Peeter Joot peeterjoot@protonmail.com

L_z and L^2 eigenvalues and probabilities for a wave function

Q: [1] 3.17 Given a wave function

$$\psi(r,\theta,\phi) = f(r)\left(x+y+3z\right),\tag{1.1}$$

- (a) Determine if this wave function is an eigenfunction of L^2 , and the value of l if it is an eigenfunction.
- (b) Determine the probabilities for the particle to be found in any given $|l, m\rangle$ state,
- (c) If it is known that ψ is an energy eigenfunction with energy *E* indicate how we can find *V*(*r*).
- A: (a) Using

$$\mathbf{L}^{2} = -\hbar^{2} \left(\frac{1}{\sin^{2} \theta} \partial_{\phi\phi} + \frac{1}{\sin \theta} \partial_{\theta} \left(\sin \theta \partial_{\theta} \right) \right), \tag{1.2}$$

and

$$x = r \sin \theta \cos \phi$$

$$y = r \sin \theta \sin \phi$$

$$z = r \cos \theta$$
(1.3)

it's a quick computation to show that

$$\mathbf{L}^{2}\psi = 2\hbar^{2}\psi = 1(1+1)\hbar^{2}\psi, \tag{1.4}$$

so this function is an eigenket of L^2 with an eigenvalue of $2\hbar^2$, which corresponds to l = 1, a p-orbital state.

(b) Recall that the angular representation of L_z is

$$L_z = -i\hbar \frac{\partial}{\partial \phi} \tag{1.5}$$

so we have

$$L_z x = i\hbar y$$

$$L_z y = -i\hbar x$$

$$L_z z = 0,$$
(1.6)

The L_z action on ψ is

$$L_z \psi = -i\hbar r f(r) \left(-y + x\right). \tag{1.7}$$

This wave function is not an eigenket of L_z . Expressed in terms of the L_z basis states $e^{im\phi}$, this wave function is

$$\begin{split} \psi &= rf(r) \left(\sin \theta \left(\cos \phi + \sin \phi \right) + \cos \theta \right) \\ &= rf(r) \left(\frac{\sin \theta}{2} \left(e^{i\phi} \left(1 + \frac{1}{i} \right) + e^{-i\phi} \left(1 - \frac{1}{i} \right) \right) + \cos \theta \right) \\ &= rf(r) \left(\frac{(1-i)\sin \theta}{2} e^{1i\phi} + \frac{(1+i)\sin \theta}{2} e^{-1i\phi} + \cos \theta e^{0i\phi} \right) \end{split}$$
(1.8)

Assuming that ψ is normalized, the probabilities for measuring m = 1, -1, 0 respectively are

$$P_{\pm 1} = 2\pi\rho \left| \frac{1 \mp i}{2} \right|^2 \int_0^{\pi} \sin\theta d\theta \sin^2\theta$$

= $-2\pi\rho \int_1^{-1} du(1-u^2)$
= $2\pi\rho \left(u - \frac{u^3}{3} \right) \Big|_{-1}^1$ (1.9)
= $2\pi\rho \left(2 - \frac{2}{3} \right)$
= $\frac{8\pi\rho}{3}$,

and

$$P_0 = 2\pi\rho \int_0^\pi \sin\theta\cos\theta$$
(1.10)
= 0,

where

$$\rho = \int_0^\infty r^4 |f(r)|^2 dr.$$
 (1.11)

Because the probabilities must sum to 1, this means the $m = \pm 1$ states are equiprobable with $P_{\pm} = 1/2$, fixing $\rho = 3/16\pi$, even without knowing f(r).

(c) The operator $r^2 \mathbf{p}^2$ can be decomposed into a \mathbf{L}^2 component and some other portions, from which we can write

$$H\psi = \left(\frac{\mathbf{p}^2}{2m} + V(r)\right)\psi$$

= $\left(-\frac{\hbar^2}{2m}\left(\partial_{rr} + \frac{2}{r}\partial_r - \frac{1}{\hbar^2 r^2}\mathbf{L}^2\right) + V(r)\right)\psi.$ (1.12)

(See: [1] eq. 6.21) In this case where $L^2 \psi = 2\hbar^2 \psi$ we can rearrange for V(r)

$$V(r) = E + \frac{1}{\psi} \frac{\hbar^2}{2m} \left(\partial_{rr} + \frac{2}{r} \partial_r - \frac{2}{r^2} \right) \psi$$

$$= E + \frac{1}{f(r)} \frac{\hbar^2}{2m} \left(\partial_{rr} + \frac{2}{r} \partial_r - \frac{2}{r^2} \right) f(r).$$
 (1.13)

Bibliography

[1] Jun John Sakurai and Jim J Napolitano. *Modern quantum mechanics*. Pearson Higher Ed, 2014. 1, 1