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ECE1254H Modeling of Multiphysics Systems. Lecture 19: Model order
reduction (cont).. Taught by Prof. Piero Triverio

1.1 Disclaimer

Peeter’s lecture notes from class. These may be incoherent and rough.

1.2 Model order reduction (cont).

An approximation of the following system is sought

Gx(t) + Cẋ(t) = Bu(t) (1.1a)

y(t) = LTx(t). (1.1b)

The strategy is to attempt to find a N × q projector V of the form

V =
[
v1 v2 · · · vq

]
(1.2)

so that the solution of the constrained q-variable state vector xq is sought after letting

x(t) = Vxq(t). (1.3)

1.3 Moment matching

F(s) = (G + sC)−1 B = M0 + M1s + M2s2 + · · · + Mq−1sq−1 + Mqsq + · · · (1.4)

The reduced model is created such that

Fq(s) = M0 + M1s + M2s2 + · · · + Mq−1sq−1 + M̃qsq. (1.5)

Form an N × q projection matrix

Vq ≡
[
M0 M1 · · · Mq−1

]
(1.6)

With the substitution of eq. (1.3) the system equations in the time domain, illustrated graphically
in fig. 1.1, becomes
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Figure 1.1: Projected system

This is a system of N equations, in q unknowns. A set of moments from the frequency domain
have been used to project the time domain system. This relies on the following unproved theorem
(references to come)

Theorem 1.1: Theorem

If span{vq} = span{M0, M1, · · · , Mq−1}, then the reduced model will match the first q moments.

Left multiplication by VT
q yields fig. 1.2.

Figure 1.2: Reduced projected system

This is now a system of q equations in q unknowns.
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With

Gq = VT
q GVq (1.7a)

Cq = VT
q CVq (1.7b)

Bq = VT
q B (1.7c)

LT
q = LTVq (1.7d)

the system is reduced to

Gqxq(t) + Cqẋq(t) = Bqu(t). (1.8a)

y(t) ≈ LT
q xq(t) (1.8b)

Moments calculation Using

(G + sC)−1 B = M0 + M1s + M2s2 + · · · (1.9)

thus

(1.10)

B = (G + sC) M0 + (G + sC) M1s + (G + sC) M2s2 + · · ·
= GM0 + s (CM0 + GM1) + s2 (CM1 + GM2) + · · ·

Since B is a zeroth order matrix, setting all the coefficients of s equal to zero provides a method to
solve for the moments

B = GM0

−CM0 = GM1

−CM1 = GM2

(1.11)

The moment M0 can be found with LU of G, plus the forward and backward substitutions. Pro-
ceeding recursively, using the already computed LU factorization, each subsequent moment calcula-
tion requires only one pair of forward and backward substitutions.

Numerically, each moment has the exact value

Mq =
(
−G−1C

)q
M0. (1.12)

As q → ∞, this goes to some limit, say w. The value w is related to the largest eigenvalue of
−G−1C. Incidentally, this can be used to find the largest eigenvalue of −G−1C.

The largest eigenvalue of this matrix will dominate these factors, and can cause some numerical
trouble. For this reason it is desirable to avoid such explicit moment determination, instead using
implicit methods.

The key is to utilize theorem 1.1, and look instead for an alternate basis {vq} that also spans
{M0, M1, · · · , Mq}.
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Space generate by the moments Write

Mq = AqR, (1.13)

where in this case

A = −G−1C
R = M0 = −GB

(1.14)

The span of interest is

span{R, AR, A2R, · · · , Aq−1R}. (1.15)

Such a sequence is called a Krylov subspace. One method to compute such a basis, the Arnoldi
process, relies on Gram-Schmidt orthonormalization methods:

V0 = R/‖R‖
for all i ∈ [0, q− 2] do

Vi+1 = AVi
for all j ∈ [0, i] do

Vi+1 = Vi+1 −
(
VT

i+1Vj
)

Vj
end for
Vi+1 = Vi+1/‖Vi+1‖

end for
Some numerical examples and plots on the class slides.
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