
Peeter Joot
peeter.joot@gmail.com

Illustrating the LU algorithm with pivots by example

Two previous examples of LU factorizations were given. I found one more to be the key to under-
standing how to implement this as a matlab algorithm, required for our problem set.

A matrix that contains both pivots and elementary matrix operations is

M =


0 0 2 1
0 0 1 1
2 0 2 0
1 1 1 1

 (1.1)

Our objective is to apply a sequence of row permutations or elementary row operations to M that
put M into upper triangular form. At the same time we wish to track the all the inverse operations.
When no permutations were required to produce U, then we end up with a factorization M = L′U
where L′ is lower triangular.

Let’s express the row operations that we apply to M as

U = L−1
k L−1

k−1 · · · L
−1
2 L−1

1 M, (1.2)

with

L′ = L0L1L2 · · · Lk−1Lk (1.3)

Here L0 = I, the identity matrix, and L−1
i is either a permutation matrix interchanging two rows of

the identity matrix, or it is an elementary row operation encoding the operation rj → rj−Mri, where
ri is the pivot row, and rj, j > i are the rows that we are applying the Gaussian elimination operations
to.

For our example matrix, we see that we cannot use the M11 as the pivot element since it is zero.
In general, for numeric stability, we wish to use the row with the biggest absolute value in the col-
umn that we are operating on. In this case that is row 3. Our first row operation is therefore a 1, 3
permutation

L−1
1 =


0 0 1 0
0 1 0 0
1 0 0 0
0 0 0 1

 , (1.4)

1



which gives us

M→ L−1
1 M =


0 0 1 0
0 1 0 0
1 0 0 0
0 0 0 1




0 0 2 1
0 0 1 1
2 0 2 0
1 1 1 1

 =


2 0 2 0
0 0 1 1
0 0 2 1
1 1 1 1

 . (1.5)

Computationally, we do not wish to actually do a matrix multiplication to achieve this permuta-
tion. Instead we want to just swap the two rows in question.

The inverse of this operation is the same permutation, so for L′ we compute

L′ → L0L1 = L1. (1.6)

As before, we don’t wish to do a matrix operation. Since we have applied the permutation ma-
trix from the right, it results in an exchange of columns 1, 3 of our L0 matrix (which happens to be
identity at this point). We can implement that matrix operation as a column exchange directly using
submatrix notation.

We now proceed down the column, doing all the non-zero row elimination operations required. In
this case, we have only one

r4 → r4 −
1
2

r1. (1.7)

This has the matrix form

L−1
2 =


1 0 0 0
0 1 0 0
0 0 1 0
−1/2 0 0 1

 . (1.8)

The next stage of the U computation is

M→ L−1
2 L−1

1 M =


1 0 0 0
0 1 0 0
0 0 1 0
−1/2 0 0 1




2 0 2 0
0 0 1 1
0 0 2 1
1 1 1 1

 =


2 0 2 0
0 0 1 1
0 0 2 1
0 1 0 1

 . (1.9)

Again, we do not wish to do this operation as a matrix operation. Instead we act directly on the
rows in question with eq. (1.7).

Note that the inverse of this matrix operation is very simple. We’ve subtracted r1/2 from r4, so to
invert this we have only to add back r1/2. That is

L2 =


1 0 0 0
0 1 0 0
0 0 1 0

1/2 0 0 1

 . (1.10)

Observe that when we apply this from the right to L0L1 → L0L1L2, the interpretation is a column
operation

2



c1 → c1 + mc4, (1.11)

In general, if we apply the row operation

rj → rj −mri, (1.12)

to the current state of our matrix U, then we must apply the operation

ri → ri + mrj, (1.13)

to the current state of our matrix L′.
We are now ready to move on to reduction of column 2. We will have only a permutation operation

L3 =


1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0

 , (1.14)

so we apply a 2, 4 row interchange to U, and a 2, 4 column interchange to L′. This gives us

M→


2 0 2 0
0 1 0 1
0 0 2 1
0 0 1 1

 . (1.15)

Our final operation is a regular row operation

r4 → r4 −
1
2

r3, (1.16)

with matrix

L−1
4 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 −1/2 1

 (1.17)

We can also track all the permutations we have performed, which in this case was

P = L3L1 I. (1.18)

This should also be computed by performing row interchanges, not matrix multiplication.
Now should we wish to solve the system

Mx = L′Ux = b, (1.19)

we can equivalently solve

PL′Ux = Pb, (1.20)

3



To do this let y = Ux, so that we wish to solve

PL′y = Pb. (1.21)

The matrix L = PL′ is lower triangular, as P contained all the permutations that we applied along
the way (FIXME: this is a statement, not a proof, and not obvious).

We can solve the system

Ly = Pb, (1.22)

using forward substitution. That leaves us to solve the upper triangular system

y = Ux, (1.23)

which now requires only back substitution.

4



Bibliography

5


