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Singular Value Decomposition

We’ve been presented with the definition of the singular value decomposition or SVD , but not how
to compute it.

Recall that the definition was

Definition 1.1: Singular value decomposition (SVD)

Given M ∈ Rm×n, we can find a representation of M

(1.1)M = UΣVT,

where U and V are orthogonal matrices such that UTU = 1, and VTV = 1, and

(1.2)Σ =



σ1
σ2

. . .
σr

0
. . .

0


The values σi, i ≤ min(n, m) are called the singular values of M. The singular values are subject

to the ordering

σ1 ≥ σ2 ≥ · · · ≥ 0 (1.3)

If r is the rank of M, then the σr above is the minimum non-zero singular value (but the zeros
are also called singular values).

Here I’ll review some of the key ideas from the MIT OCW SVD lecture by Prof. Gilbert Strang [1].
This is largely to avoid having to rewatch this again in a few years as I just did.

The idea behind the SVD is to find an orthogonal basis that relates the image space of the transfor-
mation, as well as the basis for the vectors that the transformation applies to. That is a relation of the
form
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(1.4)ui = Mvj

Where vj are orthonormal basis vectors, and ui are orthonormal basis vectors for the image space.
Let’s suppose that such a set of vectors can be computed and that M has a representation of the

desired form

(1.5)M = UΣV∗

where
(1.6)U =

[
u1 u2 · · · um

]
,

and

(1.7)V =
[
v1 v2 · · · vn

]
.

By left or right multiplication of M with its (conjugate) transpose, we will see that the decomposed
form of these products have a very simple form

M∗M = VΣ∗U∗UΣV∗ = VΣ∗ΣV∗, (1.8a)

MM∗ = UΣV∗VΣ∗U∗ = UΣΣ∗U∗. (1.8b)

Because Σ is diagonal, the products Σ∗Σ and ΣΣ∗ are also both diagonal, and populated with the
absolute squares of the singular values that we have presumed to exist. Because ΣΣ∗ is an m × m
matrix, whereas Σ∗Σ is an n× n matrix, so the numbers of zeros in each of these will differ, but each
will have the structure

Σ∗Σ ∼ ΣΣ∗ ∼



|σ1|2

|σ2|2
. . .
|σr|2

0
. . .

0


(1.9)

This shows us one method of computing the singular value decomposition (for full rank systems),
because we need only solve for the eigensystem of either MM∗ or M∗M to find the singular values,
and one of U or V. To form U we will be able to find r orthonormal eigenvectors of MM∗ and then
supplement that with a mutually orthonormal set of vectors from the Null space of M. We can form
Σ by taking the square roots of the eigenvalues of MM∗. With both Σ and U computed, we can then
compute V by inversion. We could similarly solve for Σ and V by computing the eigensystem of
M∗M and similarly supplementing those eigenvectors with vectors from the null space, and then
compute U by inversion.

Let’s work the examples from the lecture to see how this works.
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Example 1.1: Full rank 2x2 matrix

In the lecture the SVD decomposition is computed for

M =
[

4 4
3 −3

]
(1.10)

For this we have

MM∗ =
[

32 0
0 18

]
(1.11a)

M∗M =
[

25 7
7 25

]
(1.11b)

The first is already diagonalized so U = I, and the singular values are found by inspection
{
√

32,
√

18}, or

Σ =
[√

32 0
0

√
18

]
(1.12)

Because the system is full rank we can solve for V by inversion

Σ−1U∗M = V∗, (1.13)

or
V = M∗U

(
Σ−1

)∗
. (1.14)

In this case that is

V =
1√
2

[
1 1
1 −1

]
(1.15)

We could alternately compute V directly by diagonalizing M∗M. We see that the eigenvectors
are (1,±1) /

√
2, with respective eigenvalues {32, 18}.

This gives us eq. (1.12) and eq. (1.15). Again, because the system is full rank, we can compute
U by inversion. That is

U = MVΣ−1. (1.16)

Carrying out this calculation recovers U = I as expected. Looks like I used a different ma-
trix than Prof. Strang used in his lecture (alternate signs on the 3’s). He had some trouble that
arrived from independent calculation of the respective eigenspaces. Calculating one from the
other avoids that trouble since there are different signed eigenvalues that can be chosen, and we
are looking for specific mappings between the eigenspaces that satisfy the ui = Mvj constraints
encoded by the relationship M = UΣV∗.
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Let’s work a non-full rank example, as in the lecture.

Example 1.2: 2x2 matrix without full rank

How about

M =
[

1 1
2 2

]
. (1.17)

For this we have

M∗M =
[

5 5
5 5

]
(1.18a)

MM∗ =
[

2 4
4 8

]
(1.18b)

For which the non-zero eigenvalue is 10 and the corresponding eigenvalue is

v =
1√
2

[
1
1

]
. (1.19)

This gives us

Σ =
[√

10 0
0 0

]
(1.20)

Since we require V to be orthonormal, there is only one choice (up to a sign) for the vector
from the null space.

Let’s try

V =
1√
2

[
1 1
1 −1

]
(1.21)

We find that MM∗ has eigenvalues {10, 0} as expected. The eigenvector for the non-zero
eigenvalue is found to be

u =
1√
5

[
1
2

]
. (1.22)

It’s easy to expand this to an orthonormal basis, but do we have to pick a specific sign relative
to the choice that we’ve made for V?

Let’s try

U =
1√
5

[
1 2
2 −1

]
. (1.23)

Multiplying out UΣV∗ we have
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(1.24)

1√
5

[
1 2
2 −1

] [√
10 0
0 0

]
1√
2

[
1 1
1 −1

]
=
[

1 2
2 −1

] [
1 0
0 0

] [
1 1
1 −1

]
=
[

1 0
2 0

] [
1 1
1 −1

]
=
[

1 1
2 2

]
.

It appears that this works, although we haven’t demonstrated why that should be, and we
could have gotten lucky with signs. There’s some theoretical work to do here, but let’s leave that
for another day (or rely on software to do this computational task).
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