Peeter Joot
 peeter.joot@gmail.com

Matrix form for discrete time Fourier transform

1.1 Transform pair

In [2] a verification of the discrete Fourier transform pairs was performed. A much different looking discrete Fourier transform pair is given in [1] §A.4. This transform pair samples the points at what are called the Nykvist time instants given by

$$
\begin{equation*}
t_{k}=\frac{T k}{2 N+1}, \quad k \in[-N, \cdots N] \tag{1.1}
\end{equation*}
$$

Note that the endpoints of these sampling points are not $\pm T / 2$, but are instead at

$$
\begin{equation*}
\pm \frac{T}{2} \frac{1}{1+1 / N^{\prime}} \tag{1.2}
\end{equation*}
$$

which are slightly within the interior of the $[-T / 2, T / 2]$ range of interest. The reason for this slightly odd seeming selection of sampling times becomes clear if one calculate the inversion relations.

Given a periodic $\left(\omega_{0} T=2 \pi\right)$ bandwidth limited signal evaluated only at the Nykvist times t_{k},

$$
\begin{equation*}
x\left(t_{k}\right)=\sum_{n=-N}^{N} X_{n} e^{j n \omega_{0} t_{k}} \tag{1.3}
\end{equation*}
$$

assume that an inversion relation can be found. To find X_{n} evaluate the sum

$$
\begin{align*}
\sum_{k=-N}^{N} x\left(t_{k}\right) e^{-j m \omega_{0} t_{k}} & =\sum_{k=-N}^{N}\left(\sum_{n=-N}^{N} X_{n} e^{j n \omega_{0} t_{k}}\right) e^{-j m \omega_{0} t_{k}} \tag{1.4}\\
& =\sum_{n=-N}^{N} X_{n} \sum_{k=-N}^{N} e^{j(n-m) \omega_{0} t_{k}}
\end{align*}
$$

This interior sum has the value $2 N+1$ when $n=m$. For $n \neq m$, and $a=e^{j(n-m) \frac{2 \pi}{2 N+1}}$, this is

$$
\begin{align*}
\sum_{k=-N}^{N} e^{j(n-m) \omega_{0} t_{k}} & =\sum_{k=-N}^{N} e^{j(n-m) \omega_{0} \frac{T k}{N+1}} \\
& =\sum_{k=-N}^{N} a^{k} \\
& =a^{-N} \sum_{k=-N}^{N} a^{k+N} \tag{1.5}\\
& =a^{-N} \sum_{r=0}^{2 N} a^{r} \\
& =a^{-N} \frac{a^{2 N+1}-1}{a-1} .
\end{align*}
$$

Since $a^{2 N+1}=e^{2 \pi j(n-m)}=1$, this sum is zero when $n \neq m$. This means that

$$
\begin{equation*}
\sum_{k=-N}^{N} e^{j(n-m) \omega_{0} t_{k}}=(2 N+1) \delta_{n, m}, \tag{1.6}
\end{equation*}
$$

which provides the desired Fourier inversion relation

$$
\begin{equation*}
X_{m}=\frac{1}{2 N+1} \sum_{k=-N}^{N} x\left(t_{k}\right) e^{-j m \omega_{0} t_{k}} \tag{1.7}
\end{equation*}
$$

1.2 Matrix form

The discrete time Fourier transform has been seen to have the form

$$
\begin{gather*}
x_{k}=\sum_{n=-N}^{N} X_{n} e^{2 \pi j n k /(2 N+1)} \tag{1.8a}\\
X_{n}=\frac{1}{2 N+1} \sum_{k=-N}^{N} x_{k} e^{-2 \pi j n k /(2 N+1)} . \tag{1.8b}
\end{gather*}
$$

A matrix representation of this form is desired. Let

$$
\mathbf{x}=\left[\begin{array}{c}
x_{-N} \tag{1.9a}\\
\vdots \\
x_{0} \\
\vdots \\
x_{N}
\end{array}\right]
$$

$$
\mathbf{X}=\left[\begin{array}{c}
X_{-N} \tag{1.9b}\\
\vdots \\
X_{0} \\
\vdots \\
X_{N}
\end{array}\right]
$$

Equation (1.8a) written out in full is

$$
\begin{align*}
x_{k} & =X_{-N} e^{-2 \pi j N k /(2 N+1)} \\
& +X_{1-N} e^{-2 \pi j(N-1) k /(2 N+1)} \\
& +\cdots \\
& +X_{0} \tag{1.10}\\
& +\cdots \\
& +X_{N-1} e^{2 \pi j(N-1) k /(2 N+1)} \\
& +X_{N} e^{2 \pi j N k /(2 N+1)}
\end{align*}
$$

