Peeter Joot
 peeterjoot@protonmail.com

L_{y} perturbation

Q: L_{y} perturbation. [1] pr. 5.17 Find the first non-zero energy shift for the perturbed Hamiltonian

$$
\begin{align*}
H & =A \mathbf{L}^{2}+B L_{z}+C L_{y} \tag{1.1}\\
& =H_{0}+V .
\end{align*}
$$

A: The energy eigenvalues for state $|l, m\rangle$ prior to perturbation are

$$
\begin{equation*}
A \hbar^{2} l(l+1)+B \hbar m . \tag{1.2}
\end{equation*}
$$

The first order energy shift is zero

$$
\begin{align*}
\Delta^{1} & =\langle l, m| C L_{y}|l, m\rangle \\
& =\frac{C}{2 i}\langle l, m|\left(L_{+}-L_{-}\right)|l, m\rangle \tag{1.3}\\
& =0,
\end{align*}
$$

so we need the second order shift. Assuming no degeneracy to start, the perturbed state is

$$
\begin{equation*}
|l, m\rangle^{\prime}=\sum^{\prime} \frac{\left|l^{\prime}, m^{\prime}\right\rangle\left\langle l^{\prime}, m^{\prime}\right|}{E_{l, m}-E_{l^{\prime}, m^{\prime}}} V|l, m\rangle, \tag{1.4}
\end{equation*}
$$

and the next order energy shift is

$$
\begin{align*}
\Delta^{2} & =\langle l m| V \sum^{\prime} \frac{\left|l^{\prime}, m^{\prime}\right\rangle\left\langle l^{\prime}, m^{\prime}\right|}{E_{l, m}-E_{l^{\prime}, m^{\prime}}} V|l, m\rangle \\
& =\sum^{\prime} \frac{\langle l, m| V\left|l^{\prime}, m^{\prime}\right\rangle\left\langle l^{\prime}, m^{\prime}\right|}{E_{l, m}-E_{l^{\prime}, m^{\prime}}} V|l, m\rangle \\
& =\sum^{\prime} \frac{\left.\left|\left\langle l^{\prime}, m^{\prime}\right| V\right| l, m\right\rangle\left.\right|^{2}}{E_{l, m}-E_{l^{\prime}, m^{\prime}}} \\
& =\sum_{m^{\prime} \neq m} \frac{\left.\left|\left\langle l, m^{\prime}\right| V\right| l, m\right\rangle\left.\right|^{2}}{E_{l, m}-E_{l, m^{\prime}}} \tag{1.5}\\
& =\sum_{m^{\prime} \neq m} \frac{\left.\left|\left\langle l, m^{\prime}\right| V\right| l, m\right\rangle\left.\right|^{2}}{\left(A \hbar^{2} l(l+1)+B \hbar m\right)-\left(A \hbar^{2} l(l+1)+B \hbar m^{\prime}\right)} \\
& =\frac{1}{B \hbar} \sum_{m^{\prime} \neq m} \frac{\left.\left|\left\langle l, m^{\prime}\right| V\right| l, m\right\rangle\left.\right|^{2}}{m-m^{\prime}} .
\end{align*}
$$

The sum over l^{\prime} was eliminated because V only changes the m of any state $|l, m\rangle$, so the matrix element $\left\langle l^{\prime}, m^{\prime}\right| V|l, m\rangle$ must includes a $\delta_{l^{\prime}, l}$ factor. Since we are now summing over $m^{\prime} \neq m$, some of the matrix elements in the numerator should now be non-zero, unlike the case when the zero first order energy shift was calculated in eq. (1.3).

$$
\begin{align*}
\left\langle l, m^{\prime}\right| C L_{y}|l, m\rangle & =\frac{C}{2 i}\left\langle l, m^{\prime}\right|\left(L_{+}-L_{-}\right)|l, m\rangle \\
& =\frac{C}{2 i}\left\langle l, m^{\prime}\right|\left(L_{+}|l, m\rangle-L_{-}|l, m\rangle\right) \tag{1.6}\\
& =\frac{C \hbar}{2 i}\left\langle l, m^{\prime}\right|(\sqrt{(l-m)(l+m+1)}|l, m+1\rangle-\sqrt{(l+m)(l-m+1)}|l, m-1\rangle) \\
& =\frac{C \hbar}{2 i}\left(\sqrt{(l-m)(l+m+1)} \delta_{m^{\prime}, m+1}-\sqrt{(l+m)(l-m+1)} \delta_{m^{\prime}, m-1}\right) .
\end{align*}
$$

