for a stiff rod of length [ is (19)?, and our potential is mgh = mgl(1 — cos ).
The Lagrangian is therefore

1,
L= Emlze2 — mgl(1 — cos 6) (34.102)

The constant mgl term can be dropped, and our canonical momentum conjugate to 8 is py =
mi?, so our Hamiltonian is

1

= ngz —mglcosé (34.103)
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We can now compute the Hamiltonian equations

oH . 1

ope 07 mE"

51193 (34.104)
— = —pg = mglsinf

0q

Only in the neighborhood of a particular angle can we write this in matrix form. Suppose we
expand this around 6 = 8y + @. The sine is then

sin § = sin 8y + cos Gy (34.105)

The linear approximation of the Hamiltonian equations after a change of variables become

d
dt

0 —mgl cos 6
1/mi? 0

Po| _

P9+

a

(34.106)

—mglsin 90}

a 6o

A change of variables that scales the factors in the matrix to have equal magnitude and equiv-
alent dimensions is helpful. Writing

po|_la Of, (34.107)
10 0 1

one finds

_ 11= ;

@ _ 0 mglcosy/a 24l mgl.smeo (34.108)
dr\a/mi? 0 a bo

To tidy this up, we want
al_ ’w (34.109)
mi? a

Or

a=mb?, /%cos 0ol (34.110)
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The result of applying this scaling is quite different above and below the horizontal due to
the sign difference in the cosine. Below the horizontal where 6y € (—n/2,1/2) we get

d - 1 - i
d—f: %cos&)lo ! Z+—{ mgl‘SHlQO] (34.111)
o mi% || % cos %
and above the horizontal where 6y € (71/2,37/2) we get
dz g 0 1 1 —mglsin 6y
i 1/—700590[1 0 Z+ { Iy } (34.112)

mi? /—% cos o

Since (¢ ‘01 ) has the characteristics of an imaginary number (squaring to the negative of the
identity) the homogeneous part of the solution for the change of the phase space vector in the
vicinity of any initial angle in the lower half plane is trigonometric. Similarly the solutions
are necessarily hyperbolic in the upper half plane since ({ (1)) squares to identity. And around
+/2 something totally different (return to this later). The problem is now reduced to solving a

non-homogeneous first order matrix equation of the form

7 =Q0z+b (34.113)

But we have the good fortune of being able to easily exponentiate and invert this matrix Q).
The homogeneous problem

7 =0z (34.114)

has the solution

(1) = Mz (34.115)

Assuming a specific solution z = e f(r) for the non-homogeneous equation, one finds z =
Q1™ — I)b. The complete solution with both the homogeneous and non-homogeneous parts
is thus

2(1) = Y29+ Q7' (Y - Db (34.116)
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Going back to the pendulum problem, lets write

w= ,/%mos&ﬂ (34.117)

Below the horizontal we have

-0 -1
1 0

ol-_1]0 -1 (34.118)
wll 0

e = cos(wr) !
0

0 . 0 -1
+ sin(wt)
1 1 0

Whereas above the horizontal we have

O-ol0 !

10
o101 (34.119)

|1 0

e = cosh(wi) bo + sinh(wt) 01
0 1 1 0

In both cases we have

2
Po| _ mlcw 0 Z
a 0 1
. (34.120)
1 |—5sinf
b—a[ @ }
mi?

(where the real angle was 8 = 6y + @). Since in this case Q! and ¥ commute, we have
below the horizontal

) = e (2o - Q') - Q7 'b

= [cos(a)t) [1 0 + sin(wr) [0 _1}] {zo + l
01 1 0 w

_ 34.121
b}+l[0 1b ( )
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Expanding out the b terms and doing the same for above the horizontal we have respectively

(below and above)
1 -1 1| & 1| &
Ziow () = | cos(wr) 0 + sin(wt) 0 20— — mi2 -— ml?
01 Y w” |%singy)) @ [§sin6y
o

(34.122)

1 1 1| L 1 o
Znigh(1) = | cosh(wr) 0 + sinh(wr) 0 70+ — mi* +— mi?
0 1 10 @ |£singy|) @ |&siny

The only thing that is really left is re-insertion of the original momentum and position vari-
ables using the inverse relation

Po
60— 09

2
z= ll/(’”l w) 0 (34.123)

0 1

Will that final insertion do anything more than make things messier? Observe that the zy only
has a momentum component when expressed back in terms of the total angle 8. Also recall that
po = ml?0, so we have

0w
7=
o

{Q:O/ a)]
7y =
0

If this is somehow mystically free of all math mistakes then we have the final solution

. ; flo b
Pt e A R S A [ B
0(t)~ 6o, 0 1 1 0 @ 0] @ |%sinéy W~ | & sin 6y

. ; o b0
0 fols sl o], £ 2] 2 |
o(t) — 6 high 0 1 1 0 @ (0] @ |%sin6y w” | % sin

(34.125)
A qualification is required to call this a solution since it is only a solution is the restricted
range where 6 is close enough to 6y (in some imprecisely specified sense). One could conceiv-
ably apply this in a recursive fashion however, calculating the result for a small incremental
change, yielding the new phase space point, and repeating at the new angle.
The question of what the form of the solution in the neighborhood of +7/2 has also been
ignored. That is probably also worth considering but I do not feel like trying now.

(34.124)
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34.5.8 Spherical pendulum

For the spherical rigid pendulum of length /, we have for the distance above the lowest point

h =1(1+cosb) (34.120)

(measuring 6 down from the North pole as conventional). The Lagrangian is therefore

1, . .
L= Emlz(eﬂ + sin” 0¢%) — mgl(1 + cos 6) (34.127)

We can drop the constant term, using the simpler Lagrangian

1, . .
L= 5le(e)Z + sin 0¢%) — mgl cos 0 (34.128)

To express the Hamiltonian we need first the conjugate momenta, which are

0
Py = a—g = ml*0
(34.129)
6.5 2 .2 .
P¢:—.:ml sin 9¢
o
We can now write the Hamiltonian
1
= —|P* + Py* | +mglcosd (34.130)
2ml> sin® 6

Before going further one sees that there is going to be trouble where sinf = 0. Curiously,
this is at the poles, the most dangling position and the upright. The south pole is the usual point
where we solve the planar pendulum problem using the harmonic oscillator approximation, so it
is somewhat curious that the energy of the system appears to go undefined at this point where the
position is becoming more defined. It seems almost like a quantum uncertainty phenomena until
one realizes that the momentum conjugate to ¢ is itself proportional to sin” 6. By expressing the
energy in terms of this Py momentum we have to avoid looking at the poles for a solution to
the equations. If we go back to the Lagrangian and the Euler-Lagrange equations, this point
becomes perfectly tractable since we are no longer dividing through by sin? 6.
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Examining the polar solutions is something to return to. For now, let us avoid that region. For
regions where sin 6 is nicely non-zero, we get for the Hamiltonian equations

o _ 1
0Py mlsin? 6
oH . 1
P, T e
9 m
. (34.131)
O Py=0
o¢
O0H . cos 6 2 ,
M py=——27 P2 mglsing
00 O ksine ! 8

These now expressing the dynamics of the system. The first two equations are just the defini-
tions of the canonical momenta that we started with using the Lagrangian. Not surprisingly, but
unfortunate, we have a non-linear system here like the planar rigid pendulum, so despite this
being one of the most simple systems it does not look terribly tractable. What would it take to
linearize this system of equations?

Lets write the state space vector for the system as

Py

X = 0 (34.132)
Py
é

lets also suppose that we are interested in the change to the state vector in the neighborhood
of an initial state

Pyl Py
0 0
. +2 (34.133)
Py| | Py
o1 1ol

The Hamiltonian equations can then be written

~ ;‘:& 9P¢2 + mglsin 6
d Lp
az _ mE o (34.134)
dt 0

mi? sin? 6P¢
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Getting away from the specifics of this particular system is temporarily helpful. We have a
set of equations that we wish to calculate a linear approximation for

dz, 0A,
—=A ~ A,(Xp) + —
= A1) ~ Au(x0) Z TR (34.135)
Our linear approximation is thus
cos 2 : _P¢2(1+2 cos? 0) 2cos 6
ml? sin® 6)P¢ + mgl sin g 0 ml? sin* 9 +mglcos 6 msin 6" ® 0
1 1
@ N ~7 Py | me 0 0 0 Z
dt 0 0 0 0 0
1 —2Pgcos 1
e o L0 mi2 sin> @ e B
(34.136)

Now, this is what we get blindly trying to set up the linear approximation of the state space
differential equation. We see that the cyclic coordinate ¢ leads to a bit of trouble since no explicit
¢ dependence in the Hamiltonian makes the resulting matrix factor non-invertible. It appears
that we would be better explicitly utilizing this cyclic coordinate to note that Py = constant, and
to omit this completely from the state vector. Our equations in raw form are now

, 1
0= —P
mi2 "’
. cosf .
Py = m%z +mglsin 6 (34.137)
B 1
msin2g ¢

We can treat the ¢ dependence later once we have solved for 8. That equation to later solve
is just this last

. 1
_ p (34.138)
¢ mi2 sin? 0 ¢

This integrates directly, presuming 6 = 6(¢) is known, and we have

P !
¢ — $(0) = — f T (34.139)
0

ml2 Jo sin® 6(7)
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Now the state vector and its perturbation can be redefined omitting all but the 6 dependence.

Namely
x=|F (34.140)
,0_
Pl [P
x=| =" +z (34.141)
o] o]

We can now write the remainder of this non-linear system as

dz cosb_p.2 4 mglsin@
= - b sin’ 6 ¢1 § (34.142)
me b
and make the linear approximation around Xxg as
coso_p 2 ' _PR(%2c00)
% <z Sin39P¢: + mgl sin 9] +[ (1) R +mglcos @ . (34.143)
] 0o Lm2 0 0

This now looks a lot more tractable, and is in fact exactly the same form now as the equa-
tion for the linearized planar pendulum. The only difference is the normalization required to
switch to less messy dimensionless variables. The main effect of allowing the trajectory to have
a non-planar component is a change in the angular frequency in the 8 dependent motion. That
frequency will no longer be +/|cos fp|g//, but also has a P4 and other more complex trigono-
metric 6 dependencies. It also appears that we can probably have hyperbolic or trigonometric
solutions in the neighborhood of any point, regardless of whether it is a northern hemispherical
point or a southern one. In the planar pendulum the unambiguous sign of the matrix terms led
to hyperbolic only above the horizon, and trigonometric only below.

34.5.9 Double and multiple pendulums, and general quadratic velocity dependence

In the following section I started off with the goal of treating two connected pendulums moving
in a plane. Even setting up the Hamiltonian’s for this turned out to be a bit messy, requiring
a matrix inversion. Tackling the problem in the guise of using a more general quadratic form
(which works for the two particle as well as N particle cases) seemed like it would actually be
simpler than using the specifics from the angular velocity dependence of the specific pendulum
problem. Once the Hamiltonian equations were found in this form, an attempt to do the first
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order Taylor expansion as done for the single planar pendulum and the spherical pendulum was
performed. This turned out to be a nasty mess and is seen to not be particularly illuminating.
I did not know that is how it would turn out ahead of time since I had my fingers crossed for
some sort of magic simplification once the final substitution were made. If such a simplification
is possible, the procedure to do so is not obvious.

Although the Hamiltonian equations for a spherical pendulum have been considered previ-
ously, for the double pendulum case it seems prudent to avoid temptation, and to first see what
happens with a simpler first step, a planar double pendulum.

