> Peeter Joot
> peeter.joot@gmail.com

ECE1254H Modeling of Multiphysics Systems. Lecture 11: Nonlinear equations. Taught by Prof. Piero Triverio

1.1 Disclaimer

Peeter's lecture notes from class. These may be incoherent and rough.

1.2 Solution of N nonlinear equations in N unknowns

We'd now like to move from solutions of nonlinear functions in one variable:

$$
\begin{equation*}
f\left(x^{*}\right)=0, \tag{1.1}
\end{equation*}
$$

to multivariable systems of the form

$$
\begin{gather*}
f_{1}\left(x_{1}, x_{2}, \cdots, x_{N}\right)=0 \\
\vdots \tag{1.2}\\
f_{N}\left(x_{1}, x_{2}, \cdots, x_{N}\right)=0
\end{gather*}
$$

where our unknowns are

$$
\mathbf{x}=\left[\begin{array}{c}
x_{1} \tag{1.3}\\
x_{2} \\
\vdots \\
x_{N}
\end{array}\right]
$$

Form the vector F

$$
F(\mathbf{x})=\left[\begin{array}{c}
f_{1}\left(x_{1}, x_{2}, \cdots, x_{N}\right) \tag{1.4}\\
\vdots \\
f_{N}\left(x_{1}, x_{2}, \cdots, x_{N}\right)
\end{array}\right]
$$

so that the equation to solve is

$$
\begin{equation*}
F(\mathbf{x})=0 . \tag{1.5}
\end{equation*}
$$

The Taylor expansion of F around point \mathbf{x}_{0} is

$$
\begin{gather*}
\text { Jacobian } \\
F(\mathbf{x})=F\left(\mathbf{x}_{0}\right)+\underset{J_{F}\left(\mathbf{x}_{0}\right)}{ }\left(\mathbf{x}-\mathbf{x}_{0}\right), \tag{1.6}
\end{gather*}
$$

where the Jacobian is

$$
J_{F}\left(\mathbf{x}_{0}\right)=\left[\begin{array}{ccc}
\frac{\partial f_{1}}{\partial x_{1}} & \cdots & \frac{\partial f_{1}}{\partial x_{N}} \tag{1.7}\\
& \ddots & \\
\frac{\partial f_{N}}{\partial x_{1}} & \cdots & \frac{\partial f_{N}}{\partial x_{N}}
\end{array}\right]
$$

1.3 Multivariable Newton's iteration

Given \mathbf{x}^{k}, expand $F(\mathbf{x})$ around \mathbf{x}^{k}

$$
\begin{equation*}
F(\mathbf{x}) \approx F\left(\mathbf{x}^{k}\right)+J_{F}\left(\mathbf{x}^{k}\right)\left(\mathbf{x}-\mathbf{x}^{k}\right) \tag{1.8}
\end{equation*}
$$

With the approximation

$$
\begin{equation*}
0=F\left(\mathbf{x}^{k}\right)+J_{F}\left(\mathbf{x}^{k}\right)\left(\mathbf{x}^{k+1}-\mathbf{x}^{k}\right) \tag{1.9}
\end{equation*}
$$

then multiplying by the inverse Jacobian, and rearranging, we have

$$
\begin{equation*}
\mathbf{x}^{k+1}=\mathbf{x}^{k}-J_{F}^{-1}\left(\mathbf{x}^{k}\right) F\left(\mathbf{x}^{k}\right) \tag{1.10}
\end{equation*}
$$

Our algorithm is
Guess $\mathbf{x}^{0}, k=0$.
repeat
Compute F and J_{F} at \mathbf{x}^{k}
Solve linear system $J_{F}\left(\mathbf{x}^{k}\right) \Delta \mathbf{x}^{k}=-F\left(\mathbf{x}^{k}\right)$

$$
\mathbf{x}^{k+1}=\mathbf{x}^{k}+\Delta \mathbf{x}^{k}
$$

$$
k=k+1
$$

until converged
As with one variable, our convergence is after we have all of the convergence conditions satisfied

$$
\begin{align*}
\left\|\Delta \mathbf{x}^{k}\right\| & <\epsilon_{1} \\
\left\|F\left(\mathbf{x}^{k+1}\right)\right\| & <\epsilon_{2} \tag{1.11}\\
\frac{\left\|\Delta \mathbf{x}^{k}\right\|}{\left\|\mathbf{x}^{k+1}\right\|} & <\epsilon_{3}
\end{align*}
$$

Typical termination is some multiple of eps, where eps is the machine precision. This may be something like:

$$
\begin{equation*}
4 \times N \times \mathrm{eps} \tag{1.12}
\end{equation*}
$$

where N is the "size of the problem". Sometimes we may be able to find meaningful values for the problem. For example, for a voltage problem, we may not be interested in precisions greater than a millivolt.

1.4 Automatic assembly of equations for nolinear system

Nonlinear circuits We will start off considering a non-linear resistor, designated within a circuit as sketched in fig. 1.1.

Figure 1.1: Non-linear resistor
Example: diode, with $i=g(v)$, such as

$$
\begin{equation*}
i=I_{0}\left(e^{v / \eta V_{T}}-1\right) . \tag{1.13}
\end{equation*}
$$

Consider the example circuit of fig. 1.2. KCL's at each of the nodes are

Figure 1.2: Example circuit

1. $I_{A}+I_{B}+I_{D}-I_{S}=0$
2. $-I_{B}+I_{C}-I_{D}=0$

Introducing the consistuative equations this is

1. $g_{A}\left(V_{1}\right)+g_{B}\left(V_{1}-V_{2}\right)+g_{D}\left(V_{1}-V_{2}\right)-I_{s}=0$
2. $-g_{B}\left(V_{1}-V_{2}\right)+g_{C}\left(V_{2}\right)-g_{D}\left(V_{1}-V_{2}\right)=0$

In matrix form this is

$$
\left[\begin{array}{cc}
g_{D} & -g_{D} \tag{1.14}\\
-g_{D} & g_{D}
\end{array}\right]\left[\begin{array}{l}
V_{1} \\
V_{2}
\end{array}\right]+\left[\begin{array}{lll}
g_{A}\left(V_{1}\right) & +g_{B}\left(V_{1}-V_{2}\right) & -I_{S} \\
& -g_{B}\left(V_{1}-V_{2}\right) & +g_{C}\left(V_{2}\right)
\end{array}\right]=0 .
$$

We can write the entire system as

$$
\begin{equation*}
F(\mathbf{x})=G \mathbf{x}+F^{\prime}(\mathbf{x})=0 . \tag{1.15}
\end{equation*}
$$

The first term, a product of a nodal matrix G represents the linear subnetwork, and is filled with the stamps we are already familiar with.

The second term encodes the relationships of the nonlinear subnetwork. This non-linear component has been marked with a prime to distinguish it from the complete network function that includes both linear and non-linear elements.

Observe the similarity with the stamp analysis that we did previously. With $g_{A}()$ connected on one end to ground we have it only once in the resulting vector, whereas the nonlinear elements connected to two non-zero nodes in the network occur once with each sign.

Stamp for nonlinear resistor For the non-linear circuit element of fig. 1.3.

Figure 1.3: Non-linear resistor circuit element

Stamp for Jacobian

$$
\begin{equation*}
J_{F}\left(\mathbf{x}^{k}\right)=G+J_{F^{\prime}}\left(\mathbf{x}^{k}\right) . \tag{1.17}
\end{equation*}
$$

Here the stamp for the Jacobian, an $N \times N$ matrix, is