With $\alpha=e^{2 \pi j /(2 N+1)}$ the matrix form is

$$
\mathbf{x}=\left[\begin{array}{ccccccc}
\alpha^{N N} & \alpha^{(N-1) N} & \cdots & 1 & \cdots & \alpha^{-(N-1) N} & \alpha^{-N N} \tag{1.11}\\
\alpha^{N(N-1)} & \alpha^{(N-1)(N-1)} & \cdots & 1 & \cdots & \alpha^{-(N-1)(N-1)} & \alpha^{-N(N-1)} \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
1 & 1 & 1 & 1 & 1 & 1 & 1 \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
\alpha^{-N(N-1)} & \alpha^{-(N-1)(N-1)} & \cdots & 1 & \cdots & \alpha^{N-1(N-1)} & \alpha^{N(N-1)} \\
\alpha^{-N N} & \alpha^{-N N} & \cdots & 1 & \cdots & \alpha^{(N-1) N} & \alpha^{N N}
\end{array}\right] \mathbf{X}
$$

Similarily, from eq. (1.8b), the inverse relation expands out to

$$
\begin{align*}
(2 N+1) X_{n} & =x_{-N} e^{2 \pi j n N /(2 N+1)} \\
& +x_{1-N} e^{2 \pi j n(N-1) /(2 N+1)} \\
& \cdots \tag{1.12}\\
& +x_{0} \\
& \cdots \\
& +x_{N-1} e^{-2 \pi j n(N-1) /(2 N+1)} \\
& +x_{N} e^{-2 \pi j n N /(2 N+1)}
\end{align*}
$$

with a matrix form of

$$
(2 N+1) \mathbf{X}=\left[\begin{array}{ccccccc}
\alpha^{-N N} & \alpha^{-N(N-1)} & \cdots & 1 & \cdots & \alpha^{N(N-1)} & \alpha^{N N} \tag{1.13}\\
\alpha^{-(N-1) N} & \alpha^{-(N-1)(N-1)} & \cdots & 1 & \cdots & \alpha^{(N-1)(N-1)} & \alpha^{(N-1) N} \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
1 & 1 & 1 & 1 & 1 & 1 & 1 \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
\alpha^{(N-1) N} & \alpha^{(N-1)(N-1)} & \cdots & 1 & \cdots & \alpha^{-(N-1)(N-1)} & \alpha^{-(N-1) N} \\
\alpha^{N N} & \alpha^{N(N-1)} & \cdots & 1 & \cdots & \alpha^{-N(N-1)} & \alpha^{-N N}
\end{array}\right]
$$

Letting

$$
\mathbf{F}=\left[\begin{array}{ccccccc}
\alpha^{N N} & \alpha^{(N-1) N} & \cdots & 1 & \cdots & \alpha^{-(N-1) N} & \alpha^{-N N} \tag{1.14}\\
\alpha^{N(N-1)} & \alpha^{(N-1)(N-1)} & \cdots & 1 & \cdots & \alpha^{-(N-1)(N-1)} & \alpha^{-N(N-1)} \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
1 & 1 & 1 & 1 & 1 & 1 & 1 \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
\alpha^{-N(N-1)} & \alpha^{-(N-1)(N-1)} & \cdots & 1 & \cdots & \alpha^{N-1(N-1)} & \alpha^{N(N-1)} \\
\alpha^{-N N} & \alpha^{-N N} & \cdots & 1 & \cdots & \alpha^{(N-1) N} & \alpha^{N N}
\end{array}\right]
$$

the discrete transform pair has the following compactly matrix representation

$$
\begin{gather*}
\mathbf{x}=\mathbf{F X} \tag{1.15a}\\
\mathbf{X}=\frac{1}{2 N+1} \overline{\mathbf{F}} \mathbf{x} \tag{1.15b}
\end{gather*}
$$

where $\overline{\mathbf{F}}$ is the complex conjugate of \mathbf{F}.

Bibliography

[1] Franco Giannini and Giorgio Leuzzi. Nonlinear Microwave Circuit Design. Wiley Online Library, 2004. 1.1
[2] Peeter Joot. Condensed matter physics., chapter Discrete Fourier transform. 2013. URL http: //peeterjoot.com/archives/math2013/phy487.pdf. [Online; accessed 02-December-2014]. 1.1