Setting up coordinates x axis down, and y axis to the left with i = Xy we have for the position
of the first mass m, at angle 6, and length /;

21 = Rl (34.144)

If the second mass, dangling from this is at an angle 6, from the x axis, its position is

2 =71 + ke (34.145)

We need the velocities, and their magnitudes. For z; this is

1211* = 1,%67 (34.146)

For the second mass

22 = %i (161 + Lore™) (34.147)

Taking conjugates and multiplying out we have

22 = 1267 + 211 120,6, cos(6) — 62) + 1,263 (34.148)

That is all that we need for the Kinetic terms in the Lagrangian. Now we need the height for
the mgh terms. If we set the reference point at the lowest point for the double pendulum system,
the height of the first particle is

hy =b+1;(1-cos6) (34.149)
For the second particle, the distance from the horizontal is

d=1ycos0; +1,cosb, (34.150)
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So the total distance from the reference point is
hy =1;(1 —cos )+ (1 —cos by) (34.151)

We now have the Lagrangian

1 o 1 : - :
L= Emlzlzaf +5m (1267 + 20112610, cos(8) - 62) + 1,°63)

— mlg(lg + ll(l —cos6)) — mgg(ll(l —cosfp) + 12(1 —co0s b))

(34.152)

Dropping constant terms (effectively choosing a difference reference point for the potential)
and rearranging a bit, also writing M = m; + my, we have the simpler Lagrangian

1 5 1 : -
L= 5Mllzef + Emzlzzeg +mol1 1,016, cos(0; — 62) + Ml g cos 0y + mylygcosy  (34.153)

The conjugate momenta that we need for the Hamiltonian are

Pg, = M1;0) + maly 156, cos(0) — 6)

) : (34.154)
sz =molh 0, + myl11,6; COS(Q] - 92)

Unlike any of the other simpler Hamiltonian systems considered so far, the coupling between
the velocities means that we have a system of equations that we must first invert before we can
even express the Hamiltonian in terms of the respective momenta.

That is
2 B .
Pgl _ Mll lellz COS(Q] 92) ?1 (34. I 55)
Pt‘?z mglllz COS(91 - 02) m2122 92

While this is easily invertible, doing so and attempting to substitute it back, results in an
unholy mess (albeit perhaps one that can be simplified). Is there a better way? A possibly
promising way is motivated by observing that this matrix, a function of the angular difference
0 = 61 — 6, looks like it is something like a moment of inertia tensor. If we call this 7, and write

0= [ﬂ (34.156)

(34.157)
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and the angular velocity vector can be written

p=71()0O (34.158)

Can we write the Lagrangian in terms of ©? The first Kinetic term is easy, just

1 L, 1 .xl2 o].
Lee = Lot Ve (34.159)
2 2 00

For the second mass, going back to eq. (34.147), we can write

2 = %i [lleiel lzeigz] 0 (34.160)

Writing r for this 1x2 matrix, we can utilize the associative property for compatible sized
matrices to rewrite the speed for the second particle in terms of a quadratic form

2P = *©®)FO) = 0" r"HO (34.161)
The Lagrangian kinetic can all now be grouped into a single quadratic form

0=m [11} [11 0] oy lle’zl] [lle_l-gl lge_iez] (34.162)

lzel 2

1.1 .
L= 5@TQ@ + Ml g cos ) + malag cos 6 (34.163)

It is also clear that this generalize easily to multiple connected pendulums, as follows

1.1 .
K = E@ Zklkak@

Ok = [1,1,e®0]

r,s<k

N
¢ = —ngkcosekij
k =k

L=K-¢

(34.164)
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In the expression for Qy above, it is implied that the matrix is zero for any indices r, s > k, so
it would perhaps be better to write explicitly

Q = Z kak = [ ?/:max(r,s) mjlrlsei(er_GS) s (34165)
T :

Returning to the problem, it is convenient and sufficient in many cases to only discuss the
representative double pendulum case. For that we can calculate the conjugate momenta from
eq. (34.163) directly

ol.1_.
Py =—-0 00
o 20, 2 0

_ il@TQ[l +l[1 0] 06 (34.166)
o] 2

06,2

=1 o (%(Q+ QT>)®

Similarly the 6, conjugate momentum is

1 .
Py =0 1] (§(Q+ QT))G (34.167)

Putting both together, it is straightforward to verify that this recovers eq. (34.155), which can
now be written

p= %(Q+QT)® =70 (34.168)

Observing that 7 = 7T, and thus (ZT)~! = 7!, we now have everything required to express
the Hamiltonian in terms of the conjugate momenta

1
H=p" (51—1 QI‘l) p — Mgl cos 0, — malrg cos 6, (34.169)
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This is now in a convenient form to calculate the first set of Hamiltonian equations.

, oH
0, =
“ T 0Py,
_op' - -1 apT
_[ 71 I I
(3P9k '0 p+p Q ank
_ 171 Tl
_[6kj]]§] QI 'p+p EI or [5ik]i (34.170)
I
=[] 7 500+ QD) 1!
= 5kjj > P

= [6kj]j[_lp

So, when the velocity dependence is a quadratic form as identified in eq. (34.162), the first
half of the Hamiltonian equations in vector form are just

o Y d
9‘[ﬁ apg]H 'p (34.171)

This is exactly the relation we used in the first place to re-express the Lagrangian in terms
of the conjugate momenta in preparation for this calculation. The remaining Hamiltonian equa-
tions are trickier, and what we now want to calculate. Without specific reference to the pendu-
lum problem, lets do this calculation for the general Hamiltonian for a non-velocity dependent
potential. That is

H= pT(%I‘lQI‘I)pW(@) (34.172)

The remaining Hamiltonian equations are dH/d6, = —Py,, and the tricky part of evaluating
this is going to all reside in the Kinetic term. Diving right in this is

oK  o(1odhy 1,00 oI
0, =V (3750 o (3 G o w307 o

=7

(34.173)
10T Hl 1 (1,100
=p a0, (Q oh +p (21 _aeuf )p

I h 1__,00 __
_ T ) T 719 1
=P 5, PP (2I 2.. P
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For the two particle case we can expand this inverse easily enough, and then take derivatives
to evaluate this, but this is messier and intractable for the general case. We can however, calcu-
late the derivative of the identity matrix using the standard trick from rigid body mechanics

_a
96,
oI h
06,
_4r __,  _ad™h
_aea‘r w1 96,

0

(34.174)

Thus the derivative of the inverse (moment of inertia?) matrix is

a6, 00,
(2.9

2\20, * 26,

a(I_l) _ —I_lgf_l

(34.175)

This gives us for the Hamiltonian equation

OH 1 o, (00\ __,  0¢
o _ 1 99 99 34.176
a0, - 2Pt (aaa) TPt 5 ( :

If we introduce a phase space position gradients
d o |’ 3
Vz[m %] (34.177)

Then for the second half of the Hamiltonian equations we have the vector form

_VH=p-= [%pTI—l (22)" ]‘1p] ~V (34.178)

The complete set of Hamiltonian equations for eq. (34.172), in block matrix form, describing
all the phase space change of the system is therefore

d

T
afp| (|7 (38) '] -0
dt

I‘lp

p
Q)

(34.179)
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This is a very general relation, much more so than required for the original two particle
problem. We have the same non-linearity that prevents this from being easily solved. If we want
a linear expansion around a phase space point to find an approximate first order solution, we
can get that applying the chain rule, calculating all the d/96, and 0/0Py, derivatives of the top
N rows of this matrix.

If we write
2= |P|-|P (34.180)
0 0O|_
=0
and the Hamiltonian equations eq. (34.179) as
P|_
— = A(p, ©) (34.181)
dt|@
Then the linearization, without simplifying or making explicit yet is
[1@ (22)' @] ~ V¢
7~ |12 \36; , oA 0A  0A B_A] z (34.182)
@ 51‘791 GPHN 091 (991\] =0 -

t=0

For brevity the constant term evaluated at ¢ = 0 is expressed in terms of the original angular
velocity vector from our Lagrangian. The task is now evaluating the derivatives in the first order
term of this Taylor series. Let us do these one at a time and then reassemble all the results
afterward.

So that we can discuss just the first order terms lets write A for the matrix of first order
derivatives in our Taylor expansion, as in

f(p.©) = f(p,.O)y + Aflpz +- - (34.183)

First, lets do the potential gradient.

A(V) = [0 [%

r,c] (34.184)

Next in terms of complexity is the first order term of @, for which we have

AT 'p) = [[I“ [‘5rc]r]c [a(ggj)p]c] (34.185)
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The ¢ over all rows r and columns c is the identity matrix and we are left with

AT 'p) =

_ -1
71 [agﬁc >pu (34.186)

Next, consider just the Py dependence in the elements of the row vector

[%pTI—] (S_QQ,)TI_]I’L (34.187)

We can take derivatives of this, and exploiting the fact that these elements are scalars, so they
. . T -1
equal their transpose. Also noting that A™!" = AT™", and 7 = I'T, we have

(3 (52 )= 5 (52) o+ 5 ol ) (32 2
=o' (5 (5 00) ),

o' s,

(34.188)
Since we also have B'B~! + B(B~') = 0, for invertible matrixes B, this reduces to
o (1 T7-1 90 T[—l =_ T(?(I_l)[6 ] (34.189)
oP, (2P © \ag,) © P)T 7P g, 1ol o

Forming the matrix over all rows r, and columns ¢, we get a trailing identity multiplying from
the right, and are left with

— 1 -1
[ﬁg&( pTr-! (09 )] [ pTdh )]r: [_%p]c (34.190)
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Okay, getting closer. The only thing left is to consider the remaining 6 dependence of eq. (34.187),
and now want the theta partials of the scalar matrix elements

d (1 ¢ (00\" _,
30 (52) )

T
ol (] )
‘ ! . (34.191)
ol (070N L glfod D (90 . (9Q) dd
2"7 90.06," p+p2( 36, (aer)f v (ae) 6. |P

QT 0T Hhor _,
= = =7
P's 2 50 Yl b 80, 6,

There is a slight asymmetry between the first and last terms here that can possibly be elimi-

nated. Using B~'" = —B"!B’B~!, we can factor out the 7~ 'p = © terms
o (1 ¢, (00\" ., (102" o1 o1
— | = — | I = — 34.192
696(2"[ (ae, P|=© 3008 "0 o6,)° B2

Is this any better? Maybe a bit. Since we are forming the matrix over all r, ¢ indices and can
assume mixed partial commutation the transpose can be dropped leaving us with

T _ - T 32Q
| (077 (52) 10| = |0 (k-1 %)0| (34.193)

We can now assemble all these individual derivatives

_laa™ 5T (1 _9°0 -1 af
[ a0, PL [9 (2 8000, — I 89 ae re
+ z

= -1 oI}
=0 T [ e )p]c

_|te(@) 6] -
o

=0
(34.194)
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We have both (7 ~1)/86) and 01 /96y derivatives above, which will complicate things when
trying to evaluate this for any specific system. A final elimination of the derivatives of the
inverse inertial matrix leaves us with

. . T 2 . 2
—101 1 0°0 I 7131 \gy_ 9°¢_
[I 5—009]6 [8 (2 aao0, ~ a6, L a5, © ~ agom e

= —1 | 7101 ¢
0 ! [I ]%G]L t=0
(34.195)

34.59.1 Single pendulum verification

Having accumulated this unholy mess of abstraction, lets verify this first against the previous
result obtained for the single planar pendulum. Then if that checks out, calculate these matrices
explicitly for the double and multiple pendulum cases. For the single mass pendulum we have

Q=7I=m" ,
(34.196)
¢ = —mglcosb
So all the 6 partials except that of the potential are zero. For the potential we have
i [cos 6 (34.197)
———| = —mglcos 34.
829 o 8 0
and for the angular gradient
~Vely = |-mglsin 6y (34.198)

Putting these all together in this simplest application of eq. (34.195) we have for the linear
approximation of a single point mass pendulum about some point in phase space at time zero:

5~ l—mgl. sin 90] N [ (1) —mgl cos 90} z (34.199)
) il 0

Excellent. Have not gotten into too much trouble with the math so far. This is consistent with
the previous results obtained considering the simple pendulum directly (it actually pointed out
an error in the earlier pendulum treatment which is now fixed (I had dropped the f, term)).
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34.5.9.2 Double pendulum explicitly

For the double pendulum, with 6 = 8; — 6,, and M = m; + m;, we have

2 i(6,-61) 2 —i0
_ Mll mzlzlle _ Mll . m2lzlle (34‘200)
myly 1261(01 —62) m2122 myly lzelé mzlzz
1.r(o0\" . 1 O
-0 |—=| O =-mi® )
2 (ael) p Lié 0 }
1 AT ei692
= 5mol1 i® - 34.201
| %] .

