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ECE1254H Modeling of Multiphysics Systems. Lecture 7: Sparse
factorization and iterative methods. Taught by Prof. Piero Triverio

1.1 Disclaimer

Peeter’s lecture notes from class. These may be incoherent and rough.

1.2 Fill ins

The problem of fill ins in LU computations arise in locations where rows and columns cross over zero
positions.

Rows and columns can be permuted to deal with these. Here is an ad-hoc permutation of rows
and columns that will result in less fill ins.
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
a b c 0
d e 0 0
0 f g 0
0 h 0 i




x1
x2
x3
x4

 =


b1
b2
b3
b4



=⇒


a c 0 b
d 0 0 e
0 g 0 f
0 0 i h




x1
x4
x3
x2

 =


b1
b2
b3
b4



=⇒


0 a c b
0 d 0 e
0 0 g f
i 0 0 h




x3
x4
x1
x2

 =


b1
b2
b3
b4



=⇒


i 0 0 h
0 a c b
0 d 0 e
0 0 g f




x3
x4
x1
x2

 =


b4
b1
b2
b3



=⇒


i 0 0 h
0 c a b
0 0 d e
0 g 0 f




x3
x1
x4
x2

 =


b4
b1
b2
b3



(1.1)

1.3 Markowitz product

To facilitate such permutations the Markowitz product that estimates the amount of fill in required.

Definition 1.1: Markowitz product

Markowitz product = (Non zeros in unfactored part of Row -1)×
(Non zeros in unfactored part of Col -1)

In [1] it is stated “A still simpler alternative, which seems adequate generally, is to choose the
pivot which minimizes the number of coefficients modified at each step (excluding those which are
eliminated at the particular step). This is equivalent to choosing the non-zero element with minimum
(ρi − 1)(σj − 1).”

Note that this product is applied only to ij positions that are non-zero, something not explicitly
mentioned in the slides, nor in other locations like [2].

Example 1.1: Markowitz product
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For this matrix 
a b c 0
d e 0 0
0 f g 0
0 h 0 i

 , (1.2)

the Markowitz products are 
1 6 2
1 3

3 1
3 0

 . (1.3)

1.4 Markowitz reordering

The Markowitz Reordering procedure (copied directly from the slides) is

• For i = 1 to n

• Find diagonal j >= i with min Markowitz product

• Swap rows j↔ i and columns j↔ i

• Factor the new row i and update Markowitz products

Example 1.2: Markowitz reordering

Looking at the Markowitz products eq. (1.3) a swap of rows and columns 1, 4 gives the modified
matrix 

i 0 h 0
0 d e 0
0 0 f g
0 a b c

 (1.4)

In this case, this reordering has completely avoided any requirement to do any actual Gaussian
operations for this first stage reduction.

Presuming that the Markowitz products for the remaining 3x3 submatrix are only computed
from that submatrix, the new products are 1 2

2 1
2 4 2

 . (1.5)

We have a minimal product in the pivot position, which happens to already lie on the diag-
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onal. Note that it is not necessarily the best for numerical stability. It appears the off diagonal
Markowitz products are not really of interest since the reordering algorithm swaps both rows
and columns.

1.5 Graph representation

It is possible to interpret the Markowitz products on the diagonal as connectivity of a graph that
represents the interconnections of the nodes. Consider the circuit of fig. 1.1 as an example

Figure 1.1: Simple circuit

The system equations for this circuit is of the form
x x x 0 1
x x x 0 0
x x x x 0
0 0 x x −1
−1 0 0 1 0




V1
V2
V3
V4
i

 =


0
0
0
0
x

 . (1.6)

The Markowitz products along the diagonal are

M11 = 9
M22 = 4
M33 = 9
M44 = 4
M55 = 4

(1.7)

Compare these to the number of interconnections of the graph fig. 1.2 of the nodes in this circuit.
We see that these are the squares of the number of the node interconnects in each case.
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Figure 1.2: Graph representation

Here a 5th node was introduced for the current i between nodes 4 and 1. Observe that the Markowitz
product of this node was counted as the number of non-zero values excluding the 5, 5 matrix position.
However, that doesn’t matter too much since a Markowitz swap of row/column 1 with row/column
5 would put a zero in the 1, 1 position of the matrix, which is not desirable. We have to restrict the
permutations of zero diagonal positions to pivots for numerical stability, or use a more advanced
zero fill avoidance algorithm.

