Peeter Joot
 peeterjoot@protonmail.com

Commutators of angular momentum and a central force Hamiltonian

Commutators for angular momentum In problem 1.17 of [2] we are to show that non-commuting operators that both commute with the Hamiltonian, have, in general, degenerate energy eigenvalues. That is

$$
\begin{equation*}
[A, H]=[B, H]=0, \tag{1.1}
\end{equation*}
$$

but

$$
\begin{equation*}
[A, B] \neq 0 . \tag{1.2}
\end{equation*}
$$

Angular momentum for central force Hamiltonian The problem suggests considering L_{x}, L_{z} and a central force Hamiltonian $H=\mathbf{p}^{2} / 2 m+V(r)$ as examples.

Let's start with demonstrate these commutators act as expected in these cases.
With $\mathbf{L}=\mathbf{x} \times \mathbf{p}$, we have

$$
\begin{align*}
& L_{x}=y p_{z}-z p_{y} \\
& L_{y}=z p_{x}-x p_{z} \tag{1.3}\\
& L_{z}=x p_{y}-y p_{x} .
\end{align*}
$$

The L_{x}, L_{z} commutator is

$$
\begin{align*}
{\left[L_{x}, L_{z}\right] } & =\left[y p_{z}-z p_{y}, x p_{y}-y p_{x}\right] \\
& =\left[y p_{z}, x p_{y}\right]-\left[y p_{z}, y p_{x}\right]-\left[z p_{y}, x p_{y}\right]+\left[z p_{y}, y p_{x}\right] \\
& =x p_{z}\left[y, p_{y}\right]+z p_{x}\left[p_{y}, y\right] \tag{1.4}\\
& =i \hbar\left(x p_{z}-z p_{x}\right) \\
& =-i \hbar L_{y}
\end{align*}
$$

cyclicly permuting the indexes shows that no pairs of different \mathbf{L} components commute. For L_{y}, L_{x} that is

$$
\begin{align*}
{\left[L_{y}, L_{x}\right] } & =\left[z p_{x}-x p_{z}, y p_{z}-z p_{y}\right] \\
& =\left[z p_{x}, y p_{z}\right]-\left[z p_{x}, z p_{y}\right]-\left[x p_{z}, y p_{z}\right]+\left[x p_{z}, z p_{y}\right] \\
& =y p_{x}\left[z, p_{z}\right]+x p_{y}\left[p_{z}, z\right] \tag{1.5}\\
& =i \hbar\left(y p_{x}-x p_{y}\right) \\
& =-i \hbar L_{z}
\end{align*}
$$

and for L_{z}, L_{y}

$$
\begin{align*}
{\left[L_{z}, L_{y}\right] } & =\left[x p_{y}-y p_{x}, z p_{x}-x p_{z}\right] \\
& =\left[x p_{y}, z p_{x}\right]-\left[x p_{y}, x p_{z}\right]-\left[y p_{x}, z p_{x}\right]+\left[y p_{x}, x p_{z}\right] \\
& =z p_{y}\left[x, p_{x}\right]+y p_{z}\left[p_{x}, x\right] \tag{1.6}\\
& =i \hbar\left(z p_{y}-y p_{z}\right) \\
& =-i \hbar L_{x} .
\end{align*}
$$

If these angular momentum components are also shown to commute with themselves (which they do), the commutator relations above can be summarized as

$$
\begin{equation*}
\left[L_{a}, L_{b}\right]=i \hbar \epsilon_{a b c} L_{c} . \tag{1.7}
\end{equation*}
$$

In the example to consider, we'll have to consider the commutators with \mathbf{p}^{2} and $V(r)$. Picking any one component of \mathbf{L} is sufficent due to the symmetries of the problem. For example

$$
\begin{align*}
{\left[L_{x}, \mathbf{p}^{2}\right] } & =\left[y p_{z}-z p_{y}, p_{x}^{2}+p_{y}^{2}+p_{z}^{2}\right] \\
& =\left[y p_{z}, p_{x}^{2}+p_{y}^{2}+p_{z}^{2}\right]-\left[z p_{y}, p_{x}^{2}+p_{y}^{2}+p_{z}^{2}\right] \\
& =p_{z}\left[y, p_{y}^{2}\right]-p_{y}\left[z, p_{z}^{2}\right] \tag{1.8}\\
& =p_{z} 2 i \hbar p_{y}-p_{y} 2 i \hbar p_{z} \\
& =0 .
\end{align*}
$$

How about the commutator of L with the potential? It is sufficient to consider one component again, for example

$$
\begin{align*}
{\left[L_{x}, V\right] } & =\left[y p_{z}-z p_{y}, V\right] \\
& =y\left[p_{z}, V\right]-z\left[p_{y}, V\right] \\
& =-i \hbar y \frac{\partial V(r)}{\partial z}+i \hbar z \frac{\partial V(r)}{\partial y} \\
& =-i \hbar y \frac{\partial V}{\partial r} \frac{\partial r}{\partial z}+i \hbar z \frac{\partial V}{\partial r} \frac{\partial r}{\partial y} \tag{1.9}\\
& =-i \hbar y \frac{\partial V}{\partial r} \frac{z}{r}+i \hbar z \frac{\partial V}{\partial r} \frac{y}{r} \\
& =0
\end{align*}
$$

This has shown that all the components of \mathbf{L} commute with a central force Hamiltonian, and each different component of \mathbf{L} do not commute. It does not demonstrate the degeneracy, but I do recall that exists for this system.