After squaring and summing, the cross terms will be zero since they involve products of delta functions with different indices. That leaves

$$
\begin{align*}
\Delta^{2} & =\frac{C^{2} \hbar}{4 B} \sum_{m^{\prime} \neq m} \frac{(l-m)(l+m+1) \delta_{m^{\prime}, m+1}-(l+m)(l-m+1) \delta_{m^{\prime}, m-1}}{m-m^{\prime}} \\
& =\frac{C^{2} \hbar}{4 B}\left(\frac{(l-m)(l+m+1)}{m-(m+1)}-\frac{(l+m)(l-m+1)}{m-(m-1)}\right) \tag{1.7}\\
& =\frac{C^{2} \hbar}{4 B}\left(-\left(l^{2}-m^{2}+l-m\right)-\left(l^{2}-m^{2}+l+m\right)\right) \\
& =-\frac{C^{2} \hbar}{2 B}\left(l^{2}-m^{2}+l\right),
\end{align*}
$$

so to first order the energy shift is

$$
\begin{equation*}
A \hbar^{2} l(l+1)+B \hbar m \rightarrow \hbar l(l+1)\left(A \hbar-\frac{C^{2}}{2 B}\right)+B \hbar m+\frac{C^{2} m^{2} \hbar}{2 B} \tag{1.8}
\end{equation*}
$$

Exact perturbation equation If we wanted to solve the Hamiltonian exactly, we've have to diagonalize the $2 m+1$ dimensional Hamiltonian

$$
\begin{align*}
\left\langle l, m^{\prime}\right| H|l, m\rangle & =\left(A \hbar^{2} l(l+1)\right. \tag{1.9}\\
& +B \hbar m) \delta_{m^{\prime}, m}+\frac{C \hbar}{2 i}\left(\sqrt{(l-m)(l+m+1)} \delta_{m^{\prime}, m+1}-\sqrt{(l+m)(l-m+1)} \delta_{m^{\prime}, m-1}\right)
\end{align*}
$$

This Hamiltonian matrix has a very regular structure

$$
\begin{align*}
H & =\left(A l(l+1) \hbar^{2}-B \hbar(l+1)\right) I \\
& +B \hbar\left[\begin{array}{lllll}
1 & & & \\
& 2 & & & \\
& & 3 & & \\
& & & \ddots & \\
& & & 2 l+1
\end{array}\right] \tag{1.10}\\
& +\frac{C \hbar}{i}\left[\begin{array}{cccccc}
& 0 & -\sqrt{(2 l-1)(1)} & \\
\sqrt{(2 l-1)(1)} & 0 & -\sqrt{(2 l-2)(2)} \\
& & \sqrt{(2 l-2)(2)} & & \\
& & & \ddots & \\
& & & & & \\
& & & & & \\
& & & \\
(1)(2 l-1) & & 0
\end{array}\right]
\end{align*}
$$

Solving for the eigenvalues of this Hamiltonian for increasing l in Mathematica (sakuraiProblem5.17a.nb), it appears that the eigenvalues are

$$
\begin{equation*}
\lambda_{m}=A \hbar^{2}(l)(l+1)+\hbar m B \sqrt{1+\frac{4 C^{2}}{B^{2}}} \tag{1.11}
\end{equation*}
$$

so to first order in C^{2}, these are

$$
\begin{equation*}
\lambda_{m}=A \hbar^{2}(l)(l+1)+\hbar m B\left(1+\frac{2 C^{2}}{B^{2}}\right) \tag{1.12}
\end{equation*}
$$

We have a $C^{2} \hbar / B$ term in both the perturbative energy shift eq. (1.7), and the first order expansion of the exact solution eq. (1.11). Comparing this for the $l=5$ case, the coefficients of $C^{2} \hbar / B$ in eq. (1.7) are all negative $-17.5,-17 .,-16.5,-16 .,-15.5,-15 .,-14.5,-14 .,-13.5,-13 .,-12.5$, whereas the coefficient of $C^{2} \hbar / B$ in the first order expansion of the exact solution eq. (1.11) are $2 m$, ranging from [$-10,10$].

Bibliography

[1] Jun John Sakurai and Jim J Napolitano. Modern quantum mechanics. Pearson Higher Ed, 2014. 1

