Peeter Joot
 peeter.joot@gmail.com

Numeric LU factorization example

To get a better feel for LU factorization before attempting a numeric implementation, let's look at a numeric example in detail. This will strip some of the abstraction away.

Let's compute the LU factorization for

$$
M=\left[\begin{array}{lll}
5 & 1 & 1 \tag{1.1}\\
2 & 3 & 4 \\
3 & 1 & 2
\end{array}\right]
$$

This matrix was picked to avoid having to think of selecting the right pivot row. Our first two operations give us

$$
\left.\begin{array}{c}
\left(r_{2} \rightarrow r_{2}-\frac{2}{5} r_{1}\right) \tag{1.2}\\
\left(r_{3} \rightarrow r_{3}-\frac{3}{5} r_{1}\right)
\end{array}\right)\left[\begin{array}{ccc}
5 & 1 & 1 \\
0 & 13 / 5 & 18 / 5 \\
0 & 2 / 5 & 7 / 5
\end{array}\right] .
$$

The row operations (left multiplication) that produce this matrix are

$$
\left[\begin{array}{ccc}
1 & 0 & 0 \tag{1.3}\\
0 & 1 & 0 \\
-3 / 5 & 0 & 1
\end{array}\right]\left[\begin{array}{ccc}
1 & 0 & 0 \\
-2 / 5 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]=\left[\begin{array}{ccc}
1 & 0 & 0 \\
-2 / 5 & 1 & 0 \\
-3 / 5 & 0 & 1
\end{array}\right] .
$$

These operations happen to be commutative and also both invert simply. The inverse operations are

$$
\left[\begin{array}{cll}
1 & 0 & 0 \tag{1.4}\\
2 / 5 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
3 / 5 & 0 & 1
\end{array}\right]=\left[\begin{array}{ccc}
1 & 0 & 0 \\
2 / 5 & 1 & 0 \\
3 / 5 & 0 & 1
\end{array}\right] .
$$

In matrix form the elementary matrix operations that take us to the first stage of the Gaussian reduction are

$$
\left[\begin{array}{ccc}
1 & 0 & 0 \tag{1.5}\\
-2 / 5 & 1 & 0 \\
-3 / 5 & 0 & 1
\end{array}\right]\left[\begin{array}{lll}
5 & 1 & 1 \\
2 & 3 & 4 \\
3 & 1 & 2
\end{array}\right]=\left[\begin{array}{ccc}
5 & 1 & 1 \\
0 & 13 / 5 & 18 / 5 \\
0 & 2 / 5 & 7 / 5
\end{array}\right]
$$

Inverted that is

$$
\left[\begin{array}{lll}
5 & 1 & 1 \tag{1.6}\\
2 & 3 & 4 \\
3 & 1 & 2
\end{array}\right]=\left[\begin{array}{ccc}
1 & 0 & 0 \\
2 / 5 & 1 & 0 \\
3 / 5 & 0 & 1
\end{array}\right]\left[\begin{array}{ccc}
5 & 1 & 1 \\
0 & 13 / 5 & 18 / 5 \\
0 & 2 / 5 & 7 / 5
\end{array}\right]
$$

This is the first stage of the LU decomposition, although the U matrix is not yet in upper triangular form. Again, with our pivot row in the desired position already, the last row operation to perform is

$$
\begin{equation*}
r_{3} \rightarrow r_{3}-\frac{2 / 5}{5 / 13} r_{2}=r_{3}-\frac{2}{13} r_{2} \tag{1.7}
\end{equation*}
$$

The final stage of this Gaussian reduction is

$$
\left[\begin{array}{ccc}
1 & 0 & 0 \tag{1.8}\\
0 & 1 & 0 \\
0 & -2 / 13 & 1
\end{array}\right]\left[\begin{array}{ccc}
5 & 1 & 1 \\
0 & 13 / 5 & 18 / 5 \\
0 & 2 / 5 & 7 / 5
\end{array}\right]=\left[\begin{array}{ccc}
5 & 1 & 1 \\
0 & 13 / 5 & 18 / 5 \\
0 & 0 & 11 / 13
\end{array}\right]=U
$$

and our desired lower triangular matrix factor is

$$
\left[\begin{array}{ccc}
1 & 0 & 0 \tag{1.9}\\
2 / 5 & 1 & 0 \\
3 / 5 & 0 & 1
\end{array}\right]\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 2 / 13 & 1
\end{array}\right]=\left[\begin{array}{ccc}
1 & 0 & 0 \\
2 / 5 & 1 & 0 \\
3 / 5 & 2 / 13 & 1
\end{array}\right]=L .
$$

A bit of matlab code easily verifies that the above manual computation recovers $M=L U$

```
l=[ 1 0 0 ; 2/5 1 0 ; 3/5 2/13 1 ] ;
u = [ 5 1 1 ; 0 13/5 18/5 ; 0 0 11/13] ];
l * u
```