1 .
= §m2lllzi9192(616 —e

= —mZhbé] 92 sind

The 6, derivative is the same but inverted in sign, so we have most of the constant term
calculated. We need the potential gradient to complete. Our potential was

¢ = —Mllg COS 91 - I’nzlzg CcOS 92 (34.202)

So, the gradient is

Vo = (34.203)

mzlzg sin 92

Mllgsinel}

Putting things back together we have for the linear approximation of the two pendulum sys-
tem

. ~1 Ml sing
myl1126016; sin(6; — 92)[ ] _gl 1 sin 6,
1 .
- . i I (34.204)
o
)

=0

Where A is still to be determined (from eq. (34.195)).
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One of the elements of A are the matrix of potential derivatives. These are

[% % _ MllgCOSOl 0 (34205)
! 2 0 mylrg cos 6,

‘We also need the inertial matrix and its inverse. These are

2
I Ml malhly cos 6 (34.206)
m211 12 CcoS O m2122
1 2 -~
1 _ — m212 m21211 Ccos o (34.207)
L2 L2 ma(M — my c0s? 8) | —myly 1o cos 6 Mi;?
Since
0 _ -0
99 _ il ® e (34.208)
66] el(s 0
We have
0 90 I 0 e
— = —m
06, 06, 2 ed 0
0 00 Iy 0 e
—_—m
00,00, "o g
' (34.209)
0 00 Iy 0 e
—_—m
001 06, 2 e
0 00 . 0 e
—_— = —-m
00, 06, ae e’ 0

and the matrix of derivatives becomes

1. . . -
—@T 0 a—Q@) = mzlllzelgz COS(91 - 92)[ ! ! ] (34210)
1

2 06,06,
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For the remaining two types of terms in the matrix A we need 7~'01/36;. The derivative of
the inertial matrix is

o1 0 sind
= —m21112(5k1 —(Skz) . (34.21 1)
00k sino 0
Computing the product
1 % _ —m211 lz((skl - (Skz) mzlzz —lezll CcoS o 0 sin d
0k 11°L>my(M — my cos? 8) | —myly 1 cos & Ml,? siné
(34.212)
_ —mzl1lz(5k1 - 5k2) sin o —mzlgll Ccos o m2122
L2 L2 my(M — my cos? ) MI,? —mylql, cos &
We want the matrix of Z7-197 /96,0 over columns ¢, and this is
[I—la[/aeccé)] Ep— mylil, sin & . m212121 .COS 00, — mzlzzéz —mﬂ;l'l cos 60, + I’I’lzlzz.@z
¢ L7h*ma(M —mycos®6) |—MI76; + molilp cos 66,  M11=0y — mylyl cos 66,
(34.213)

Very messy. Perhaps it would be better not even bothering to expand this explicitly? The last
term in the matrix A is probably no better. For that we want

—£I‘1 g _ _m22112122(6cl - 502)(5r1 - 6r2) Sin2 0 {O 1] l—lezll coso mglzz }

96.~ 96, 1212 ma(M = my cos? 6) 1 0 Ml? —malyl; cos §
=m0t — 802)(61 — 80)sin? S | My —myly 1 cos §
112l my(M — my cos? §) —mylsl| cosé myly?
(34.214)
With a sandwich of this between @T and © we are almost there
101 __ 0T .. —m2 1’ (8e1 — 62) (61 — 6r2) SN2 8 . ) .
. pcedy ol Pl A g 1 = 9c2)(0r1 = 0r2) Sin (M11263 ~ 2mal 1 cos 6616, + +mal03)
agc 39r l] lz mz(M —my COS2 5)

(34.215)
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we have a matrix of these scalars over r, ¢, and that is

mzzllzlzz SiI'l2 0

re 1212 ma(M = my cos? 6)

. . . . -1 1
~@"UL 1L (M1,%6 - 2maly 1 cos 6616, + maly*63) l ]
c r ] _1

(34.216)

Putting all the results for the matrix A together is going to make a disgusting mess, so lets
summarize in block matrix form

| B C

s
I -B| _,

_ mzlllz sin & m21211 Cos 591 - lezzéz —mzlzll COS 591 + m212292
L2 L% my(M — my cos2 6) | —=M1,20, + malyl cos 860y M1126, — malyls cos 66,

mzzllzlzz SiIl2 0

112122m2(M —my COS2 5)

C= (mzl1lzé192 cos S + (Mllzéf iyl ly cos 6,65 + mzlzzég)) [_1 1 ]
1 -1

N Ml g cos 6, 0
0 mzlgg COS 92
1 _ 1 mylp? —malylq cos S
L2 L2 my(M — my 082 8) | —msli 1 cos & Mi,?
. -1 Ml sin6
molihifysin(@y — )| | —g| "
1 lez sin 92
b= )
01
62
(34.217)
where these are all related by the first order matrix equation
d
d—f = bl + Al_oz (34.218)

Wow, even to just write down the equations required to get a linear approximation of the two
pendulum system is horrendously messy, and this is not even trying to solve it. Numerical and
or symbolic computation is really called for here. If one elected to do this numerically, which
looks pretty much mandatory since the analytic way did not turn out to be simple even for just
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the two pendulum system, then one is probably better off going all the way back to eq. (34.179)
and just calculating the increment for the trajectory using a very small time increment, and do
this repeatedly (i.e. do a zeroth order numerical procedure instead of the first order which turns
out much more complicated).

34.5.10 Dangling mass connected by string to another

TODO.

34.5.11 Non-covariant Lorentz force

In [8], the Lagrangian for a charged particle is given as (12.9) as

L =—-mc? \/l—uz/c2+fu-A—e®. (34.219)
c

Let us work in detail from this to the Lorentz force law and the Hamiltonian and from the
Hamiltonian again to the Lorentz force law using the Hamiltonian equations. We should get
the same results in each case, and have enough details in doing so to render the text a bit more
comprehensible.

34.5.11.1 Canonical momenta

We need the conjugate momenta for both the Euler-Lagrange evaluation and the Hamiltonian,
so lets get that first. The components of this are

0 1

0L Ly-21ci+ 4a,

0x; 2 , c (34.220)

=myx; + —-A;.
c
In vector form the canonical momenta are then
e

P =ymu+ EA. (34.221)
34.5.11.2 Euler-Lagrange evaluation
Completing the Euler-Lagrange equation evaluation is the calculation of

v _ VL. (34.222)

o
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On the left hand side we have

dP_dom) | edA

34.223
dr ~ dr cdr (34229
and on the right, with implied summation over repeated indices, we have
VL = Ser(u-9iA) — V. (34.224)
C
Putting things together we have
d(ymu) 10A 1 (0A dx,
=—e|VO+-——+—-|— - -0k A
dt e( +c6t+c Ox, Ot &1 0A)
(34.225)
B V<I>+16A+1e 0Ap 04,
- cor ot Ox, Oxpl]
With
E=-Vd- 1% (34.226)
c ot

the first two terms are recognizable as the electric field. To put some structure in the remainder
start by writing

-2 =l . 4.227
axa  Ox  © (VA 3 )

The remaining term, with B = V X A is now

—Eehuaegang = Eeaube‘”’ng
¢ ¢ (34.228)

e
-uxB.
c

We are left with the momentum portion of the Lorentz force law as expected

doymw) _ (E lux B) . (34.229)
dt c
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Observe that with a small velocity Taylor expansion of the Lagrangian we obtain the approx-
imation

1 1
—mc® 1 -v2/ ~ -mc? (1 - —uz/cz) = —mu?® (34.230)

2 2

If that is our starting place, we can only obtain the non-relativistic approximation of the
momentum change by evaluating the Euler-Lagrange equations

domw) _ (E lux B) . (34.231)
dt c

That was an exercise previously attempting working the Tong Lagrangian problem set [25].

34.5.11.3 Hamiltonian

Having confirmed the by old fashioned Euler-Lagrange equation evaluation that our Lagrangian
provides the desired equations of motion, let us now try it using the Hamiltonian approach. First
we need the Hamiltonian, which is nothing more than

H=P-u-L (34.232)

However, in the Lagrangian and the dot product we have velocity terms that we must elim-
inate in favor of the canonical momenta. The Hamiltonian remains valid in either form, but to
apply the Hamiltonian equations we need H = H(P, x), and not H = H(u, P, x).

H=P-u+m* VI -/ - Su-A+ed. (34.233)
C
Or
H=u- (P - fA) +mENT -2/ + e®. (34.234)
C

We can rearrange eq. (34.221) for u

1
U= — (P - EA), (34.235)
my c

but y also has a u dependence, so this is not complete. Squaring gets us closer

—uZ/c2 2
w = &(p_ € A) , (34.236)
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and a bit of final rearrangement yields

» (P —eA)?
w=—_ (P )2- (34.237)
m=c - =

Writing p = P — eA/c, we can rearrange and find

mc
Vi-w?/c? = ——

34.238

\Jm2c? + p? ( )

Also, taking roots of eq. (34.237) we must have the directions of u and (P - ) differ only
by a rotation. From eq. (34.235) we also know that these are colinear, and therefore have

cP - eA
\/ 2, +(P eA)z' (34.239)
m?%c - -
c

This and eq. (34.238) can now be substituted into eq. (34.234), for

u=

2
H=—S (P - fA) +m2c| + e®. (34.240)
m2c? + p? c

Dividing out the common factors we finally have the Hamiltonian in a tidy form

H = V(P — eA)? + m2c* + e®. (34.241)

34.5.11.4 Hamiltonian equation evaluation

Let us now go through the exercise of evaluating the Hamiltonian equations. We want the start-
ing point to be just the energy expression eq. (34.241), and the use of the Hamiltonian equations
and none of what led up to that. If we were given only this Hamiltonian and the Hamiltonian

principle
OH
0Py, .
OoH . (34.242a)
= =Py,

dxi
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how far can we go?
For the particle velocity we have no @ dependence and get

3 c(cPy — eAy)
V(P - eA)? + m2c*
This is eq. (34.239) in coordinate form, one of our stepping stones on the way to the Hamil-

tonian, and we recover it quickly with our first set of derivatives. We have the gradient part
P = —VH of the Hamiltonian left to evaluate

Uy (34.243)

dP _ e(cPk - eAk)VAk

= — eV, 34.244)
di \/(cP —eA)? + m2ct (

Or
dpP _ e(@v/xk _ vq>) (34.245)
dt c

This looks nothing like the Lorentz force law. Knowing that P — eA/c is of significance
(because we know where we started which is kind of a cheat), we can subtract derivatives of
this from both sides, and use the convective derivative operator d/dt = d/0t +u - V (ie. chain
rule) yielding

Tpoeaoy=e[-12 Ly v+ “va,-vo. (34.246)
dt cot ¢ c

The first and last terms sum to the electric field, and we seen evaluating the Euler-Lagrange
equations that the remainder is u; VA; — (u- V)A = u X (V X A). We have therefore gotten close
to the familiar Lorentz force law, and have

d u
d—t(P—eA/c) = e(E+ p xB). (34.247)

The only untidy detail left is that P — eA/c does not look much like ymu, what we recog-
nize as the relativistically corrected momentum. We ought to have that implied somewhere and
eq. (34.243) looks like the place. That turns out to be the case, and some rearrangement gives
us this directly

P_%A - mu
S —m (34.248)
This completes the exercise, and we have now obtained the momentum part of the Lorentz
force law. This is still unsatisfactory from a relativistic context since we do not have momentum
and energy on equal footing. We likely need to utilize a covariant Lagrangian and Hamiltonian
formulation to fix up that deficiency.
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34.5.12  Covariant force free case

TODO.

34.5.13 Covariant Lorentz force

TODO.



