Peeter Joot
 peeter.joot@gmail.com

Stability of discretized linear differential equations

In class today was a highlight of stability methods for linear multistep methods. To motivate the methods used, it is helpful to take a step back and review stability concepts for LDE systems.

By way of example, consider a second order LDE homogeneous system defined by

$$
\begin{equation*}
\frac{d^{2} x}{d t^{2}}+3 \frac{d x}{d t}+2=0 \tag{1.1}
\end{equation*}
$$

Such a system can be solved by assuming an exponential solution, say

$$
\begin{equation*}
x(t)=e^{s t} \tag{1.2}
\end{equation*}
$$

Substitution gives

$$
\begin{equation*}
e^{s t}\left(s^{2}+3 s+2\right)=0 \tag{1.3}
\end{equation*}
$$

The polynomial part of this equation, the characteristic equation has roots $s=-2,-1$.
The general solution of eq. (1.1) is formed by a superposition of solutions for each value of s

$$
\begin{equation*}
x(t)=a e^{-2 t}+b e^{-t} \tag{1.4}
\end{equation*}
$$

Independent of any selection of the superposition constants a, b, this function will not blow up as $t \rightarrow \infty$.

This "stability" is due to the fact that both of the characteristic equation roots lie in the left hand Argand plane.

Now consider a discretized form of this LDE. This will have the form

$$
\begin{align*}
0 & =\frac{1}{(\Delta t)^{2}}\left(x_{n+2}-2 x_{n-1}+x_{n}\right)+\frac{3}{\Delta t}\left(x_{n+1}-x_{n}\right)+2 x_{n} \tag{1.5}\\
& =x_{n+2}\left(\frac{1}{(\Delta t)^{2}}\right)+x_{n+1}\left(\frac{3}{\Delta t}-\frac{2}{(\Delta t)^{2}}\right)+x_{n}\left(\frac{1}{(\Delta t)^{2}}-\frac{3}{\Delta t}+2\right),
\end{align*}
$$

or

$$
\begin{equation*}
0=x_{n+2}+x_{n+1}(3 \Delta t-2)+x_{n}\left(1-3 \Delta t+2(\Delta t)^{2}\right) . \tag{1.6}
\end{equation*}
$$

Note that after discretization, each subsequent index corresponds to a time shift. Also observe that the coefficients of this discretized equation are dependent on the discretization interval size Δt. If the specifics of those coefficients are ignored, a general form with the following structure can be observed

$$
\begin{equation*}
0=x_{n+2} \gamma_{0}+x_{n+1} \gamma_{1}+x_{n} \gamma_{2} . \tag{1.7}
\end{equation*}
$$

It turns out that, much like the LDE solution by characteristic polynomial, it is possible to attack this problem by assuming a solution of the form

$$
\begin{equation*}
x_{n}=C z^{n} . \tag{1.8}
\end{equation*}
$$

A time shift index change $x_{n} \rightarrow x_{n+1}$ results in a power adjustment in this assumed solution. This substitution applied to eq. (1.7) yields

$$
\begin{equation*}
0=C z^{n}\left(z^{2} \gamma_{0}+z \gamma_{1}+1 \gamma_{2}\right), \tag{1.9}
\end{equation*}
$$

Suppose that this polynomial has roots $z \in\left\{z_{1}, z_{2}\right\}$. A superposition, such as

$$
\begin{equation*}
x_{n}=a z_{1}^{n}+b z_{2}^{n} \tag{1.10}
\end{equation*}
$$

will also be a solution since insertion of this into the RHS of eq. (1.7) yields

$$
\begin{equation*}
a z_{1}^{n}\left(z_{1}^{2} \gamma_{0}+z_{1} \gamma_{1}+\gamma_{2}\right)+b z_{2}^{n}\left(z_{2}^{2} \gamma_{0}+z_{2} \gamma_{1}+\gamma_{2}\right)=a z_{1}^{n} \times 0+b z_{2}^{n} \times 0 . \tag{1.11}
\end{equation*}
$$

The zero equality follows since z_{1}, z_{2} are both roots of the characteristic equation for this discretized LDE. In the discrete z domain stability requires that the roots satisfy the bound $|z|<1$, a different stability criteria than in the continuous domain. In fact, there is no a-priori guarantee that stability in the continuous domain will imply stability in the discretized domain.

Let's plot those z -domain roots for this example LDE, using $\Delta t \in\{1 / 2,1,2\}$. The respective characteristic polynomials are

$$
\begin{align*}
0=z^{2}-\frac{1}{2} z & =z\left(z-\frac{1}{2}\right) \tag{1.12a}\\
0=z^{2}+z & =z(z+1) \tag{1.12b}\\
0=z^{2}+4 z+3 & =(z+3)(z+1) . \tag{1.12c}
\end{align*}
$$

These have respective roots

$$
\begin{gather*}
z=0, \frac{1}{2} \tag{1.13a}\\
z=0,-1 \tag{1.13b}\\
z=-1,-3 \tag{1.13c}
\end{gather*}
$$

Only the first discretization of these three yields stable solutions in the z domain, although it appears that $\Delta t=1$ is right on the boundary.