The minimum diagonal Markowitz products are in positions 2 or 4, with respective Markowitz
reorderings of the form 

x x x 0 0
x x x 0 1
x x x x 0
0 0 x x −1
0 −1 0 1 0




V2
V1
V3
V4
i

 =


0
0
0
0
x

 , (1.8)

and 
x 0 0 x −1
0 x x x 1
0 x x x 0
x x x x 0
1 −1 0 0 0




V4
V1
V2
V3
i

 =


0
0
0
0
x

 . (1.9)

The original system had 7 zeros that could potentially be filled in the remaining 4× 4 submatrix.
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After a first round of Gaussian elimination, our system matrices have the respective forms
x x x 0 0
0 x x 0 1
0 x x x 0
0 0 x x −1
0 −1 0 1 0

 (1.10a)


x 0 0 x −1
0 x x x 1
0 x x x 0
0 x x x 0
0 −1 0 x x

 (1.10b)

The remaining 4× 4 submatrices have interconnect graphs sketched in fig. 1.3.

Figure 1.3: Graphs after one round of Gaussian elimination

From a graph point of view, we want to delete the most connected nodes. This can be driven by
the Markowitz products along the diagonal or directly with graph methods.

1.6 Summary of factorization costs

LU (dense)

• cost: O(n3)

• cost depends only on size

LU (sparse)

• cost: Diagonal and tridiagonal are O(n), but we can have up to O(n3) depending on sparsity
and the method of dealing with the sparsity.
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• cost depends on size and sparsity

Computation can be affordable up to a few million elements.

Iterative methods Can be cheap if done right. Convergence requires careful preconditioning.

1.7 Iterative methods

Suppose that we have an initial guess x0. Iterative methods are generally of the form
repeat

r = b−Mxi
until ‖r‖ < ε.
The difference r is called the residual. For as long as it is bigger than desired, continue improving

the estimate xi.
The matrix vector product Mxi, if dense, is of O(n2). Suppose, for example, that we can perform

the iteration in ten iterations. If the matrix is dense, we can have 10 O(n2) performance. If sparse, this
can be worse than just direct computation.

1.8 Gradient method

This is a method for iterative solution of the equation Mx = b.
This requires symmetric positive definite matrix M = MT, with M > 0.
We introduce an energy function

Ψ(y) ≡ 1
2

yTMy− yTb (1.11)

For a two variable system this is illustrated in fig. 1.4.

Figure 1.4: Positive definite energy function
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Theorem 1.1: Energy function minimum

The energy function eq. (1.11) has a minimum at

y = M−1b = x. (1.12)

To prove this, consider the coordinate representation

Ψ =
1
2

ya Mabyb − ybbb, (1.13)

for which the derivatives are

(1.14)
∂Ψ
∂yi

=
1
2

Mibyb +
1
2

ya Mai − bi

= (My − b)i .

The last operation above was possible because M = MT. Setting all of these equal to zero, and
rewriting this as a matrix relation we have

My = b, (1.15)

as asserted.

This is called the gradient method because the gradient moves us along the path of steepest descent
towards the minimum if it exists.

The method is

x(k+1) = x(k) + αk

step size

d(k)

direction

, (1.16)

where the direction is

(1.17)
d(k) = −∇Φ

= b − Mxk

= r(k).

Optimal step size Note that for the minimization of Φ
(
x(k+1)), we note

(1.18)
Φ
(

x(k+1)
)

= Φ
(

x(k) + αkd(k)
)

=
1
2

(
x(k) + αkd(k)

)T
M
(

x(k) + αkd(k)
)
−
(

x(k) + αkd(k)
)T

b
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If we take the derivative of both sides with respect to αk to find the minimum, we have

0 =
1
2

(
d(k)
)T

Mx(k) +
1
2

(
x(k)
)T

Md(k) + αk

(
d(k)
)T

Md(k) −
(

d(k)
)T

b. (1.19)

Because M is symmetric, this is

αk

(
d(k)
)T

Md(k) =
(

d(k)
)T (

b−Mx(k)
)

=
(

d(k)
)T

r(k), (1.20)

or

αk =

(
r(k))T r(k)

(r(k))
T Mr(k)

(1.21)

We will see that this method is not optimal when we pick one direction and keep going down that
path.

1.9 Definitions and theorems

Definition 1.2: Positive (negative) definite

A matrix M is positive (negative) definite, denoted M > 0(< 0) if yTMy > 0(< 0), ∀y.
If a matrix is neither positive, nor negative definite, it is called indefinite.

Theorem 1.2: Positive (negative) definite

A symmetric matrix M > 0(< 0) iff λi > 0(< 0) for all eigenvalues λi, or is indefinite iff its
eigenvalues λi are of mixed sign.
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