LINEAR TRANSFORMATIONS THAT RETAIN TWO BY TWO
POSITIVE DEFINITENESS

35.1 MOTIVATION

Purely for fun, lets study the classes of linear transformations that retain the positive definiteness
of a diagonal two by two quadratic form. Namely, the Hamiltonian

H=P*+Q? (35.1)

under a change of variables that mixes position and momenta coordinates in phase space

@ B
a b

p
q

z =

P = Az (35.2)
0

We want the conditions on the matrix A such that the quadratic form retains the diagonal
nature
H=P+Q =p’+q (35.3)

which in matrix form is

T

H=72"2=7"7 (35.4)

So the task is to solve for the constants on the matrix elements for

I=ATA =

¢ “} [“ ﬁ‘ (35.5)
B blla b

Strictly speaking we can also scale and retain positive definiteness, but that case is not of
interest to me right now so I will use this term as described above.
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35.2 GUTS

The expectation is that this will necessarily include all rotations. Will there be any other allow-
able linear transformations? Written out in full we want the solutions of

1 2 2
0 _|o alla B: a”+a aBf+ab (35.6)
0 1 B blla b af+ab B> +b?
Written out explicitly we have three distinct equations to reduce
l=ad*+d° (35.7)
1=p2+ b (35.8)
O=af+ab (35.9)
Solving for a in eq. (35.9) we have
a=-2
b
=
2
214 (-P
= (”( b)) (35.10)
2
_¥ 2 0,
)
g
So, provided b # 0), we have a first simplifying identity
a’ = b’ (35.11)
Written out to check, this reduces our system of equations
1 2+a? +
0 _|a al|la B _|a +a aff +aa (35.12)
0 1 B za|la =xa af+ax B’ +a®
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SO our equations are now

l=ad*+d* (35.13)
1= +a? (35.14)
0=aB+a) (35.15)

There are two cases to distinguish here. The first is the more trivial @ = 0 case, for which we
find > = 8% = 1. For the other case we have

B=%a (35.16)

Again, writing out in full to check, this reduces our system of equations

10_a/aa¢a_a/2+a2 0
0 1 Fa =zalla =za 0 a® + a?

We have now only one constraint left, and have reduced things to a single degree of freedom

(35.17)

l=ad*+d* (35.18)
Or
a=(1-d»)"? (35.19)

We have already used =+ to distinguish the roots of @ = +b, so here lets imply that this square
root can take either positive or negative values, but that we are treating the sign of this the same
where ever seen. Our transformation, employing a as the free variable is now known to take any
of the following forms

) ) ~
A (1 -a®)'/? Fa
a +(1 —a®)'/?
0 +1
- (112 0‘ (35.20)
= >a ﬂ
a 0O
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The last of these (the b = 0 case from earlier) was not considered, but doing so one finds that
it produces nothing different from the second form of the transformation above. That leaves us
with two possible forms of linear transformations that are allowable for the desired constraints,
the first of which screams for a trigonometric parametrization.

For |a| < 0 we can parametrize with a = sin6. Should we allow complex valued linear
transformations? If so a = cosh(6) is a reasonable way to parametrize the matrix for the a > 0
case. The complete set of allowable linear transformations in matrix form are now

A= >11/2c039 Fsind
| sind +12cos @
[ N1/2 o -
A= (=1)"/“sinh @ Fcoshé (3521)
| coshd +(-1)"/?sinh 9
>0 +1
A=
_11/2 0}

There are really four different matrices in each of the above. Removing all the shorthand for
clarity we have finally

A€

—_—

sind —cosé sind cosd

_COSH —sinf| |—cos® —sinf| [cos@ sinb —cosf sinf
’ sin @ —cos9’ ’ ’

|sinf cosé
_i sinh® —coshf| |—isinh@ —cosh@| [isinhf® cosh® —isinh# cosh@
| coshf  isinh@ | cosh® —isinh6| |cosh® —isinh6| | cosh® isinh6|

A S

The last four possibilities are now seen to be redundant since they can be incorporated into the
0 = +r/2 cases of the real trig parameterizations where sinf = +1, and cos 8 = 0. Employing
a 6 = —0 change of variables, we find that two of the hyperbolic parameterizations are also
redundant and can express the reduced solution set as

(35.22)

[cos@ —sine} [cos@ sin@‘ [isinh& —cosh@] [isinh@ coshe}
A€t ,* , £ ,

+
sinf cos@ sinf —cos@ coshd isinh@ coshf —isinhé@
(35.23)
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I suspect this class of transformations has a name in the grand group classification scheme,
but I do not know what it is.






LAGRANGIAN AND EULER-LAGRANGE EQUATION EVALUATION
FOR THE SPHERICAL N-PENDULUM PROBLEM

Abstract. The dynamics of chain like objects can be idealized as a multiple pendulum, treating
the system as a set of point masses, joined by rigid massless connecting rods, and frictionless
pivots. The double planar pendulum and single mass spherical pendulum problems are well
treated in Lagrangian physics texts, but due to complexity a similar treatment of the spherical N-
pendulum problem is not pervasive. We show that this problem can be tackled in a direct fashion,
even in the general case with multiple masses and no planar constraints. A matrix factorization
of the kinetic energy into allows an explicit and compact specification of the Lagrangian. Once
that is obtained the equations of motion for this generalized pendulum system follow directly.

36.1 INTRODUCTION

Derivation of the equations of motion for a planar motion constrained double pendulum system
and a single spherical pendulum system are given as problems or examples in many texts cover-
ing Lagrangian mechanics. Setup of the Lagrangian, particularly an explicit specification of the
system Kinetic energy, is the difficult aspect of the multiple mass pendulum problem. Each mass
in the system introduces additional interaction coupling terms, complicating the kinetic energy
specification. In this paper, we use matrix algebra to determine explicitly the Lagrangian for the
spherical N pendulum system, and to evaluate the Euler-Lagrange equations for the system.

It is well known that the general specification of the kinetic energy for a system of inde-
pendent point masses takes the form of a symmetric quadratic form [5] [6]. However, actually
calculating that energy explicitly for the general N-pendulum is likely thought too pedantic for
even the most punishing instructor to inflict on students as a problem or example.

Given a 3 x 1 coordinate vector of velocity components for each mass relative to the position
of the mass it is connected to, we can factor this as a (3 X 2)(2 x 1) product of matrices where
the 2 X 1 matrix is a vector of angular velocity components in the spherical polar representation.
The remaining matrix factor contains all the trigonometric dependence. Such a grouping can
be used to tidily separate the kinetic energy into an explicit quadratic form, sandwiching a
symmetric matrix between two vectors of generalized velocity coordinates.
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This paper is primarily a brute force and direct attack on the problem. It contains no new
science, only a systematic treatment of a problem that is omitted from mechanics texts, yet
conceptually simple enough to deserve treatment.

The end result of this paper is a complete and explicit specification of the Lagrangian and
evaluation of the Euler-Lagrange equations for the chain-like N spherical pendulum system.
While this end result is essentially nothing more than a non-linear set of coupled differential
equations, it is believed that the approach used to obtain it has some elegance. Grouping all
the rotational terms of the kinetic into a symmetric kernel appears to be a tidy way to tackle
multiple discrete mass problems. At the very least, the calculation performed can show that a
problem perhaps thought to be too messy for a homework exercise yields nicely to an organized
and systematic attack.

36.2 DIVING RIGHT IN

We make the simplifying assumptions of point masses, rigid massless connecting rods, and
frictionless pivots.

36.2.1 Single spherical pendulum

Using polar angle 6 and azimuthal angle ¢, and writing Sy = sin @, C4 = cos ¢ and so forth, we
have for the coordinate vector on the unit sphere

CyS
£=[5,5]- (36.1)
Cy

The Lagrangian for the pendulum is then

1 s
L= Emlfo — mglCy. (36.2)

This is somewhat unsatisfying since the unit vector derivatives have not been evaluated. Do-
ing so we get

CyColl — S yS 4b
B ={$5Col+CyS |- (363)
~S4d
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This however, is an ugly beastie to take the norm of as is. It is straightforward to show that
this norm is just

tF =6+ 5597, (36.4)

however, the brute force multiplication that leads to this result is not easily generalized to the
multiple pendulum problem. Instead of actually expanding this now, lets defer that until later
and instead write for a coordinate vector of angular velocity components

():{?l (36.5)
¢

Now the unit polar derivative eq. (36.3) can be factored as

t=AT0
A =|CoCo SeCo —So| (36.6a)
5489 CySy O

Our Lagrangian now takes the explicit form

1

L= EleTAATQ —mglCy
(36.7a)
aam =1 O
0 S

36.2.2 Spherical double pendulum

Before generalizing to N links, consider the double pendulum. Let the position of each of the
k-th mass (with k = 1,2) be

k
U = Ui—1 + lkf‘k = Z lkf'k (36.8)
=1

The unit vectors from the origin to the first mass, or from the first mass to the second have
derivatives

= AT Oy, (36.9)
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where
As C¢kC9k S ¢kC9k _SGk]
=S650, CyS 0
B Ok i Ok (36.10)
6
O =l “l.
P
Since
k
= > 1;AT0;, (36.11)
=1
The squared velocity of each mass is
k
dllk 2 . .
—| = Zl 11,07A,ATO,. (36.12)
r,s=

To see the structure of this product, it is helpful to expand this sum completely, something
that is feasible for this N = 2 case. First for £ = 1 we have just

dlll 2

| = 2OTAATO,, (36.13)

and for k£ = 2 we have

dllz 2

dt

= Z%GTAlAF{@l + l%@gAzAg®2 + l]lz@TA1A§®2 + lzll @gAQAI®1

= (BOTa.AT + 1211®TA2AT) O + (5034247 + 1hO] 4147 ) O

=lof e3l| |

<H

lllelAT
AA}

BA AT
lgllAzAT
BAAT  L1LAAY||©)
Ll A AT BAAT ||©;

s (36.14)




Observe that these can be summarized by writing

B[t o
Bg = [llAF{ leg]

The kinetic energy for particle one is

1. :
K = zml@TBle@)

miPA1AT 0
0 0

=" 0,

and for the second particle

1 :
K> = zsz)TBng@

2 T T
BAAT  hhAAT |

I .
my®T
LI A AT BAAT

2

Summing these we have

Lot {(m1 +m)BAIAT mohbAAT | o

2 mbli A2 AT myBAAT

For the mass sums let

2
Mk = Z mj,
Jj=k

SO

mBAIAT  palibAAY )

1. )
K=-07
2l liA2AT  pal3A2A7

2

If the matrix of quadradic factors is designated Q, so that

36.2 DIVING RIGHT IN

(36.15)

(36.16)

(36.17)

(36.18)

(36.19)

(36.20)
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1. .
K= E@TQ®, (36.21)
then the (i,j) element of the matrix Q is given by
Qij = Hmax(i pliljAA] - (36.22)

For the potential energy, things are simplest if that energy is measured from the z = 0 plane.
The potential energy for mass 1 is

T] = m1g11 COS 01, (36.23)
and the potential energy for mass 2 is
T, = npg (I cos By +1rcos0y). (36.24)

The total potential energy for the system is

T = (my +my)gly cos 81 + mygl, cos b
2

= Z ,ukglk COS Hk.
k=1

(36.25)

36.2.3 N spherical pendulum

Having writtin things out explictly for the two particle case, the generalization to N particles is

straightforward
o'=[of of - o]
Qij = Mmax(,plil inAJT-
1. .
K= 5@TQ®
zN: (36.26)
Mk = m; 56.
=k

N
b= g Zﬂklk COS Qk
k=1

L=K-.

After some expansion one can find that the block matrices A,-AJT. contained in Q are

Cy-:Co.Co, +S0.S0; —S¢;-4.CoSe; .

AA] =
S¢;-¢:Co;S o, Co-¢:S6:S6;

(36.27)



36.3 EVALUATING THE EULER-LAGRANGE EQUATIONS

The diagonal blocks are particularly simple and have no ¢ dependence

AAT =

1 0
0 sin? Qi] (50.28)

36.3 EVALUATING THE EULER-LAGRANGE EQUATIONS
It will be convenient to group the Euler-Lagrange equations into a column vector form, with a

column vector of generalized coordinates and and derivatives, and position and velocity gradi-
ents in the associated phase space

a=[q] (36.29)
a=|g| (36.29b)
VL = [%] (36.29¢)

VoLl = [aq,] (36.29d)

In this form the Euler-Lagrange equations take the form of a single vector equation

d
VoL =—VoL. (36.30)

We are now set to evaluate these generalized phase space gradients. For the acceleration terms
our computation reduces nicely to a function of only Q

i[)_.[j 3 1 d - T (9@
dtog,  2dt\ o6, 0a (36.31)
d .
= i (o] oJLQ@)’
and

- T .

doL 1d(o0° . .1 00

— = == 00+0 00—

dtdp, 2d (aqﬁa 8%] (36.32)

379



380 LAGRANGIAN AND EULER-LAGRANGE EQUATION EVALUATION FOR THE SPHERICAL N-PENDULUM PROBLEM

The last groupings above made use of Q = O7, and in particular (Q + 0hH/2 = 0. We
can now form a column matrix putting all the angular velocity gradient in a tidy block matrix

representation
L
A — OC
VoL = oL = 00. (36.33)
aér r

A small aside on Hamiltonian form. This velocity gradient is also the conjugate momentum
of the Hamiltonian, so if we wish to express the Hamiltonian in terms of conjugate momenta,
we require invertability of Q at the point in time that we evaluate things. Writing

Po =VgL, (36.34)

and noting that (0~")T = Q~!, we get for the kinetic energy portion of the Hamiltonian

1
K = EP@TQ_IP@. (36.35)

Now, the invertiblity of Q cannot be taken for granted. Even in the single particle case we do
not have invertiblity. For the single particle case we have

0 sin’6

Q=mlz{1 0 ] (36.36)

so at @ = +m/2 this quadratic form is singular, and the planar angular momentum becomes a
constant of motion.

