Peeter Joot
 peeterjoot@protonmail.com

L_{z} and \mathbf{L}^{2} eigenvalues and probabilities for a wave function

Q: [1] 3.17 Given a wave function

$$
\begin{equation*}
\psi(r, \theta, \phi)=f(r)(x+y+3 z), \tag{1.1}
\end{equation*}
$$

(a) Determine if this wave function is an eigenfunction of \mathbf{L}^{2}, and the value of l if it is an eigenfunction.
(b) Determine the probabilities for the particle to be found in any given $|l, m\rangle$ state,
(c) If it is known that ψ is an energy eigenfunction with energy E indicate how we can find $V(r)$.

A: (a) Using

$$
\begin{equation*}
\mathbf{L}^{2}=-\hbar^{2}\left(\frac{1}{\sin ^{2} \theta} \partial_{\phi \phi}+\frac{1}{\sin \theta} \partial_{\theta}\left(\sin \theta \partial_{\theta}\right)\right), \tag{1.2}
\end{equation*}
$$

and

$$
\begin{align*}
& x=r \sin \theta \cos \phi \\
& y=r \sin \theta \sin \phi \tag{1.3}\\
& z=r \cos \theta
\end{align*}
$$

it's a quick computation to show that

$$
\begin{equation*}
\mathbf{L}^{2} \psi=2 \hbar^{2} \psi=1(1+1) \hbar^{2} \psi, \tag{1.4}
\end{equation*}
$$

so this function is an eigenket of \mathbf{L}^{2} with an eigenvalue of $2 \hbar^{2}$, which corresponds to $l=1$, a p-orbital state.
(b) Recall that the angular representation of L_{z} is

$$
\begin{equation*}
L_{z}=-i \hbar \frac{\partial}{\partial \phi} \tag{1.5}
\end{equation*}
$$

so we have

$$
\begin{align*}
L_{z} x & =i \hbar y \\
L_{z} y & =-i \hbar x \tag{1.6}\\
L_{z} z & =0
\end{align*}
$$

The L_{z} action on ψ is

$$
\begin{equation*}
L_{z} \psi=-i \hbar r f(r)(-y+x) \tag{1.7}
\end{equation*}
$$

This wave function is not an eigenket of L_{z}. Expressed in terms of the L_{z} basis states $e^{i m \phi}$, this wave function is

$$
\begin{align*}
\psi & =r f(r)(\sin \theta(\cos \phi+\sin \phi)+\cos \theta) \\
& =r f(r)\left(\frac{\sin \theta}{2}\left(e^{i \phi}\left(1+\frac{1}{i}\right)+e^{-i \phi}\left(1-\frac{1}{i}\right)\right)+\cos \theta\right) \tag{1.8}\\
& =r f(r)\left(\frac{(1-i) \sin \theta}{2} e^{1 i \phi}+\frac{(1+i) \sin \theta}{2} e^{-1 i \phi}+\cos \theta e^{0 i \phi}\right)
\end{align*}
$$

Assuming that ψ is normalized, the probabilities for measuring $m=1,-1,0$ respectively are

$$
\begin{align*}
P_{ \pm 1} & =2 \pi \rho\left|\frac{1 \mp i}{2}\right|^{2} \int_{0}^{\pi} \sin \theta d \theta \sin ^{2} \theta \\
& =-2 \pi \rho \int_{1}^{-1} d u\left(1-u^{2}\right) \\
& =\left.2 \pi \rho\left(u-\frac{u^{3}}{3}\right)\right|_{-1} ^{1} \tag{1.9}\\
& =2 \pi \rho\left(2-\frac{2}{3}\right) \\
& =\frac{8 \pi \rho}{3}
\end{align*}
$$

and

$$
\begin{align*}
P_{0} & =2 \pi \rho \int_{0}^{\pi} \sin \theta \cos \theta \tag{1.10}\\
& =0
\end{align*}
$$

where

$$
\begin{equation*}
\rho=\int_{0}^{\infty} r^{4}|f(r)|^{2} d r \tag{1.11}
\end{equation*}
$$

Because the probabilities must sum to 1 , this means the $m= \pm 1$ states are equiprobable with $P_{ \pm}=1 / 2$, fixing $\rho=3 / 16 \pi$, even without knowing $f(r)$.
(c) The operator $r^{2} \mathbf{p}^{2}$ can be decomposed into a \mathbf{L}^{2} component and some other portions, from which we can write

$$
\begin{align*}
H \psi & =\left(\frac{\mathbf{p}^{2}}{2 m}+V(r)\right) \psi \\
& =\left(-\frac{\hbar^{2}}{2 m}\left(\partial_{r r}+\frac{2}{r} \partial_{r}-\frac{1}{\hbar^{2} r^{2}} \mathbf{L}^{2}\right)+V(r)\right) \psi . \tag{1.12}
\end{align*}
$$

(See: [1] eq. 6.21)
In this case where $\mathbf{L}^{2} \psi=2 \hbar^{2} \psi$ we can rearrange for $V(r)$

$$
\begin{align*}
V(r) & =E+\frac{1}{\psi} \frac{\hbar^{2}}{2 m}\left(\partial_{r r}+\frac{2}{r} \partial_{r}-\frac{2}{r^{2}}\right) \psi \tag{1.13}\\
& =E+\frac{1}{f(r)} \frac{\hbar^{2}}{2 m}\left(\partial_{r r}+\frac{2}{r} \partial_{r}-\frac{2}{r^{2}}\right) f(r) .
\end{align*}
$$

Bibliography

[1] Jun John Sakurai and Jim J Napolitano. Modern quantum mechanics. Pearson Higher Ed, 2014. 1, 1

