
Peeter Joot
peeter.joot@gmail.com

ECE1254H Modeling of Multiphysics Systems. Lecture 12: Struts and
Joints, Node branch formulation. Taught by Prof. Piero Triverio

1.1 Disclaimer

Peeter’s lecture notes from class. These may be incoherent and rough.

1.2 Struts and Joints, Node branch formulation

Let’s consider the simple strut system of fig. 1.1 again.

Figure 1.1: Simple strut system

Our unknowns are

1. Forces

At each of the points we have a force with two components

(1.1)fA =
(

fA,x, fA,y
)

1



We construct a total force vector

f =


fA,x
fA,y
fB,x
fB,y

...

 (1.2)

2. Positions of the joints

r =


x1
y1
y1
y2
...

 (1.3)

Our given variables are

1. The load force fL.

2. The joint positions at rest.

3. parameter of struts.

Conservation laws The conservation laws are

fA + fB + fC = 0 (1.4a)

− fC + fD + fL = 0 (1.4b)

which we can put in matrix form


x1 1 0 1 0 1 0 0 0
y1 0 1 0 1 0 0 0 0
x2 0 0 0 0 −1 0 1 0
y2 0 1 0 1 0 −1 0 1





fA,x
fA,y
fB,x
fB,y
fC,x
fC,y
fD,x
fD,y


=


0
0

− fL,x
− fL,y

 (1.5)

Here the block matrix is called the incidence matrix A, and we write

Af = fL. (1.6)

2



Figure 1.2: Strut spanning nodes

Constitutive laws Given a pair of nodes as in fig. 1.2.
each component has an equation relating the reaction forces of that strut based on the positions

fc,x = Sx (x1 − x2, y1 − y2, pc) (1.7a)

fc,y = Sy (x1 − x2, y1 − y2, pc) , (1.7b)

where pc represent the parameters of the system. We write

f =


fA,x
fA,y
fB,x
fB,y

...

 =

Sx (x1 − x2, y1 − y2, pc)
Sy (x1 − x2, y1 − y2, pc)

...

 , (1.8)

or
f = S(r) (1.9)

Putting the pieces together The node branch formulation is

Af − fL = 0
f − S(r) = 0

(1.10)

We’ll want to approximate this system using the Jacobian methods discussed, and can expect the
cost of that Jacobian calculation to potentially be expensive. To move to the nodal formulation we
eliminate forces (the equivalent of currents in this system)

AS(r) − fL = 0 (1.11)

We cannot use this nodal formulation when we have struts that are so stiff that the positions of
some of the nodes are fixed, but can work around that as before by introducing an additional un-
known for each component of such a strut.

3



1.3 Damped Newton’s method

We want to be able to deal with the oscillation that we can have in examples like that of fig. 1.3.

Figure 1.3: Oscillatory Newton’s iteration

Large steps can be dangerous. We want to modify Newton’s method as follows
Our algorithm is
Guess x0, k = 0.
repeat

Compute F and JF at xk

Solve linear system JF(xk)∆xk = −F(xk)
xk+1 = xk + αk∆xk

k = k + 1
until converged
with αk = 1 we have standard Newton’s method. We want to pick αk so that we minimize

1.4 Continuation parameters

Newton’s method converges given a close initial guess. We can generate a sequence of problems
where the previous problem generates a good initial guess for the next problem.

An example is a heat conducting bar, with a final heat distribution. We can start the numeric
iteration with T = 0, and gradually increase the temperatures until we achieve the final desired heat
distribution.

Suppose that we want to solve

F(x) = 0. (1.12)

We modify this problem by introducing

F̃(x(λ), λ) = 0, (1.13)

where

• F̃(x(0), 0) = 0 is easy to solve

4



• F̃(x(1), 1) = 0 is equivalent to F(x) = 0.

• (more on slides)

The source load stepping algorithm is

• Solve F̃(x(0), 0) = 0, with x(λprev = x(0)

• (more on slides)

This can still have problems, for example, when the parameterization is multivalued as in fig. 1.4.

Figure 1.4: Multivalued parameterization

We can attempt to adjust λ so that we move along the parameterization curve.

5