Returning to the evaluation of the Euler-Lagrange equations, the problem is now reduced to
calculating the right hand side of the following system

oL
00,
oL
96,

% (06) = , (36.37)

r

With back substitution of eq. (36.27), and eq. (36.28) we have a complete and explicit ma-
trix expansion of the left hand side. For the right hand side taking the 6, and ¢, derivatives
respectively we get

oL 1.7 oa. T . .
—=--0 [ﬂmax(w)z,zc(%AI +A, % )] © — gual, sin b, (36.38a)
594 2 a a rc




36.3 EVALUATING THE EULER-LAGRANGE EQUATIONS

oL 1.7
EYS = Ee [,umax(r,c)lrlc (%AT Arg;:

)] 0. (36.38b)
rc

So to proceed we must consider the A,A} partials. A bit of thought shows that the matrices
of partials above are mostly zeros. Illustrating by example, consider 0Q/d6,, which in block
matrix form is

0 LnhhA f;’;zT 0 . 0
90 %/121211 %jAT 2#21212 (Az oAty %322 AT) %#31213 3222 A .. %,ulelN ‘3’222 Ay
36 = 0 Vsl lhAs 22 0 0

0 : 0 .. 0

0 LunlvbAy 22" 0 . 0

(36.59)

Observe that the diagonal term has a scalar plus its transpose, so we can drop the one half
factor and one of the summands for a total contribution to .L/96; of just

T 8A2
> 06,

Now consider one of the pairs of off diagonal terms. Adding these we contributions to 9.£/06,
of

pahh? @) —=A7O,. (36.40)

1 A, T . 1 A 1 A, T A, T\ .
M21112®1A16 2 0, + ,Uzlzll@;a 2AT@)l ﬂ21112@1 Ala 2 Ala 2 0,
2 00, 2 00, 00, 06,
P (36.41)
. T 2 .
= /121112@1141 % @2

This has exactly the same form as the diagonal term, so summing over all terms we get for
the position gradient components of the Euler-Lagrange equation just

6£ AA,T .
Z Hmax(k, a)lkl G)kAk 00, @ — 8Maly sin by, (36.42)
and
oL oA, T
Z Hmax(k.a)lkla ®kAk .. (36.43)

a¢a a¢a
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The only thing that remains to do is evaluate the A 0A,/ 6¢aT matrices.
Utilizing eq. (36.27), one obtains easily

AkaA,T _|S6.Co = C.56,.Cp—9, Co.Co,S -,
a@r S ekS erS ¢k_¢r S Bk Cgr C¢k_¢r
and
AkaA,T _|CaCo.Sp-9. —CaS6,Co—g,
6¢r S Ok Cer C¢k_¢r S HkS erS dk—r

The right hand side of the Euler-Lagrange equations now becomes

Ul sin 6, ! .
0 r

~T 94, T
ﬂmax(k,r)lklr(ak Ay 30, 0,

V@-L = T T.
Mmax(k,r)lker)kAkg%: 0,

-8

r

k

(36.44)

(36.45)

(36.46)

Between eq. (36.46), eq. (36.33), and a few other auxiliary relations, all above we have com-
pleted the task of evaluating the Euler-Lagrange equations for this multiple particle distinct
mass system. Unfortunately, just as the simple planar pendulum is a non-linear system, so is
this. Possible options for solution are numerical methods or solution restricted to a linear ap-

proximation in a small neighborhood of a particular phase space point.
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36.4 SUMMARY

Looking back it is hard to tell the trees from the forest. Here is a summary of the results and
definitions of importance. First the Langrangian itself

Mk = Z mj
=k
K
O = ﬂ
| Pk
T _
o'=|e’ of ... o
Ay = CsCo SpCo —Sg, (36.472)
,_S ¢kS9k C¢k59k 0
0= [,Umax(r,c)lrchrAI]rC
1. .
K= E@)TQ@
N
P = 8 Z/Jklk COS 9k
k=1
L=K-o.
Evaluating the Euler-Lagrange equations for the system, we get
=T, 04, T
d . O, A5 O . 1 d :
OZVQ-L—_(VGL):Z ,umax(k,r)kr‘]r} kger.r — gl sin6, ——(Q@)
dt T |[Hmaxtn il O Arggs O] of], dt

(36.48)
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Making this explicit requires evaluation of some of the matrix products. With verification in
multisphericalPendulum.nb, those are

C¢(' _¢r Cgr C@(, + S er S 00 _S ¢(' _¢r Cgr S 95

AAL =
S¢¢'_¢r Ce('Ser C¢c_¢rS6rS ec

A aAr ! S O C@, - CGkS 6r C¢k_¢r Cgk CerS dk—r

k (36.49)
agr L S ng grS ¢k_¢r S gk Cgr C¢k_¢r

AkaA,T: Co.Co,S -9, —Ca.S0,Co-9,
8¢r ,S Ok Cer C¢k_¢r S HkS erS dk—r

36.5 CONCLUSIONS AND FOLLOWUP

This treatment was originally formulated in terms of Geometric Algebra, and matrices of mul-
tivector elements were used in the derivation. Being able to compactly specify 3D rotations in
a polar form and then factor those vectors into multivector matrix products provides some inter-
esting power, and leads to a structured approach that would perhaps not be obvious otherwise.

In such a formulation the system ends up with a natural Hermitian formulation, where the
Hermitian conjugation operations is defined with the vector products reversed, and the matrix
elements transposed. Because the vector product is not commutative, some additional care is
required in the handling and definition of such matrices, but that is not an insurrmountable
problem.

In retrospect it is clear that the same approach is possible with only matrices, and these notes
are the result of ripping out all the multivector and Geometric Algebra references in a somewhat
brute force fashion. Somewhat sadly, the “pretty”” Geometric Algebra methods originally being
explored added some complexity to the problem that is not neccessary. It is common to find
Geometric Algebra papers and texts show how superior the new non-matrix methods are, and
the approach originally used had what was felt to an elegant synthesis of both matrix and GA
methods. It is believed that there is still a great deal of potential in such a multivector matrix
approach, even if, as in this case, such methods only provide the clarity to understand how to
tackle the problem with traditional means.

Because the goals changed in the process of assembling these notes, the reader is justified
to complain that this stops prematurely. Lots of math was performed, and then things just end.
There ought to be some followup herein to actually do some physics with the end results ob-
tained. Sorry about that.



1D FORCED HARMONIC OSCILLATOR. QUICK SOLUTION OF

NON-HOMOGENEOUS PROBLEM

37.1 MOTIVATION

In [2] equation (25) we have a forced harmonic oscillator equation

2

mx + mw~x = y(t).

The solution of this equation is provided, but for fun lets derive it.

37.2 GUTS
Writing
wu = X,

we can rewrite the second order equation as a first order linear system

i+ wx =y(t)/mw

x—wu=0,

Or, with X = (u, x), in matrix form

1
-1 0

X+w X =

y(@®)/mw
o |

(37.1)

(37.2)

(37.3)

(37.4)

The two by two matrix has the same properties as the complex imaginary, squaring to the

identity matrix, so the equation to solve is now of the form

X +wiX =T.

(37.5)
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The homogeneous part of the solution is just the matrix

3;()
) i ( )
0

where A is a two by one column matrix of constants. Assuming for the specific solution
X = e7™A(t), and substituting we have

YA = T(1). (37.7)

This integrates directly, fixing the unknown column vector function A(r)

A(r) = A(0) + f T (7). (37.8)
0

Thus the non-homogeneous solution takes the form

!
X = e “TA0) + f ¢TI (7). (37.9)
0

Note that A(0) = (Xo/w, xo). Multiplying this out, and discarding all but the second row of
the matrix product gives x(¢), and Feynman’s equation (26) follows directly.



INTEGRATING THE EQUATION OF MOTION FOR A ONE
DIMENSIONAL PROBLEM

38.1 MOTIVATION
While linear approximations, such as the small angle approximation for the pendulum, are often

used to understand the dynamics of non-linear systems, exact solutions may be possible in some
cases. Walk through the setup for such an exact solution.

38.2 GuUTS

The equation to consider solutions of has the form

d{( dx oU(x
—|m—]=- ( ). (38.1)
dt\ dt Ox

We have an unpleasant mix of space and time derivatives, preventing any sort of antidiffer-
entiation. Assuming constant mass m, and employing the chain rule a refactoring in terms of

velocities is possible.

d(dv)_dvd (dv
dit\dr)  dtdx\dr

38.2
_1d (dxY 082
© 2dx\dt
The one dimensional Newton’s law Equation 38.1 now takes the form
2
d (dx 2 0U(x)
— = =— . 38.3
dx ( dt ) m  0x (38.3)
This can now be antidifferentiated for
2
d 2
(—x) - Z(H-U)). (38.4)
dt m
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INTEGRATING THE EQUATION OF MOTION FOR A ONE DIMENSIONAL PROBLEM

What has now been accomplished is the removal of the second derivative. Having done so,
one can see that this was a particularly dumb approach, since Equation 38.4 is nothing more
than the Hamiltonian for the system, something more obvious if rearranged slightly

1
H=§m%+uuy (38.5)

We could have started with a physics principle instead of mechanically plugging through
calculus manipulations and saved some work. Regardless of the method used to get this far, one
can now take roots and rearrange for

di=— (38.6)

- :
\ —H-UW)
m

We now have a differential form implicitly relating time and position. One can conceivably
integrate this and invert to solve for position as a function of time, but substitution of a more
specific potential is required to go further.

m:mmfx——ﬂ——. (38.7)
y

=x0 (2
\ —H-U®©)
m



NOTES ON GOLDSTEIN’S ROUTH’S PROCEDURE

39.1 MOTIVATION

Attempting study of [5] section 7-2 on Routh’s procedure has been giving me some trouble. It
was not “sinking in”, indicating a fundamental misunderstanding, or at least a requirement to
work some examples. Here I pick a system, the spherical pendulum, which has the required
ignorable coordinate, to illustrate the ideas for myself with something less abstract.

We see that a first attempt to work such an example leads to the wrong result and the reasons
for this are explored.

39.2 SPHERICAL PENDULUM EXAMPLE

The Lagrangian for the pendulum is

1 , .
L= Emr2 (92 + ¢2 sin® 6) —mgr(1l + cos9), (39.1)

and our conjugate momenta are therefore

0 ,
po = a—é: = mr?d
s (39.2)
22
= — = mr-sin” 6¢.
Py =5 p @
That is enough to now formulate the Hamiltonian H = fpg + ¢py — L, which is
H=H® ) ! ( )2+—1 (ps)? +mgr(1 + cos 6) (39.3)
- . Do, = mgr cos 6). .
Po-Pe) = 52 P8 2mr? sin® 0 be §
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390 NOTES ON GOLDSTEIN’S ROUTH S PROCEDURE

We have got the ignorable coordinate ¢ here, since the Hamiltonian has no explicit depen-
dence on it. In the Hamiltonian formalism the constant of motion associated with this comes as
a consequence of evaluating the Hamiltonian equations. For this system, those are

OH |
90 Pe
OH |
¢ = =Dy
0H . (39.4)
= _9
dpe
OH .
6p¢ ’
Or, explicitly,
cos 8
—pg = —mgrsinf - —— )2
be 8 2mr? sin’ 9(p¢
—ps =0
, 1 (39.5)
0=—po
mr
b= 1
mr? sin? 9p¢.

