Peeter Joot
 peeter.joot@gmail.com

Sum of digits of small powers of nine

In a previous post I wondered how to prove that for integer $d \in[1, N]$

$$
\begin{equation*}
((N-1) d) \bmod N+((N-1) d) \operatorname{div} N=N-1 . \tag{1.1}
\end{equation*}
$$

Here's a proof in two steps. First for $N=10$, and then by search and replace for arbitrary N.
$N=10 \quad$ Let

$$
\begin{equation*}
x=9 d=10 a+b, \tag{1.2}
\end{equation*}
$$

where $1 \leq a, b<9$, and let

$$
\begin{equation*}
y=a+b, \tag{1.3}
\end{equation*}
$$

the sum of the digits in a base 10 numeral system.
We wish to solve the following integer system of equations

$$
\begin{align*}
9 d & =10 a+b . \tag{1.4}\\
y & =a+b
\end{align*}
$$

Scaling and subtracting we have

$$
\begin{equation*}
10 y-9 d=9 b \tag{1.5}
\end{equation*}
$$

or

$$
\begin{equation*}
y=\frac{9}{10}(b+d) . \tag{1.6}
\end{equation*}
$$

Because y is an integer, we have to conclude that $b+d$ is a power of 10 , and $b+d \geq 10$. Because we have a constraint on the maximum value of this sum

$$
\begin{equation*}
b+d \leq 2(9) \tag{1.7}
\end{equation*}
$$

we can only conclude that

$$
\begin{equation*}
b+d=10 . \tag{1.8}
\end{equation*}
$$

or

$$
\begin{equation*}
b=10-d . \tag{1.9}
\end{equation*}
$$

Back substitution into eq. (1.2) we have

$$
\begin{align*}
10 a & =9 d-b \\
& =9 d-10+d \\
& =10 d-10 \tag{1.10}\\
& =10(d-1),
\end{align*}
$$

or

$$
\begin{equation*}
a=d-1 . \tag{1.11}
\end{equation*}
$$

Summing eq. (1.11) and eq. (1.9), the sum of digits is

$$
\begin{equation*}
a+b=d-1+10-d=9 . \tag{1.12}
\end{equation*}
$$

For arbitrary N There was really nothing special about 9,10 in the above proof, so generalizing requires nothing more than some search and replace. I used the following vim commands for this "proof generalization"
:,/For arb/-1 y
:+/For arb/+1
: p
$:, \$ \mathrm{~s} / \backslash<9 \backslash>/(\mathrm{N}-1) / \mathrm{cg}$
$:, \$ \mathrm{~s} / \backslash<10 \backslash>/ \mathrm{N} / \mathrm{cg}$
:,\$ s/numberGame:/\&2:/g
Let

$$
\begin{equation*}
x=(N-1) d=N a+b, \tag{1.13}
\end{equation*}
$$

where $1 \leq a, b<N-1$, and let

$$
\begin{equation*}
y=a+b, \tag{1.14}
\end{equation*}
$$

the sum of the digits in a base N numeral system.
We wish to solve the following integer system of equations

$$
\begin{align*}
(N-1) d & =N a+b \\
y & =a+b . \tag{1.15}
\end{align*}
$$

Scaling and subtracting we have

$$
\begin{equation*}
N y-(N-1) d=(N-1) b, \tag{1.16}
\end{equation*}
$$

or

$$
\begin{equation*}
y=\frac{N-1}{N}(b+d) . \tag{1.17}
\end{equation*}
$$

Because y is an integer, we have to conclude that $b+d$ is a power of N, and $b+d \geq N$. Because we have a constraint on the maximum value of this sum

$$
\begin{equation*}
b+d \leq 2(N-1) \tag{1.18}
\end{equation*}
$$

we can only conclude that

$$
\begin{equation*}
b+d=N . \tag{1.19}
\end{equation*}
$$

or

$$
\begin{equation*}
b=N-d . \tag{1.20}
\end{equation*}
$$

Back substitution into eq. (1.13) we have

$$
\begin{align*}
N a & =(N-1) d-b \\
& =(N-1) d-N+d \\
& =N d-N \tag{1.21}\\
& =N(d-1),
\end{align*}
$$

or

$$
\begin{equation*}
a=d-1 . \tag{1.22}
\end{equation*}
$$

Summing eq. (1.22) and eq. (1.20), the sum of digits is

$$
\begin{equation*}
a+b=d-1+N-d=N-1 . \tag{1.23}
\end{equation*}
$$

This completes the proof of eq. (1.1).

