Peeter Joot
 peeter.joot@gmail.com

ECE1254H Modeling of Multiphysics Systems. Lecture 4: Modified nodal analysis. Taught by Prof. Piero Triverio

1.0.1 Disclaimer

Peeter's lecture notes from class. These may be incoherent and rough.

1.0.2 Modified nodal analysis

We add extra unknowns for

- branch currents for voltage sources
- all elements for which it is impossible or inconvieient to write $i=f\left(v_{1}, v_{2}\right)$. Imagine, for example, that we have a component illustrated in fig. 1.1.

Figure 1.1: Variable voltage device

$$
\begin{equation*}
v_{1}-v_{2}=3 i^{2} \tag{1.1}
\end{equation*}
$$

- any current which is controlling dependent sources, as in fig. 1.2.
- Inductors

$$
\begin{equation*}
v_{1}-v_{2}=L \frac{d i}{d t} . \tag{1.2}
\end{equation*}
$$

Figure 1.2: Current controlled device

Peeter Joot
 peeter.joot@gmail.com

Solving large systems

We are interested in solving linear systems of the form

$$
\begin{equation*}
M \bar{x}=\bar{b}, \tag{2.1}
\end{equation*}
$$

possibly with thousands of elements.

2.1 Gaussian elimination

$$
\begin{align*}
& 1 \tag{2.2}\\
& 2 \\
& 3
\end{align*}\left[\begin{array}{ccc}
1 & 2 & 3 \\
M_{11} & M_{12} & M_{13} \\
M_{21} & M_{22} & M_{23} \\
M_{31} & M_{32} & M_{33}
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right]
$$

It's claimed for now, to be seen later, that back substitution is the fastest way to arrive at the solution, less computationally complex than completion the diagonalization.

Steps

$$
\begin{align*}
& (1) \cdot \frac{M_{21}}{M_{11}} \Longrightarrow\left[\begin{array}{lll}
M_{21} & \frac{M_{21}}{M_{11}} M_{12} & \frac{M_{21}}{M_{11}} M_{13}
\end{array}\right] \tag{2.3}\\
& \text { (2) } \cdot \frac{M_{31}}{M_{11}} \Longrightarrow\left[\begin{array}{lll}
M_{31} & \frac{M_{31}}{M_{11}} M_{32} & \frac{M_{31}}{M_{11}} M_{33}
\end{array}\right] \tag{2.4}
\end{align*}
$$

This gives

$$
\left[\begin{array}{ccc}
M_{11} & M_{12} & M_{13} \tag{2.5}\\
0 & M_{22}-\frac{M_{21}}{M_{11}} M_{12} & M_{23}-\frac{M_{21}}{M_{11}} M_{13} \\
0 & M_{32}-\frac{M_{11}}{M_{11}} M_{32} & M_{33}-\frac{M_{31}}{M_{11}} M_{33}
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{c}
b_{1} \\
b_{2}-\frac{M_{21}}{M_{11}} b_{1} \\
b_{3}-\frac{M_{31}}{M_{11}} b_{1}
\end{array}\right] .
$$

Here the M_{11} element is called the pivot. Each of the $M_{j 1} / M_{11}$ elements is called a multiplier . This operation can be written as

$$
\left[\begin{array}{cll}
M_{11} & M_{12} & M_{13} \tag{2.6}\\
0 & M_{22}^{(2)} & M_{23}^{(3)} \\
0 & M_{32}^{(2)} & M_{33}^{(3)}
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{c}
b_{1} \\
b_{2}^{(2)} \\
b_{3}^{(2)}
\end{array}\right]
$$

Using $M_{22}^{(2)}$ as the pivot this time, we form

$$
\left[\begin{array}{ccc}
M_{11} & M_{12} & M_{13} \tag{2.7}\\
0 & M_{22}^{(2)} & M_{23}^{(3)} \\
0 & 0 & M_{33}^{(3)}-\frac{M_{32}^{(2)}}{M_{22}^{(2)}} M_{23}^{(2)}
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{c}
b_{1} \\
b_{2}-\frac{M_{21}}{M_{11}} b_{1} \\
b_{3}-\frac{M_{31}}{M_{11}} b_{1}-\frac{M_{32}^{(2)}}{M_{22}^{(2)}} b_{2}^{(2)}
\end{array}\right]
$$

2.2 LU decomposition

Through Gaussian elimination, we have transformed the system from

$$
\begin{equation*}
M x=b \tag{2.8}
\end{equation*}
$$

to

$$
\begin{equation*}
U x=y \tag{2.9}
\end{equation*}
$$

Writing out our Gaussian transformation in the form $U \bar{x}=b$ we have

$$
U \bar{x}=\left[\begin{array}{ccc}
1 & 0 & 0 \tag{2.10}\\
-\frac{M_{21}}{M_{11}} & 1 & 0 \\
\frac{M_{32}^{(2)}}{M_{22}^{(2)}} \frac{M_{21}}{M_{11}}-\frac{M_{31}}{M_{11}} & -\frac{M_{32}^{(2)}}{M_{22}^{(2)}} & 1
\end{array}\right]\left[\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right] .
$$

We can verify that the operation matrix K^{-1}, where $K^{-1} U=M$ that takes us to this form is

$$
\left[\begin{array}{ccc}
1 & 0 & 0 \tag{2.11}\\
\frac{M_{21}}{M_{11}} & 1 & 0 \\
\frac{M_{31}}{M_{11}} & \frac{M_{32}^{(2)}}{M_{22}^{(2)}} & 1
\end{array}\right]\left[\begin{array}{ccc}
U_{11} & U_{12} & U_{13} \\
0 & U_{22} & U_{23} \\
0 & 0 & U_{33}
\end{array}\right] \bar{x}=\bar{b}
$$

Using this LU decomposition is generally superior to standard Gaussian elimination, since we can use this for many different \bar{b} vectors using the same amount of work.

Our steps are

$$
\begin{align*}
b & =M x \\
& =L(U x) \tag{2.12}\\
& \equiv L y .
\end{align*}
$$

We can now solve $L y=b$, using substitution for y_{1}, then y_{2}, and finally y_{3}. This is called forward substitution.

Finally, we can now solve

$$
\begin{equation*}
U x=y, \tag{2.13}
\end{equation*}
$$

using back substitution .
Note that we produced the vector y as a side effect of performing the Gaussian elimination process.

