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ECE1254H Modeling of Multiphysics Systems. Problem Set 1: Modified
Nodal Analysis

Exercise 1.1 Heat conduction
a. In this problem we will examine the heat conducting bar basic example · · · Then, interpret

the discretized equation as a KCL using the electrothermal analogy where temperature corre-
sponds to node voltage, and heat flow to current. Draw the equivalent circuit you obtained.

b. Plot T(x) in x ∈ [0, 1].
c. In your numerical calculation, how did you choose ∆x? Justify the choice of ∆x.
d. Now use your simulator to numerically solve the above equation · · ·
e. Plot the new temperature profile.
f. Explain the temperature distributions that you obtained from a physical standpoint.

Answer for Exercise 1.1

Part a. To discretize the equation, let’s divide the interval into N segments, as illustrated in fig. 1.1.

Figure 1.1: Discretization intervals

Let

xi = i∆x, i ∈ {0, 1, · · · , N + 1}

Hi = 50 sin2
(

2πxi
)

, i ∈ {0, 1, · · · , N + 1}

Ti = T(xi), i ∈ {0, 1, · · · , N + 1}

Qi =
Ti+1 − Ti

∆x
, i ∈ {0, · · · , N}

(1.1)
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Here xi are the discrete points at which the temperatures are evaluated with and ∆x = 1/N. The
values Hi, Ti are the heats and temperatures respectively, and Qi is a temperature current (propor-
tional to the heat flow) in the interval i flowing from node i + 1 to i.

With Qi =
(
Ti − Ti−1) /∆x we have an equivalence to the circuit element I = ∆V/R. This analogy

makes sense physicsally since a smaller interval length has less resistance to heat flow.
The linearized Poisson equation at interior nodes 1 ≤ i ≤ N is

Qi −Qi−1 − κa∆x
κm

(
Ti − T0

)
+

Hi∆x
κm

= 0. (1.2)

Identification of the −κa∆x/κm
(
Ti − T0

)
term as a current I = ∆V/R (with temperatures as volt-

ages) means that we can identify R ∼ κm∆x/κa. This allows us to create the equivalent circuit
sketched in fig. 1.2.

Figure 1.2: Equivalent circuit

At the endpoints things are a slightly different. At x0, xN+1 respectively, we have

−q0 + Q0 − κa∆x
κm

(
T0 − T0

)
+

H0∆x
κm

= 0

−q1 −QN − κa∆x
κm

(
TN+1 − T0

)
+

HN+1∆x
κm

= 0.
(1.3)

At these nodes is only one current term, but we also have to model the heat sinks. This equivalent
circuit is sketched in fig. 1.3.
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Figure 1.3: Endpoints in equivalent circuit

Notes

• I missed the ∆x factors in the equivalent circuit figures.

• It looks like it would have been better to formulate these equations with N− 1 intervals, so that
I could start off the node numbers at (1) instead of (0), since the ambiant temperature has been
identified with ground. The code that generates the netlist offsets the internal node numbers
by one to compensate.

Part b. TODO.

Part c. We’d like to keep the variation of the Hi term small. That diffrence between two adjacent
intervals scales with the squared sine

(1.4)∆
(
sin2(2πx)

)
≈ 4π sin (2πx) cos (2πx) ∆x
= 2π sin (4πx) ∆x

This is biggest when the sine is near unity. If we want the heat terms to differ by no more than a
fraction f we can determine ∆x from

(1.5)
f Hi ≈ Hi − Hi−1

≈ 2π∆xHi.

=
2π

N
Hi.

That is
(1.6)N ≈ 2π

f
.

For example, if we desire f = 1/10 we can pick N ≈ 63.
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Part d. TODO.

Part e. TODO.

Part f. TODO.

4



Bibliography

5


