ECE1254H Modeling of Multiphysics Systems. Lecture 5: Numerical error and conditioning. Taught by Prof. Piero Triverio

1.1 Numerical errors and conditioning

1.1.1 Strict diagonal dominance

Related to a theorem on one of the slides:
Definition 1.1: Strictly diagonally dominant

A matrix $\left[M_{i j}\right]$ is strictly diagonally dominant if

$$
\begin{equation*}
\left|M_{i i}\right|>\sum_{j \neq i}\left|M_{i j}\right| \quad \forall i \tag{1.1}
\end{equation*}
$$

For example, the stamp matrix

$$
\begin{gather*}
 \tag{1.2}\\
i \\
j
\end{gather*} \begin{array}{cc}
i & j \\
{\left[\begin{array}{cc}
\frac{1}{R} & -\frac{1}{R} \\
-\frac{1}{R} & \frac{1}{R}
\end{array}\right]}
\end{array}
$$

is not strictly diagonally dominant. For row i this strict dominance can be achieved by adding a reference resistor

$$
j\left[\begin{array}{cc}
\frac{1}{R_{0}}+\frac{1}{R} & -\frac{1}{R} \tag{1.3}\\
-\frac{1}{R} & \frac{1}{R}
\end{array}\right]
$$

However, even with strict dominance, we can have trouble with ill posed (perturbative) systems. Round off error examples with double precision

$$
\begin{equation*}
(1-1)+\pi 10^{-17}=\pi 10^{-17}, \tag{1.4}
\end{equation*}
$$

vs.

$$
\begin{equation*}
\left(1+\pi 10^{-17}\right)-1=0 \tag{1.5}
\end{equation*}
$$

This is demonstrated by

```
#include <stdio.h>
#include <math.h>
// produces:
// 0 3.14159e-17
int main()
{
    double d1 = (1 + M_PI * 1e-17) - 1 ;
    double d2 = M_PI * 1e-17 ;
    printf( "%g %g\n", d1, d2 ) ;
    return 0 ;
}
```

Note that a union and bitfield [1] can be useful for exploring double precision representation.

1.1.2 Exploring uniqueness and existence

For a matrix system $\bar{M} x=\bar{b}$ in column format, with

$$
\left[\begin{array}{llll}
\bar{M}_{1} & \bar{M}_{2} & \ldots & \bar{M}_{N}
\end{array}\right]\left[\begin{array}{c}
x_{1} \tag{1.6}\\
x_{2} \\
\vdots \\
x_{N}
\end{array}\right]=\bar{b}
$$

This can be written as

$$
\begin{aligned}
& \text { weight } \\
& \qquad x_{x_{1}} \bar{M}_{1}+x_{2} \bar{M}_{2}+\cdots x_{N} \bar{M}_{N}=\bar{b} .
\end{aligned}
$$

weight
Linear dependence means

$$
\begin{equation*}
y_{1} \bar{M}_{1}+y_{2} \bar{M}_{2}+\cdots y_{N} \bar{M}_{N}=0, \tag{1.8}
\end{equation*}
$$

or $M \bar{y}=0$.
With a linear dependency an additional solution, given solution \bar{x} is $\bar{x}^{1}=\bar{x}+\alpha y$. This becomes relevant for numerical processing since for a system $M \bar{x}^{1}=\bar{b}$ we can often find $\alpha M \bar{y}$, for which

$$
\begin{equation*}
M \bar{x}+\alpha M \bar{y}=\bar{b}, \tag{1.9}
\end{equation*}
$$

where $\alpha M \bar{y}$ is of order 10^{-20}.

Table 1.1: Solution space

	$\bar{b} \in \operatorname{span}\left\{M_{-} i\right\}$	$\bar{b} \notin \operatorname{span}\left\{M_{-} i\right\}$
columns of M linearly independent	\bar{x} exists and is unique	No solution
columns of M linearly dependent	\bar{x} exists. Infinitely many solutions	No solution

1.1.3 Perturbation and norms

Consider a perturbation to the system $M \bar{x}=\bar{b}$

$$
\begin{equation*}
(M+\delta M)(\bar{x}+\delta \bar{x})=\bar{b} . \tag{1.10}
\end{equation*}
$$

Some vector norms

- L_{1} norm

$$
\begin{equation*}
\|\bar{x}\|_{1}=\sum_{i}\left|x_{i}\right| \tag{1.11}
\end{equation*}
$$

- L_{2} norm

$$
\begin{equation*}
\|\bar{x}\|_{2}=\sqrt{\sum_{i}\left|x_{i}\right|^{2}} \tag{1.12}
\end{equation*}
$$

- L_{∞} norm

$$
\begin{equation*}
\|\bar{x}\|_{\infty}=\max _{i}\left|x_{i}\right| . \tag{1.13}
\end{equation*}
$$

These are illustrated for $\bar{x}=\left(x_{1}, x_{2}\right)$ in fig. 1.1.

Figure 1.1: Some vector norms

Figure 1.2: Matrix as a transformation

1.1.4 Matrix norm

A matrix operation $\bar{y}=M \bar{x}$ can be thought of as a transformation as in fig. 1.2.
The 1-norm for a Matrix is defined as

$$
\begin{equation*}
\|M\|=\max _{\|\bar{x}\|_{1}=1}\|M \bar{x}\|, \tag{1.14}
\end{equation*}
$$

and the matrix 2-norm is defined as

$$
\begin{equation*}
\|M\|_{2}=\max _{\|\bar{x}\|_{2}=1}\|M \bar{x}\|_{2} . \tag{1.15}
\end{equation*}
$$

Bibliography

[1] Peeter Joot. Simple C++ double representation explorer, 2014. URL https://github.com/ peeterjoot/physicsplay/blob/master/notes/ece1254/samples/rounding.cpp. [Online; accessed 29-Sept-2014]. 1.1.1