The second of these provides the integration constant, allowing us to write, py = «. Once this
is done, our Hamiltonian example is reduced to one complete set of conjugate coordinates,

1

H(0, pg, @) = 2—(179)2 +

> a® + mgr(1 + cos 0). (39.6)
mr

2mr? sin?

Goldstein notes that the behavior of the cyclic coordinate follows by integrating

OH
_oH 39.7
. (39.7)

In this example @ = py, so this is really just one of our Hamiltonian equations

n

. OH
é = (39.8)

Iy’
Okay, good. First part of the mission is accomplished. The setup for Routh’s procedure no

longer has anything mysterious to it.



39.3 SIMPLER PLANAR EXAMPLE

Now, Goldstein defines the Routhian as

R=pigi - L, (39.9)

where the index i is summed only over the cyclic (ignorable) coordinates. For this spherical
pendulum example, this is g; = ¢, and p; = mr? sin® 6¢, for

1 o
R= Emrz (=67 + ¢ sin” 6) + mgr(1 + cos 6). (39.10)

Now, we should also have for the non-cyclic coordinates, just like the Euler-Lagrange equa-
tions

R = i@_R (39.11)
06  dt 90
Evaluating this we have
; d .
mr? sin @ cos 0¢* — mgrsin 6 = 7 (—mrQG) . (39.12)

It would be reasonable now to compare this the 8 Euler-Lagrange equations, but evaluating
those we get

. d ,
mr? sin @ cos 0¢* + mgrsin 6 = 7 (mrzé) . (39.13)

Bugger. We have got a sign difference on the ¢? term.

39.3 SIMPLER PLANAR EXAMPLE

Having found an inconsistency with Routhian formalism and the concrete example of the spher-
ical pendulum which has a cyclic coordinate as desired, let us step back slightly, and try a
simpler example, artificially constructed

L= %m(fcz +32) = V(). (39.14)
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392 NOTES ON GOLDSTEIN’S ROUTH S PROCEDURE

Our Hamiltonian and Routhian functions are

1
H = Em(x2 +32) + V(%)

1
R= Em(—x2 +32) + V(%)

For the non-cyclic coordinate we should have

o _ d 3R
Ox  dt 0x’
which is

d
V'(x) = o (—mx)

(39.15)

(39.16)

(39.17)

Okay, good, that is what is expected, and exactly what we get from the Euler-Lagrange equa-
tions. This looks good, so where did things go wrong in the spherical pendulum evaluation.

39.4 POLAR FORM EXAMPLE

The troubles appear to come from when there is a velocity coupling in the Kinetic energy term.
Let us try one more example with a simpler velocity coupling, using polar form coordinates
in the plane, and a radial potential. Our Lagrangian, and conjugate momenta, and Hamiltonian,

respectively are

L= %m (1'”2 + r292) - V(r)

pr = mr
po = mr’d
1 2 1 2
H== (pr)”+ —(pe)” | + V(1).
m r

Evaluation of the Euler-Lagrange equations gives us the equations of motion

(mir) = mré? — V'(r)

—

(39.18)

(39.19)



39.4 POLAR FORM EXAMPLE

Evaluation of the Hamiltonian equations 6,H = ¢, 0, = —p should give the same results.
First for r this gives

1

;pr =7
1 , , . (39.20)
—ﬁ(Pe) +Vi(r) = —p,.

The first just defines the canonical momentum (in this case the linear momentum for the
radial aspect of the motion), and the second after some rearrangement is

mr(@)* = V'(r) = d% (mr), (39.21)

which is consistent with the Lagrangian approach. For the 6 evaluation of the Hamiltonian
equations we get

o

=0
mr?

(39.22)
0= —pg.

The first again, is implicitly, the definition of our canonical momentum (angular momentum
in this case), while the second is the conservation condition on the angular momentum that we
expect associated with this ignorable coordinate. So far so good. Everything is as it should be,
and there is nothing new here. Just Lagrangian and Hamiltonian mechanics as usual. But we
have two independently calculated results that are the same and the Routhian procedure should
generate the same results.

Now, on to the Routhian. There we have a Hamiltonian like sum of pg terms over all cyclic co-
ordinates, minus the Lagrangian. Here the 6 coordinate is observed to be that cyclic coordinate,
so this is

R=p99—£

. 1 ,
22 2, 25
mr-6° — Em (r +r°6 )+ V(r) (39.23)

1 , 1
Emrzgz - Emi"2 + V(r).

Now, this Routhian can be written in a few different ways. In particular for the # dependent
term of the kinetic energy we can write

1 o, 1 5 1,
—mrg° = =0 39.24
Fmr 2 (Po)” = 56po ( )
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NOTES ON GOLDSTEIN’S ROUTH S PROCEDURE

Looking at the troubles obtaining the correct equations of motion from the Routhian, it ap-
pears likely that this freedom is where things go wrong. In the Cartesian coordinate description,
where there was no coupling between the coordinates in the kinetic energy we had no such free-
dom. Looking back to Goldstein, I see that he writes the Routhian in terms of a set of explicit
variables

N

R = R(QI,‘ qns P15 'ps’q.s+1a ot '(:In’t) = qupl _-£ (3925)
i=1

where ¢, - - - g5 were the cyclic coordinates. Additionally, taking the differential he writes

N S n
. oL oL . 0L
dR = Z gidpi — Td% - qui - Edt
=1 i1 4 =1 i (39.26)
OR OR OR OR
= —dpi+ —dq,+ —dg; + —dt,
ap " g T 5T
with sums implied in the second total differential. It was term by term equivalence of these
that led to the Routhian equivalent of the Euler-Lagrange equations for the non-cyclic coordi-
nates, from which we should recover the desired equations of motion. Notable here is that we
have no §; for any of the cyclic coordinates g;.
For this planar radial Lagrangian, it appears that we must write the Routhian, specifically as
R = R(r,6, py, ), so that we have no explicit dependence on the radial conjugate momentum.

That is

R =

1 1
o (Po)* — zmi"z + V(). (39.27)

As a consequence of eq. (39.26) we should recover the equations of motion by evaluating
O0R/or = 0, and doing so for eq. (39.27) we have

OoR 1 , d

V() - — —— (-mi) =0. 39.28

S = V()= —=(po) = — (-mi) (33.28)
Good. This agrees with our result from the Lagrangian and Hamiltonian formalisms. On the

other hand, if we evaluate this variational derivative for

1 5., 1
R = 5mr292 - Emﬂ + V(r), (39.29)



39.4 POLAR FORM EXAMPLE

something that is formally identical, but written in terms of the “wrong” variables, we get a
result that is in fact wrong

SR d
— = "r)— — (-=mi) = 0. 39.30
5 mré~+ V' (r) o (-mi) =0 ( )

Here the term that comes from the # dependent part of the Kinetic energy has an incorrect sign.

This was precisely the problem observed in the initial attempt to work the spherical pendulum
equations of motion starting from the Routhian.

What variables to use to express the equations is a rather subtle difference, but if we do not
get that exactly right the results are garbage. Next step here is go back and revisit the spherical
polar pendulum and verify that being more careful with the variables used to express R allows
the correct answer to be obtained. That exercise is probably for a different day, and probably a
paper only job.

Now, I note that Goldstein includes no problems for this Routhian formalism now that I look,
and having worked an example successfully and seeing how we can go wrong, it is not quite
clear what his point including this was. Perhaps that will become clearer later. I had guess that
some of the value of this formalism could be once one attempts numerical solutions and finds
the cyclic coordinates as a result of a linear approximation of the system equations around the
neighborhood of some phase space point.
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HOOP AND SPRING OSCILLATOR PROBLEM

40.1 MOTIVATION

Nolan was attempting to setup and solve the equations for the following system fig. 40.1

Figure 40.1: Coupled hoop and spring system
One mass is connected between two springs to a bar. That bar moves up and down as forced
by the motion of the other mass along a immovable hoop. While Nolan did not include any
gravitational force in his potential terms (ie: system lying on a table perhaps) it does not take

much more to include that, and I will do so. I also include the distance L to the center of the
hoop, which I believe required.

40.2 GuTs

The Lagrangian can be written by inspection. Writing x = x1, and x; = Rsin 6, we have

397



398 HOOP AND SPRING OSCILLATOR PROBLEM

1 1 | 1
L= iml)'cz + §m2R292 - Eklxz - ikZ(L + Rsinf — )c)2 —migx —mpg(L + Rsin6).
(40.1)
Evaluation of the Euler-Lagrange equations gives
mixX =—-kix+ky(L+Rsinf—x)—mg (40.2a)
myR*0 = —ky(L + R sin 6 — x)R cos @ — mogR cos 6, (40.2b)
or
ki+ky kyRsin6 koL
-y th Ry 2 (40.32)
mi mi mi
i 1 {k ,
0=——[— (L+Rsinf—x)+g|cosé. (40.3b)
R ny

Just like any other coupled pendulum system, this one is non-linear. There is no obvious way
to solve this in closed form, but we could determine a solution in the neighborhood of a point
(x,0) = (x0,6p). Let us switch our dynamical variables to ones that express the deviation from
the initial point x = x — xg, and 80 = 8 — 6y, with u = (6x)’, and v = (66)’. Our system then
takes the form

ki + k koR sin @ koL
W= f(x,0) = —x T2 2R (40.42)

n n

, 1 (k .
vV =g(x,0)=—=|— (L+Rsinf—x)+g|cosé (40.4Db)
R \m»

x) =u (40.4¢)
66) = v. (40.4d)

We can use a first order Taylor approximation of the form f(x, 8) = f(xg, 6p) + fx(x0,60)(0x) +
Jo(x0,600)(06). So, to first order, our system has the approximation

ki +ky kyRsin6 koL ki+ky kR &
W= g2 R R Bt R2RCOST0 s (40.52)
mi mi mi mi
1(k k 6 1/(k
V= -z (m—22 (L+Rsinfy— xp) + g|cos by + 2’:2); O((Sx) % (m—22 ((L—=x0)sinfy +R) + gsin@o) (66)
(40.5b)
6x) =u (40.5¢)

66) = v. (40.5d)
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This would be tidier in matrix form with x = (u, v, 0x, 66)

—X k]r;:lkz + sz”slllneo _ k2L 0 0 _k1l/;1+-]k2 sz;;l?sgo
< = —%(— (L+Rsin6y— xo) +g cos@o 00 '%‘2’;9" —Ile(k—((L—xo)sin00+R)+gsin90)
0 10 0 0
0 0 1 0 0
(40.6)

This reduces the problem to the solutions of first order equations of the form

X =a+
I 0

0 A} x=a+ Bx (40.7)

where a, and A are constant matrices. Such a matrix equation has the solution

x = eP'xp + (¥ = B 'a, (40.8)

but the zeros in B should allow the exponential and inverse to be calculated with less work.
That inverse is readily verified to be

B =
A1 0

0 I} . (40.9)

It is also not hard to show that

Al’l
B = 0 (40.10a)
0 A"
g = |0 A : (40.10b)
A" 0
Together this allows for the power series expansion
B l cosh(z \/Z) sinh(? \/Z) 4011)
=1 . . (40.1
sinh(t VA)—=  cosh( VA)
(tVA) v (
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All of the remaining sub matrix expansions should be straightforward to calculate provided
the eigenvalues and vectors of A are calculated. Specifically, suppose that we have

4 0
0 A

A=U Ul (40.12)

Then all the perhaps non-obvious functions of matrices expand to just

[ -1
aloplt Y }U‘l (40.13a)
[0 &
VA=U Va0 U-! (40.13b)
[0 VA
cosh(r VA) = 1 |00 V) 0 ]U—1 (40.13¢)
0 cosh(z/1,)
sinh(t VA) = v |0 VA 0 ]U—l (40.13d)
0 sinh(z /12)
sinh(r VA)—= = ¢/ |S"¢ VAV 0 U, (40.13¢)
va | 0 sinh(t v2)/ /12

An interesting question would be how are the eigenvalues and eigenvectors changed with
each small change to the initial position X in phase space. Can these be related to each other?



