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1.1 Disclaimer

Peeter’s lecture notes from class. These may be incoherent and rough.

1.2 Solution of N nonlinear equations in N unknowns

We’d now like to move from solutions of nonlinear functions in one variable:

f (x∗) = 0, (1.1)

to multivariable systems of the form

f1(x1, x2, · · · , xN) = 0
...

fN(x1, x2, · · · , xN) = 0

, (1.2)

where our unknowns are

x =


x1
x2
...

xN

 . (1.3)

Form the vector F

F(x) =

 f1(x1, x2, · · · , xN)
...

fN(x1, x2, · · · , xN)

 , (1.4)

so that the equation to solve is

F(x) = 0. (1.5)
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The Taylor expansion of F around point x0 is

F(x) = F(x0) + JF(x0)

Jacobian

(x− x0) , (1.6)

where the Jacobian is

JF(x0) =


∂ f1
∂x1

. . . ∂ f1
∂xN

. . .
∂ fN
∂x1

. . . ∂ fN
∂xN

 (1.7)

1.3 Multivariable Newton’s iteration

Given xk, expand F(x) around xk

F(x) ≈ F(xk) + JF(xk)
(

x− xk
)

(1.8)

With the approximation

0 = F(xk) + JF(xk)
(

xk+1 − xk
)

, (1.9)

then multiplying by the inverse Jacobian , and rearranging, we have

xk+1 = xk − J−1
F (xk)F(xk). (1.10)

Our algorithm is
Guess x0, k = 0.
repeat

Compute F and JF at xk

Solve linear system JF(xk)∆xk = −F(xk)
xk+1 = xk + ∆xk

k = k + 1
until converged
As with one variable, our convergence is after we have all of the convergence conditions satisfied∥∥∥∆xk

∥∥∥ < ε1∥∥∥F(xk+1)
∥∥∥ < ε2∥∥∆xk
∥∥

‖xk+1‖
< ε3

(1.11)

Typical termination is some multiple of eps, where eps is the machine precision. This may be
something like:
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4× N × eps, (1.12)

where N is the “size of the problem”. Sometimes we may be able to find meaningful values for the
problem. For example, for a voltage problem, we may not be interested in precisions greater than a
millivolt.

1.4 Automatic assembly of equations for nolinear system

Nonlinear circuits We will start off considering a non-linear resistor, designated within a circuit as
sketched in fig. 1.1.

Figure 1.1: Non-linear resistor

Example: diode, with i = g(v), such as

i = I0

(
ev/ηVT − 1

)
. (1.13)

Consider the example circuit of fig. 1.2. KCL’s at each of the nodes are

Figure 1.2: Example circuit

1. IA + IB + ID − Is = 0

2. −IB + IC − ID = 0
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Introducing the consistuative equations this is

1. gA(V1) + gB(V1 −V2) + gD(V1 −V2)− Is = 0

2. −gB(V1 −V2) + gC(V2)− gD(V1 −V2) = 0

In matrix form this is[
gD −gD
−gD gD

] [
V1
V2

]
+
[

gA(V1) +gB(V1 −V2) −Is
−gB(V1 −V2) +gC(V2)

]
= 0. (1.14)

We can write the entire system as

F(x) = Gx + F′(x) = 0. (1.15)

The first term, a product of a nodal matrix G represents the linear subnetwork, and is filled with
the stamps we are already familiar with.

The second term encodes the relationships of the nonlinear subnetwork. This non-linear compo-
nent has been marked with a prime to distinguish it from the complete network function that includes
both linear and non-linear elements.

Observe the similarity with the stamp analysis that we did previously. With gA() connected on one
end to ground we have it only once in the resulting vector, whereas the nonlinear elements connected
to two non-zero nodes in the network occur once with each sign.

Stamp for nonlinear resistor For the non-linear circuit element of fig. 1.3.

Figure 1.3: Non-linear resistor circuit element

F′(x) =
[

n1→ +g(Vn1 −Vn2)
n2→ −g(Vn1 −Vn2)

]
(1.16)

Stamp for Jacobian
JF(xk) = G + JF′(xk). (1.17)

Here the stamp for the Jacobian, an N × N matrix, is
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JF′(xk) =



V1 ··· Vn1 Vn2 ··· VN

1
...

n1
∂g(Vn1−Vn2 )

∂Vn1

∂g(Vn1−Vn2 )
∂Vn2

n2 − ∂g(Vn1−Vn2 )
∂Vn1

− ∂g(Vn1−Vn2 )
∂Vn2

...
N


. (1.18)
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