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ECE1254H Modeling of Multiphysics Systems. Lecture 10: Nonlinear
systems. Taught by Prof. Piero Triverio

1.1 Disclaimer

Peeter’s lecture notes from class. These may be incoherent and rough.

1.2 Nonlinear systems

On slides, some examples to motivate:

• struts

• fluids

• diode (exponential)

Example in fig. 1.1.

Figure 1.1: Diode circuit

Id = Is

(
eVd/Vt − 1

)
=

10−Vd

10
. (1.1)

1



1.3 Richardson and Linear Convergence

Seeking the exact solution x∗ for

f (x∗) = 0, (1.2)

Suppose that

xk+1 = xk + f (xk) (1.3)

If f (xk) = 0 then we have convergence, so xk = x∗.

Convergence analysis Write the iteration equations at a sample point and the solution as

xk+1 = xk + f (xk) (1.4a)

x∗ = x∗ + f (x∗)

= 0

(1.4b)

Taking the difference we have

xk+1 − x∗ = xk − x∗ +
(

f (xk)− f (x∗)
)

. (1.5)

The last term can be quantified using the mean value theorem 1.1, giving

(1.6)
xk+1 − x∗ = xk − x∗ +

∂ f
∂x

∣∣∣∣
x̃

(
xk − x∗

)
=
(

xk − x∗
)(

1 +
∂ f
∂x

∣∣∣∣
x̃

)
.

The absolute value is thus ∣∣∣xk+1 − x∗
∣∣∣ =

∣∣∣xk − x∗
∣∣∣∣∣∣∣1 +

∂ f
∂x

∣∣∣∣
x̃

∣∣∣∣. (1.7)

We have convergence provided
∣∣∣1 + ∂ f

∂x

∣∣∣
x̃

∣∣∣ < 1 in the region where we happen to iterate over. This
could easily be highly dependent on the initial guess.

Stated more accurately we have convergence provided∣∣∣∣1 +
∂ f
∂x

∣∣∣∣ ≤ γ < 1 ∀x̃ ∈ [x∗ − δ, x∗ + δ], (1.8)

and
∣∣x0 − x∗

∣∣ < δ. This is illustrated in fig. 1.2.
It could very easily be difficult to determine the convergence regions.
We have some problems
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Figure 1.2: Convergence region

• Convergence is only linear

• x, f (x) are not in the same units (and potentially of different orders). For example, x could be a
voltage and f (x) could be a circuit current.

• (more on slides)

Examples where we may want to use this:

• Spice Gummal Poon transistor model. Lots of diodes, ...

• Mosfet model (30 page spec, lots of parameters).

1.4 Newton’s method

The core idea of this method is sketched in fig. 1.3. To find the intersection with the x-axis, we follow
the slope closer to the intersection.

Figure 1.3: Newton’s method

To do this, we expand f (x) in Taylor series to first order around xk, and then solve for f (x) = 0 in
that approximation

f (xk+1) ≈ f (xk) +
∂ f
∂x

∣∣∣∣
xk

(
xk+1 − xk

)
= 0. (1.9)
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This gives

xk+1 = xk − f (xk)
∂ f
∂x

∣∣∣
xk

. (1.10)

Example 1.1: Newton’s method

For the solution of

f (x) = x3 − 2, (1.11)

it was found

Table 1.1: Numerical Newton’s method example
k xk

∣∣xk − x∗
∣∣

0 10 8.74
1 · 5.4
... ·

...
8 · 1.7× 10−3

9 · 2.4× 10−6

10 · 6.6× 10−12

The error tails off fast as illustrated roughly in fig. 1.4.

Figure 1.4: Error by iteration

Convergence analysis The convergence condition is

0 = f (xk) +
∂ f
∂x

∣∣∣∣
xk

(
xk+1 − xk

)
. (1.12)

The Taylor series for f around xk, using a mean value formulation is

f (x) = f (xk) +
∂ f
∂x

∣∣∣∣
xk

(
x− xk

)
. +

1
2

∂2 f
∂x2

∣∣∣∣
x̃∈[x∗ ,xk]

(
x− xk

)2
. (1.13)

Evaluating at x∗ we have
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0 = f (xk) +
∂ f
∂x

∣∣∣∣
xk

(
x∗ − xk

)
. +

1
2

∂2 f
∂x2

∣∣∣∣
x̃∈[x∗ ,xk]

(
x∗ − xk

)2
. (1.14)

and subtracting this from eq. (1.12) we are left with

0 =
∂ f
∂x

∣∣∣∣
xk

(
xk+1 −��xk − x∗ +��xk

)
− 1

2
∂2 f
∂x2

∣∣∣∣
x̃

(
x∗ − xk

)2
. (1.15)

Solving for the difference from the solution, the error is

xk+1 − x∗ =
1
2

(
∂ f
∂x

)−1 ∂2 f
∂x2

∣∣∣∣
x̃

(
xk − x∗

)2
, (1.16)

or in absolute value ∣∣∣xk+1 − x∗
∣∣∣ =

1
2

∣∣∣∣∂ f
∂x

∣∣∣∣−1∣∣∣∣∂2 f
∂x2

∣∣∣∣∣∣∣xk − x∗
∣∣∣2. (1.17)

We see that convergence is quadratic in the error from the previous iteration. We will have trouble
if the derivative goes small at any point in the iteration region, for example in fig. 1.5, we could easily
end up in the zero derivative region.

Figure 1.5: Newton’s method with small derivative region

When to stop iteration One way to check is to look to see if the difference∥∥∥xk+1 − xk
∥∥∥ < ε∆x, (1.18)

however, when the function has a very step slope this may not be sufficient unless we also substi-
tute our trial solution and see if we have the match desired.
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Alternatively, if the slope is shallow as in fig. 1.5, then checking for just
∣∣ f (xk+1

∣∣ < ε f may also
mean we are off target.

Finally, we may also need a relative error check to avoid false convergence. In fig. 1.6, we may
have both

Figure 1.6: Possible relative error difference required

∣∣∣xk+1 − xk
∣∣∣ < ε∆x (1.19a)∣∣∣ f (xk+1)
∣∣∣ < ε f , (1.19b)

however, we may also want a small relative difference∣∣xk+1 − xk
∣∣

|xk|
< ε f ,r. (1.20)

This can become problematic in real world engineering examples such as to diode of fig. 1.7, where
we have shallow regions and fast growing or dropping regions.

1.5 Theorems

Theorem 1.1: Mean value theorem

For a continuous and differentiable function f (x), the difference can be expressed in terms of the
derivative at an intermediate point

f (x2)− f (x1) =
∂ f
∂x

∣∣∣∣
x̃
(x2 − x1)

where x̃ ∈ [x1, x2].
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Figure 1.7: Diode current curve

This is illustrated (roughly) in fig. 1.8.

Figure 1.8: Mean value theorem illustrated
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