ATTEMPTS AT CALCULATING POTENTIAL DISTRIBUTION FOR
INFINITE HOMOGENEOUS PLANE

41.1 MOTIVATION

Part of a classical mechanics problem set was to look at what portions of momentum and angular
momentum are conserved for various fields. Since this was also a previous midterm question, I
am expecting that some intuition was expected to be used determine the form of the Lagrangians,
with not much effort on finding the precise form of the potentials. Here I try to calculate one
such potential explicitly.

Oddly, I can explicitly calculate the potential for the infinite homogeneous plane if I start
with the force and then calculate the potential, but if I start with the potential the integral also
diverges? That does not make any sense, so I am wondering if I have miscalculated. I have tried
a few different ways below, but can not get a non-divergent result if I start from the integral
definition of the potential instead of deriving the potential from the force after adding up all
the directional force contributions (where I find of course that all the component but the one
perpendicular to the plane cancel out).

41.2 FORCES AND POTENTIAL FOR AN INFINITE HOMOGENEOUS PLANE
41.2.1 Calculating the potential from the force

For the plane, with z as the distance from the plane, and (r,6) coordinates in the plane, as
illustrated in fig. 41.1. The gravitational force from an element of mass on the plane is

Figure 41.1: Coordinate choice for interaction with infinite plane mass distribution
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402 ATTEMPTS AT CALCULATING POTENTIAL DISTRIBUTION FOR INFINITE HOMOGENEOUS PLANE

dF = —G(J'mrdrdQZZ;rr3
|zz — ri|

_ —Go-mrdrdezi —r(ej cos 6+ e; sinf)
(Zz + r2)3/2

Integrating for the total force on the test mass, noting that the sinusoidal terms vanish when
integrated over a [0, 27] interval, we have

(41.1)

e 1

F= —27TGO'WLZZ‘]; rdrm, (412)

a substitution r = ztan « gives us
/2 1
F = -2nGomzz f ztan az sec? ado————
0 7% sec’ «
/2 41.3
= 2nGomi f sin ada ( )
0
= 2nGomiZ(cos(m/2) — cos(0)),

For

F = -2nGoma. (41.4)
For the Lagrangian problem we want the potential

-V¢p=F
, 09 (41.5)
—7— =
0z

or

¢ = 2nGomz. (41.6)
This is a reasonable seeming answer. Our potential is of the form

¢ = mgz, 41.7)

with

g = 2nGo. (41.8)



41.2 FORCES AND POTENTIAL FOR AN INFINITE HOMOGENEOUS PLANE

41.2.2  Calculating the potential directly

If we only want the potential, why start with the force? We ought to be able to work with
potentials directly, and write

o(r) = Gmpf v (41.9)

I’ — x|’
It is a quick calculation to verify that is correct, and we find (provided r # r’)

dv'(r-r’)

3 (41.10)

F=-V¢= —Gmpf

r—r’|

To verify the signs, it is helpful to refer to the diagram fig. 41.2 which illustrates the position
vectors. Now, suppose we calculate the potential directly

Figure 41.2: Direction vectors for interaction with mass distribution

41.2.2.1  Naive approach, with bogus result

Our mass density as a function of Z is

p(r',0.,7) = A5(z)) (41.11)

’ ’ 4 / l"/
P(2) = Gmafdz o(z )fd@ fdr (-2 + D)2

00 rdr

< udu
= 27TGmO-Z£ m
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Again we can make a tangent substitution

u =tana, (41.13)

for

tan a sec? ada

/2
#(2) = 2nGmoz f
0

SeC

/2
=2nGmoz f tan a sec ada (41.14)
0

/2 o
sin
:271Gma'zf 5 da.
0 Cos?a

This has the same functional form ¢ = mgz as eq. (41.7), except with

/2 :
g=2ﬂG0’f/ da—". 41.15)
0 COoS“
There is one significant and irritating difference. The integral above does not have a unit
value, but instead diverges (with cos @ — oo as @ — /2).
What went wrong? Trouble can be seen right from the beginning. Consider the differential
form above for u > 1

udu
V1 +u2

This we are integrating on u € [0, o], so long before we make the trig substitutions we are in
trouble.

~ du. (41.16)

41.2.2.2  As the limit of a finite volume

My guess is that we have to tie the limits of the width of the plane and its diameter, decreasing
the thickness in proportion to the increase in the radius. Let us try that.

With a finite cylinder of height €, radius R, with a measurement of the potential directly above
the cylinder at height z, we have

27
¢(Z)—pr d@fdzf rdy —— ! 41.17)

(z—-z )2+r’2
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Performing the 6’ integration and substituting

= (z-7)tana, (41.18)

we have

€ arctan(R/(z—7))
#(2) = 2npG f d7 f (z— 7)) tan @ sec’ ada
0 0

€ arctan(R/(z—2")) sin @
_ 271'pr dz7 f (z— Z’) da
0 0 ¢

seca

osZa

. arctan(R/(z—2')) —dcosa
— 27rpr dz’(z—z')f 2
; o cosZ a
€
0 cos @
€ 1
=21pG | d7 - o
e f(; ¢ (cos arctan(R/(z - 2')) )
2
oy f i ( ) ~1
—€ + f dZ 1 + ]
7- Z
7/R 1
= 210G _e+Rf dxy/1+ =
(-e)/R .

For this integral we find

fdx,/uiz=|—;C|(\/1+x2+1n(x)—1n(1+x/1+x2)) (41.20)
X

Taking limits € — 0 and R — oo the terms V1 + x2 at either x = z/R or x = (z — €)/R tend to
1. This leaves us only with the In(x) contribution, so

arctan(R/(z—2"))

0

= 2npG

=0 k{u(3) ()

With € — 0 we have the structure of a differential above, but instead of expressing the
derivative in the usual forward difference form

df _ flr+9=f()

41.22
dx € ( )
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we have to use a backwards difference, which is equivalent, provided the function f(x) is
continuous at x

df _f0)-fx-e)

41.23
dx € ( )
We can then form the differential
df
df(x) = f(x) = f(x—¢€) = S (41.24)

We also want to express the charge density p in terms of surface charge density o, and note
that these are related by pAAe = cAA.

&d(z) = 2n(pe)G (—1 + Rdi ln(z/R))

74

(41.25)
=2n0G (—1 + TR ln(z/R)),
or
#(2) = 27rch(—1 + 5) (41.26)
Z

Looking at this result, we have the same divergent integration result as in the first attempt,
and the reason for this is clear after some reflection. The limiting process for the radius and the
thickness of the slice were allowed to complete independently. Before taking limits we had

€ 2
¢(Z)=2ﬂ0'G[—11fdz'\/1+( R,)]. (41.27)
€ Jo 72—z

Consider a similar, but slightly more general case, where we evaluate the limit

L=lim > fJ ‘ f(x)dx, (41.28)
e—0 € a
where F’(x) = f(x), so that
L = lim M
e—0 €
= F'(a)
= f(@).

(41.29)



41.2 FORCES AND POTENTIAL FOR AN INFINITE HOMOGENEOUS PLANE

So even without evaluating the integral we expect that we will have

R f

¢(z) =2n0G| -1+ 4[] +(
2=0 (41.30)

Z—Z
R

— 2710'G(—1+—).
Z

This matches what was obtained in eq. (41.26) by brute forcing the integral with Mathematica,
and then evaluating the limit the hard way. Darn.

41.2.2.3  As the limit of a finite volume. Take I1

Let us try once more. We will consider a homogeneous cylindrical volume of radius R, thickness
€ with total mass
M = pnR*e = onR?, (41.31)

so that the area density is

O = pe. (41.32)

Now we will reduce the thickness of the volume, keeping the total mass fixed, so that

nR*e = constant = 7ic?, (41.33)

or

R=—. 41.34
N7 (41.34)

We wish to evaluate

1 (€ c/ Ve 1
$(z) = 2noG - f d7 f rar ——on—. (41.35)
€Jo 0

@)+
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Performing the integrals, (first 7/, then 7’) we find

b(2) = ZHUGL(Z(—ZEZ + \/E (c2+7%) - \/6 (2+(z- 6)26))

2¢2

+ 6(62 + \/e (2 +(z— 6)26))

+c? (_ In (_ze + \/m) +1In (_(Z —€e+ \/f (+ (- 6)26))))

(41.36)

The €/€* term is clearly killed in the limit, and we have a —z contribution from the first term.
For € # 0 the difference of logarithms above can be written as

2+ (z—€)’e
I e+ | —————
€
c +72e
€

Suppose we could also validly argue that this tends to In(1) = 0, and the difference of square
roots could also be canceled. Then we would be left with just

(41.37)

#(2) = 2n0G (—z + ZLE Ve(c? + (z - 6)26) (41.38)

If we also demand that z2€ > ¢?, then we have a z/2 contribution from the remaining square
root and are left with

#(2) = 2noG(-z/2). (41.39)

This differs from the expected result by a factor of —2, and we have had to do some very fishy
root taking to even get that far. Employing 1’Hopital’s rule (or letting Mathematica attempt to
evaluate the limit), we get infinities for the difference of logarithm term.

So, with a lot of cheating we get a result that is similar to the expected, but not actually a
match, and even to get that we had to take the limits in an invalid way. It looks like it is back to
the drawing board, but I am not sure how to approach it.

After thinking about it a bit, perhaps the limiting process for the width needs to be explicitly
accounted for using a delta function? Perhaps a QM like treatment where we express the integral
in terms of some basis and look for the resolution of identity in that resolution?



POTENTIAL FOR AN INFINITESIMAL WIDTH INFINITE PLANE.
TAKE III

42.1 DOCUMENT GENERATION EXPERIMENT

This little document was generated as an experiment using psllp4InfPlanePotTakelll.cdf and
some post processing in latex.

The File menu save as latex produced latex that could not be compiled, but mouse selected,
copy-as latex worked out fairly well.

Post processing done included:

e Adding in latex prologue.
o Stripping out the text boxes.
e Adding in equation environments.

e Latex generation for math output in inline text sections was uniformly poor.

422  GUTS

I had like to attempt again to evaluate the potential for infinite plane distribution. The general
form of our potential takes the form

#(x) = Gp f L v (42.1)

Ix — x|

We want to evaluate this with cylindrical coordinates (', ', z"), for a width €, and radius r, at
distance z from the plane.

dz dr”’ (42.2)

¢(Z, €, r) — 27Z'G0'1 f’ fs 7
€ Jr=0Jz=0 (Z_Z/)2+ (r')2

With the assumption that we will take the limits € — 0, and r — co. With r? = ¢/e, this does
not converge. How about with r = ¢/€?
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Performing the 1’ integration (with > = ¢/€) we find

’

=0

€ 2
o(z,€) = 27rGa'é f ( Z—z +(@z-7)P - V(- Z’)z] d7 (42.3)

Attempting to let Mathematica evaluate this takes a long time. Long enough that I aborted
the attempt to evaluate it.
Instead, first evaluating the z’ integral we have

_ 2nGo cle [ 2. 5 [ 2 2 /
&(z,€,1) = . fr (ln( (r)y +z +z)—1n( (r)Y +(@z-e +z—e))dr (42.4)

=0

This second integral can then be evaluated in reasonable time:

2
C

\ S5 2z (Z—E)(\/C2+Z262+C)
£ +e€zln

2 z
\/C—2+(z—e)2+z—e (42.5)
€

+e(e—2)In ( Ve + 2(z— e + c) — € In(e(z - e))).

Grouping the log terms we have

2
oz €)= ”S” (¢

(Z—E)(\/C2+2262+C)
+ —1In
o MR ]

Ve? +72€? + ze )
Ve +€2(z—€)? + e(z—€)

H(m))

P(z,€) = 27rG0'(§ ln(

e(z—¢€)

Does this have a limit as € — 07 No, the last term is clearly divergent for ¢ # 0.



POTENTIAL DUE TO CYLINDRICAL DISTRIBUTION

43.1 MOTIVATION

Consider a cylindrical distribution of mass (or charge) as in fig. 43.1, with points in the cylinder
given by r’ = (', ¢, 7’) coordinates, and the point of measurement of the potential measured at

r =(r,0,0).

