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ECE1254H Modeling of Multiphysics Systems. Lecture 13: Continuation
parameters and Simulation of dynamical systems. Taught by Prof. Piero
Triverio

1.1 Disclaimer

Peeter’s lecture notes from class. These may be incoherent and rough.

1.2 Singular Jacobians

(mostly on slides)
There is the possiblity of singular Jacobians to consider. FIXME: not sure how this system repre-

sented that. Look on slides.

Figure 1.1: Diode system that results in singular Jacobian

f̃ (v(λ), λ) = i(v) − 1
R

(v − λVs) = 0. (1.1)

An alternate continuation scheme uses

F̃(x(λ), λ) = λF(x(λ)) + (1 − λ)x(λ). (1.2)
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This scheme has

F̃(x(0), 0) = 0 (1.3a)

F̃(x(1), 1) = F(x(1)), (1.3b)

and for one variable, easy to compute Jacobian at the origin, or the original Jacobian at λ = 1

∂F̃
∂x

(x(0), 0) = I (1.4a)

∂F̃
∂x

(x(1), 1) =
∂F
∂x

(x(1)) (1.4b)

1.3 Simulation of dynamical systems

Example high level system in fig. 1.2.

Figure 1.2: Complex time dependent system

1.4 Assembling equations automatically for dynamical systems

Example 1.1: RC circuit

To demonstrate the method by example consider the RC circuit fig. 1.3 which has time depen-
dence that must be considered
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Figure 1.3: RC circuit

The unknowns are v1(t), v2(t).
The equations (KCLs) at each of the nodes are

1. v1(t)
R1

+ C1
dv1
dt + v1(t)−v2(t)

R2
+ C2

d(v1−v2)
dt − is,1(t) = 0

2. v2(t)−v1(t)
R2

+ C2
d(v2−v1)

dt + v2(t)
R3

+ C3
dv2
dt − is,2(t) = 0

This has the matrix form[
Z1 + Z2 −Z2
−Z2 Z2 + Z3

] [
v1(t)
v2(t)

]
+
[

C1 + C2 −C2
−C2 C2 + C3

] [ dv1(t)
dt

dv2(t
dt )

]
=
[

1 0
0 1

] [
is,1(t)
is,2(t)

]
. (1.5)

Observe that the capacitor between node 2 and 1 is associated with a stamp of the form[
C2 −C2
−C2 C2

]
, (1.6)

very much like the impedance stamps of the resistor node elements.

The RC circuit problem has the abstract form

Gx(t) + C
dx(t)

dt
= Bu(t), (1.7)

which is more general than a state space equation of the form

dx(t)
dt

= Ax(t) + Bu(t). (1.8)

Such a system may be represented diagramatically as in fig. 1.4.

Figure 1.4: State space system

The C factor in this capacitance system, is generally not invertable. For example, if consider a 10
node system with only one capacitor, for which C will be mostly zeros. In a state space system, in all
equations we have a derivative. All equations are dynamical.

The time dependent MNA system for the RC circuit above, contains a mix of dynamical and alge-
braic equations. This could, for example, be a pair of equations like

dx1

dt
+ x2 + 3 = 0 (1.9a)

x1 + x2 + 3 = 0 (1.9b)
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How to handle inductors A pair of nodes that contains an inductor element, as in fig. 1.5, has to be
handled specially.

Figure 1.5: Inductor configuration

The KCL at node 1 has the form

· · · + iL(t) + · · · = 0, (1.10)

where

vn1(t) − vn2(t) = L
diL

dt
. (1.11)

It is possible to express this in terms of iL, the variable of interest

iL(t) =
1
L

∫ t

0
(vn1(τ) − vn2(τ)) dτ + iL(0). (1.12)

Expressing the problem directly in terms of such integrals makes the problem harder to solve,
since the usual differential equation toolbox cannot be used directly. An integro-differential toolbox
would have to be developed. What can be done instead is to introduce an additional unknown for
each inductor current derivative diL/dt, for which an additional MNA row is introduced for that
inductor scaled voltage difference.

1.5 Numerical solution of differential equations

Consider the one variable system

Gx(t) + C
dx
dt

= Bu(t), (1.13)

given an initial condition x(0) = x0. Imagine that this system has the solution sketched in fig. 1.6.
Very roughly, the steps for solution are of the form

1. Discretize time

2. Aim to find the solution at t1, t2, t3, · · ·

3. Use a finite difference formula to approximate the derivative.

There are various schemes that can be used to discretize, and compute the finite differences.
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Figure 1.6: Discrete time sampling

Forward Euler method One such scheme is to use the forward differences, as in fig. 1.7, to approxi-
mate the derivative

ẋ(tn) ≈ xn+1 − xn

∆t
. (1.14)

Figure 1.7: Forward difference derivative approximation

Introducing this into eq. (1.13) gives

Gxn + C
xn+1 − xn

∆t
= Bu(t), (1.15)

or

Cxn+1 = ∆tBu(t) − ∆tGxn + Cxn. (1.16)

The coefficient C must be invertable, and the next point follows immediately

xn+1 =
∆tB

C
u(t) − ∆tG

C
xn + xn. (1.17)
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