ECE1254H Modeling of Multiphysics Systems. Lecture 2: Assembling system equations automatically. Taught by Prof. Piero Triverio

1.1 Disclaimer

Peeter's lecture notes from class. These may be incoherent and rough.

1.2 Assembling system equations automatically. Node/branch method

Consider the sample circuit of fig. 1.1.

Figure 1.1: Sample resistive circuit

Step 1. Choose unknowns: For this problem, let's take

- node voltages: $V_{1}, V_{2}, V_{3}, V_{4}$
- branch currents: $i_{A}, i_{B}, i_{C}, i_{D}, i_{E}$

We do not need to introduce additional labels for the source current sources. We always introduce a reference node and call that zero.

For a circuit with N nodes, and B resistors, there will be $N-1$ unknown node voltages and B unknown branch currents, for a total number of $N-1+B$ unknowns.

Step 2. Conservation equations: KCL

- 0: $i_{A}+i_{E}-i_{D}=0$
- 1: $-i_{A}+i_{B}+i_{S, A}=0$
- 2: $-i_{B}+i_{S, B}-i_{E}+i_{S, C}=0$
- 3: $i_{C}-i_{S, C}=0$
- 4: $-i_{S, A}-i_{S, B}+i_{D}-i_{C}=0$

Grouping unknown currents, this is

- 0: $i_{A}+i_{E}-i_{D}=0$
- 1: $-i_{A}+i_{B}=-i_{S, A}$
- 2: $-i_{B}-i_{E}=-i_{S, B}-i_{S, C}$
- 3: $i_{C}=i_{S, C}$
- 4: $i_{D}-i_{C}=i_{S, A}+i_{S, B}$

Note that one of these equations is redundant (sum 1-4). In a circuit with N nodes, we can write at most $N-1$ independent KCLs.

In matrix form

$$
\left[\begin{array}{ccccc}
-1 & 1 & 0 & 0 & 0 \tag{1.1}\\
0 & -1 & 0 & 0 & -1 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & -1 & 1 & 0
\end{array}\right]\left[\begin{array}{c}
i_{A} \\
i_{B} \\
i_{C} \\
i_{D} \\
i_{E}
\end{array}\right]=\left[\begin{array}{c}
-i_{S, A} \\
-i_{S, B}-i_{S, C} \\
i_{S, C} \\
i_{S, A}+i_{S, B}
\end{array}\right]
$$

We call this first matrix of ones and minus ones the incidence matrix A. This matrix has B columns and $N-1$ rows. We call the known current matrix \bar{I}_{S}, and the branch currents \bar{I}_{B}. That is

$$
\begin{equation*}
A \bar{I}_{B}=\bar{I}_{S} \tag{1.2}
\end{equation*}
$$

Observe that we have both a plus and minus one in all columns except for those columns impacted by our neglect of the reference node current conservation equation.

Figure 1.2: Resistor node convention

Algorithm for filling A In the input file, to describe a resistor of fig. 1.2, you'll have a line of the form R name $n_{1} \quad n_{2}$ value
The algorithm to process resistor lines is

```
    \(A \leftarrow 0\)
    \(i c \leftarrow 0\)
    for all resistor lines do
        ic \(\leftarrow i c+1\), adding one column to \(A\)
        if \(n_{1}!=0\) then
            \(A\left(n_{1}, i c\right) \leftarrow+1\)
        end if
        if \(n_{2}!=0\) then
            \(A\left(n_{2}, i c\right) \leftarrow-1\)
        end if
    end for
```

Algorithm for filling \bar{I}_{S} Current sources, as in fig. 1.3, a line will have the specification (FIXME: confirm... didn't write this down).

I name $n_{1} \quad n_{2}$ value

Figure 1.3: Current source conventions

$$
\begin{aligned}
& \bar{I}_{S}=\text { zeros }(N-1,1) \\
& \text { for all current lines do } \\
& \bar{I}_{S}\left(n_{1}\right) \leftarrow \bar{I}_{S}\left(n_{1}\right)-\text { value } \\
& \bar{I}_{S}\left(n_{2}\right) \leftarrow \bar{I}_{S}\left(n_{1}\right)+\text { value } \\
& \text { end for }
\end{aligned}
$$

Step 3. Constitutive equations:

$$
\left[\begin{array}{l}
i_{A} \tag{1.3}\\
i_{B} \\
i_{C} \\
i_{D} \\
i_{E}
\end{array}\right]=\left[\begin{array}{lllll}
1 / R_{A} & & & & \\
& 1 / R_{B} & & & \\
& & 1 / R_{C} & & \\
& & & 1 / R_{D} & \\
& & & & 1 / R_{E}
\end{array}\right]\left[\begin{array}{c}
v_{A} \\
v_{B} \\
v_{C} \\
v_{D} \\
v_{E}
\end{array}\right]
$$

Or

$$
\begin{equation*}
\bar{I}_{B}=\alpha \bar{V}_{B} \tag{1.4}
\end{equation*}
$$

where \bar{V}_{B} are the branch voltages, not unknowns of interest directly. We can write

$$
\left[\begin{array}{c}
v_{A} \tag{1.5}\\
v_{B} \\
v_{C} \\
v_{D} \\
v_{E}
\end{array}\right]=\left[\begin{array}{cccc}
-1 & & & \\
1 & -1 & & \\
& & 1 & -1 \\
& -1 & & 1
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3} \\
v_{4}
\end{array}\right]
$$

Observe that α is the transpose of A, allowing us to write

$$
\begin{equation*}
\bar{V}_{B}=A^{\mathrm{T}} \bar{V}_{N} . \tag{1.6}
\end{equation*}
$$

Solving

- KCLs: $A \bar{I}_{B}=\bar{I}_{S}$
- constitutive: $\bar{I}_{B}=\alpha \bar{V}_{B} \Longrightarrow \bar{I}_{B}=\alpha A^{\mathrm{T}} \bar{V}_{N}$
- branch and node voltages: $\bar{V}_{B}=A^{\mathrm{T}} \bar{V}_{N}$

In block matrix form, this is

$$
\left[\begin{array}{cc}
A & 0 \tag{1.7}\\
I & -\alpha A^{\mathrm{T}}
\end{array}\right]\left[\begin{array}{c}
\bar{I}_{B} \\
\bar{V}_{N}
\end{array}\right]=\left[\begin{array}{c}
\bar{I}_{S} \\
0
\end{array}\right] .
$$

Is it square? We see that it is after observing that we have

- $N-1$ rows in A, and B columns.
- B rows in I.
- $N-1$ columns.