Figure 43.1: coordinates for evaluation of cylindrical potential

Our potential, for a uniform distribution, will be proportional to

dv’
¢(r) = r—r|
R 2 L
" g (43.1)
:f r'dr'f d@'f < .
0 0 -L \/(Z/)2+|r_r/ei9|2

43.2 ATTEMPTING TO EVALUATE THE INTEGRALS

With

(43.2)

fL 1 P (L+ \/L2+u2}
—dz = Og e —
- —L+ VL? +u?

L 72 + u?

411



412 POTENTIAL DUE TO CYLINDRICAL DISTRIBUTION

This is found to be

R 2 L+ +L*+ |r—r’ei9|2
é(r) = f r'dr’ f df' log
0 0 —L+ J[?+ ’r - r’e"9|2

It is clear that we can not evaluate this limit directly for L — oo since that gives us co/0 in
the logarithm term. Presuming this can be evaluated, we must have to evaluate the complete
set of integrals first, then take the limit. Based on the paper http://www.ifi.unicamp.br/ assis/J-
Electrostatics-V63-p1115-1131(2005).pdf, it appears that this can be evaluated, however, the
approach used therein uses mathematics a great deal more sophisticated than I can grasp without
a lot of study.

Can we proceed blindly using computational tools to do the work? Attempting to evaluate
the remaining integrals in pslIip4InfCylPot.cdf fails, since evaluation of both

(43.3)

R
f rdrlog(a+ va? + r> + b - 2rb cos(6)) (43.4)
0

and

27
f dflog(a+ va? +r2 + b2 = 2rbcos()), (43.5)
0
either time out, or take long enough that I aborted the attempt to let them evaluate.
43.2.1 Alternate evaluation order?

We can also attempt to evaluate this by integrating in different orders. We can for example do
the 7’ coordinate integral first

R

-
dr
0 a?+r2=2rbcos(6) + b>
= va? + b2 —2bR cos(0) + R2 — Va2 + b2 (43.6)
2+ b2 — 2bR cos(0) + R% — b cos(6) + R
+ beos(6) log( \/a + cos(6) + cos(0) + ‘
Va2 + b% — bcos()

It should be noted that this returns a number of hard to comprehend ConditionalExpression
terms, so care manipulating this expression may also be required.


http://www.ifi.unicamp.br/~assis/J-Electrostatics-V63-p1115-1131(2005).pdf
http://www.ifi.unicamp.br/~assis/J-Electrostatics-V63-p1115-1131(2005).pdf

43.2 ATTEMPTING TO EVALUATE THE INTEGRALS

If we try the angular integral first, we get

4b 4br
fzn o 1 _ 2K (_ az+(br—r)2 ) + 2K (az+(br+r)2 ) (437)
0 Na+r2-2rbcos(B) +b2 @+ (b-r?  Na>+(b+r)?
where
T
K(m) = F(E‘ m) (43.8)

is the complete elliptic integral of the first kind. Actually evaluating this integral, especially
in the limiting case, probably requires stepping back and thinking a bit (or a lot) instead of
blindly trying to evaluate.
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MATHEMATICA NOTEBOOKS

These Mathematica notebooks, some just trivial ones used to generate figures, others more
elaborate, and perhaps some even polished, can be found in

https://github.com/peeterjoot/mathematica/tree/master;.

The free Wolfram CDF player, is capable of read-only viewing these notebooks to some
extent.

Files saved explicitly as CDF have interactive content that can be explored with the CDF
player.

e Feb 19, 2012 classicalmechanics/infiniteCylinderPotential.cdf

Attempt at evaluating the potential for an infinite cylinder.

e Feb 24, 2012 classicalmechanics/pslip4InfPlanePotTakelll.cdf

Attempt at evaluating the potential for an infinite plane. Experimenting with using math-
ematica to produce decent documents, as well as trying a variation of the previous calcu-
lation where I used R? ~ e.

The final output is not as nice as latex, but the save as latex option seems promising.
New Mathematica tools used in this notebook include HoldForm, TraditionalForm, and
ReleaseHold, which can be used to generate traditional form by default for scratch display
generation.

Note that cut-and-pasting URLS in comments as I've been doing get mangled and can’t
be followed. Switched the ones in this doc to Insert->Hyperlink instead.

e Feb 27, 2012 classicalmechanics/psllp4InfCylPot.cdf
Attempt evaluation of a cylindrical potential.

New Mathematica methods used: HoldForm, Assuming, Assumptions.

e Jan 26, 2016 classicalmechanics/multisphericalPendulum.nb

calculate the matrix products from the papers to verify (and as it turns out, correct).
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CHRONOLOGICAL INDEX

e August 9, 2008 12 Newton’s Law from Lagrangian
e August 21, 2008 13 Covariant Lagrangian, and electrodynamic potential
o August 25, 2008 9.1 Solutions to David Tong’s mf1 Lagrangian problems

o August 30, 2008 33 Short metric tensor explanation

Metric tensor and Lorentz diagonality.
e September 1, 2008 14 Vector canonical momentum

e Sept 2, 2008 8.1 Attempts at solutions for some Goldstein Mechanics problems
Solutions to selected Goldstein Mechanics problems from chapter I and II.

Some of the Goldstein problems in chapter I were also in the Tong problem set. This is
some remaining ones and a start at chapter II problems.

Problem 8 from Chapter I was never really completed in my first pass. It looks like I
missed the Kinetic term in the Lagrangian too. The question of if angular momentum
is conserved in that problem is considered in more detail, and a Noether’s derivation
that is specific to the calculation of the conserved “current” for a rotational symmetry is
performed. I’d be curious what attack on that question Goldstein was originally thinking
of. Although I believe this Noether’s current treatment answers the question in full detail,
since it wasn’t covered yet in the text, is there an easier way to get at the result?

e September 8, 2008 15 Direct variation of Maxwell equations
e October 8, 2008 16 Revisit Lorentz force from Lagrangian

e October 10, 2008 17 Derivation of Euler-Lagrange field equations

Derivation of the field form of the Euler Lagrange equations, with applications including
Schrodinger’s and Klein-Gordan field equations

e October 12, 2008 18 Tensor Derivation of Covariant Lorentz Force from Lagrangian
e October 13, 2008 19 Euler Lagrange Equations

e October 19, 2008 20 Lorentz Invariance of Maxwell Lagrangian
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CHRONOLOGICAL INDEX

October 22, 2008 21 Lorentz transform Noether current for interaction Lagrangian
October 29, 2008 22 Field form of Noether’s Law

December 02, 2008 32 Compare some wave equation’s and their Lagrangians

A summary of some wave equation Lagrangians, including wave equations of quantum
mechanics.

April 15, 2009 23 Lorentz force Lagrangian with conjugate momentum

The Lagrangian can be expressed in a QM like form in terms of a sum of mechanical and
electromagnetic momentum, mv + qA/c. The end result is the same and it works out to
just be a factorization of the original Lorentz force covariant Lagrangian.

April 20, 2009 24 Tensor derivation of non-dual Maxwell equation from Lagrangian

A tensor only derivation.

June 5, 2009 25 Canonical energy momentum tensor and Lagrangian translation

Examine symmetries under translation and spacetime translation and relate to energy and
momentum conservation where possible.

June 17, 2009 26 Comparison of two covariant Lorentz force Lagrangians

The Lorentz force Lagrangian for a single particle can be expressed in a quadratic fashion
much like the classical Kinetic energy based Lagrangian. Compare to the proper time, non
quadratic action.

Sept 4, 2009 27 Translation and rotation Noether field currents.

Review Lagrangian field concepts. Derive the field versions of the Euler-Lagrange equa-
tions. Calculate the conserved current and conservation law, a divergence, for a Lagrangian
with a single parameter symmetry (such as rotation or boost by a scalar angle or rapidity).
Next, spacetime symmetries are considered, starting with the question of the symmetry
existence, then a calculation of the canonical energy momentum tensor and its associated
divergence relation. Next an attempt to use a similar procedure to calculate a conserved
current for an incremental spacetime translation. A divergence relation is found, but it is
not a conservation relationship having a nonzero difference of energy momentum tensors.

Sept 22, 2009 28 Lorentz force from Lagrangian (non-covariant)

Show that the non-covariant Lagrangian from Jackson does produce the Lorentz force
law (an exercise for the reader).

Sept 26, 2009 34 Hamiltonian notes.
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Oct 27, 2009 29 Spherical polar pendulum for one and multiple masses, and multivector
Euler-Lagrange formulation.

Derive the multivector Euler-Lagrange relationships. These were given in Doran/Lasenby
but I did not understand it there. Apply these to the multiple spherical pendulum with the
Lagrangian expressed in terms of a bivector angle containing all the phi dependence a
scalar polar angle.

Nov 4, 2009 30 Spherical polar pendulum for one and multiple masses (Take II)

The constraints required to derive the equations of motion from a bivector parameterized
Lagrangian for the multiple spherical pendulum make the problem considerably more
complicated than would be the case with a plain scalar parameterization. Take the pre-
vious multiple spherical pendulum and rework it with only scalar spherical polar angles.
I later rework this once more removing all the geometric algebra, which simplifies it
further.

Nov 26, 2009 36 Lagrangian and Euler-Lagrange equation evaluation for the spherical
N-pendulum problem

Jan 1, 2010 38 Integrating the equation of motion for a one dimensional problem.

Solve for time for an arbitrary one dimensional potential.

Feb 19, 2010 37 1D forced harmonic oscillator. Quick solution of non-homogeneous
problem.

Solve the one dimensional harmonic oscillator problem using matrix methods.

Mar 3, 2010 39 Notes on Goldstein’s Routh’s procedure.

Puzzle through Routh’s procedure as outlined in Goldstein.

June 19, 2010 40 Hoop and spring oscillator problem.

A linear approximation to a hoop and spring problem.
Jan 24, 2012 6.1 PHY354 Advanced Classical Mechanics. Problem set 1.

Feb 11, 2012 1 Runge-Lenz vector conservation

phy354 lecture notes on the Runge-Lenz vector and its use in the Kepler problem.

Feb 19, 2012 41 Attempts at calculating potential distribution for infinite homogeneous
plane.

Feb 24, 2012 42 Potential for an infinitesimal width infinite plane. Take III
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e Feb 27, 2012 43 Potential due to cylindrical distribution.

e Feb 29, 2012 2 Phase Space and Trajectories.

e Mar 7, 2012 3 Rigid body motion.

e Mar 21, 2012 4 Classical Mechanics Euler Angles

e Jul 14,2012 10.1 Some notes on a Landau mechanics problem

e December 27, 2012 11 Dipole Moment induced by a constant electric field

e January 05, 2013 7.1 Problem set 2 (2012)

incomplete attempt at the problem set 2 questions.

e January 06, 2013 5 Parallel axis theorem

class notes from course audit
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INDEX

boost, 177

canonical momentum, 125
conjugate momentum, 201

dipole moment, 109

electrodynamic potential
covariant, 119

energy momentum tensor, 209

Euler angles, 25

Euler Lagrange equations, 161

Euler-Lagrange equations, 161
field, 147

forced harmonic oscillator, 385

Hamiltonian, 319
hoop and spring, 397

infinitesimal width potential, 409
invariance, 179

kinetic energy, 305

Lagrangian

Maxwell’s equations, 177
linear transformation

positive definite, 367
Lorentz Force

covariant, 157
Lorentz force, 141, 247

non-covariant, 267
Lorentz force equation, 201
Lorentz invariance, 177

Mathematica, 384, 409, 412, 417

Maxwell action

variation, 127

Maxwell’s equation

tensor, 205

metric tensor, 317

Newton’s law, 115
Noether current

Lorentz transform, 185

Noether currents

field rotation, 265
field translation, 254

Noether’s law

field, 191

Noether’s theorem, 169

parallel axis theorem, 33
pendulum, 387

phase space, 9

positive definite, 367
potential

cylindrical, 411
infinite homogeneous plane, 401

potential energy, 305

rigid body, 17
Routh’s procedure, 389
Runge-Lenz vector, 3

spherical pendulum, 289, 384

Geometric Algebra, 269
matrix, 301
multiple masses, 289

translation, 209
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wave equation, 311
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