Matrix example of non-commuting commutators I thought perhaps the problem at hand would be easier if I were to construct some example matrices representing operators that did not commute, but did commuted with a Hamiltonian. I came up with

$$
\begin{align*}
& A=\left[\begin{array}{cc}
\sigma_{z} & 0 \\
0 & 1
\end{array}\right]=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & 1
\end{array}\right] \\
& B=\left[\begin{array}{cc}
\sigma_{x} & 0 \\
0 & 1
\end{array}\right]=\left[\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right] \tag{1.10}\\
& H=\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 1
\end{array}\right]
\end{align*}
$$

This system has $[A, H]=[B, H]=0$, and

$$
[A, B]=\left[\begin{array}{ccc}
0 & 2 & 0 \tag{1.11}\\
-2 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

There is one shared eigenvector between all of A, B, H

$$
|3\rangle=\left[\begin{array}{l}
0 \tag{1.12}\\
0 \\
1
\end{array}\right] .
$$

The other eigenvectors for A are

$$
\begin{align*}
& \left|a_{1}\right\rangle=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right] \\
& \left|a_{2}\right\rangle=\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right], \tag{1.13}
\end{align*}
$$

and for B

$$
\begin{align*}
& \left|b_{1}\right\rangle=\frac{1}{\sqrt{2}}\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right] \\
& \left|b_{2}\right\rangle=\frac{1}{\sqrt{2}}\left[\begin{array}{c}
1 \\
-1 \\
0
\end{array}\right], \tag{1.14}
\end{align*}
$$

This clearly has the degeneracy sought.
Looking to [1], it appears that it is possible to construct an even simpler example. Let

$$
\begin{align*}
A & =\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right] \\
B & =\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right] \tag{1.15}\\
H & =\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right] .
\end{align*}
$$

Here $[A, B]=-A$, and $[A, H]=[B, H]=0$, but the Hamiltonian isn't interesting at all physically. A less boring example builds on this. Let

$$
\begin{align*}
A & =\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 0 \\
0 & 0 & 1
\end{array}\right] \\
B & =\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 1
\end{array}\right] \tag{1.16}\\
H & =\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 1
\end{array}\right] .
\end{align*}
$$

Here $[A, B] \neq 0$, and $[A, H]=[B, H]=0$. I don't see a way for any exception to be constructed.
The problem The concrete examples above give some intuition for solving the more abstract problem. Suppose that we are working in a basis that simulaneously diagonalizes operator A and the Hamiltonian H. To make life easy consider the simplest case where this basis is also an eigenbasis for the second operator B for all but two of that operators eigenvectors. For such a system let's write

$$
\begin{align*}
H|1\rangle & =\epsilon_{1}|1\rangle \\
H|2\rangle & =\epsilon_{2}|2\rangle \tag{1.17}\\
A|1\rangle & =a_{1}|1\rangle \\
A|2\rangle & =a_{2}|2\rangle,
\end{align*}
$$

where $|1\rangle$, and $|2\rangle$ are not eigenkets of B. Because B also commutes with H, we must have

$$
\begin{align*}
H B|1\rangle & =H|n\rangle\langle n| B|1\rangle \tag{1.18}\\
& =\epsilon_{n}|n\rangle B_{n 1},
\end{align*}
$$

and

$$
\begin{align*}
B H|1\rangle & =B \epsilon_{1}|1\rangle \\
& =\epsilon_{1}|n\rangle\langle n| B|1\rangle \tag{1.19}\\
& =\epsilon_{1}|n\rangle B_{n 1} .
\end{align*}
$$

The commutator is

$$
\begin{equation*}
[B, H]|1\rangle=\left(\epsilon_{1}-\epsilon_{n}\right)|n\rangle B_{n 1} . \tag{1.20}
\end{equation*}
$$

Similarily

$$
\begin{equation*}
[B, H]|2\rangle=\left(\epsilon_{2}-\epsilon_{n}\right)|n\rangle B_{n 2} . \tag{1.21}
\end{equation*}
$$

For those kets $|m\rangle \in\{|3\rangle,|4\rangle, \cdots\}$ that are eigenkets of B, with $B|m\rangle=b_{m}|m\rangle$, we have

$$
\begin{align*}
{[B, H]|m\rangle } & =B \epsilon_{m}|m\rangle-H b_{m}|m\rangle \\
& =b_{m} \epsilon_{m}|m\rangle-\epsilon_{m} b_{m}|m\rangle \tag{1.22}\\
& =0 .
\end{align*}
$$

If the commutator is zero, then we require all its matrix elements

$$
\begin{align*}
\langle 1|[B, H]|1\rangle & =\left(\epsilon_{1}-\epsilon_{1}\right) B_{11} \\
\langle 2|[B, H]|1\rangle & =\left(\epsilon_{1}-\epsilon_{2}\right) B_{21} \tag{1.23}\\
\langle 1|[B, H]|2\rangle & =\left(\epsilon_{2}-\epsilon_{1}\right) B_{12} \\
\langle 2|[B, H]|2\rangle & =\left(\epsilon_{2}-\epsilon_{2}\right) B_{22},
\end{align*}
$$

to be zero. Because of eq. (1.22) only the matrix elements with respect to states $|1\rangle,|2\rangle$ need be considered. Two of the matrix elements above are clearly zero, regardless of the values of B_{11}, and B_{22}, and for the other two to be zero, we must either have

- $B_{21}=B_{12}=0$, or
- $\epsilon_{1}=\epsilon_{2}$.

If the first condition were true we would have

$$
\begin{align*}
B|1\rangle & =|n\rangle\langle n| B|1\rangle \\
& =|n\rangle B_{n 1} \tag{1.24}\\
& =|1\rangle B_{11},
\end{align*}
$$

and $B|2\rangle=B_{22}|2\rangle$. This contradicts the requirement that $|1\rangle,|2\rangle$ not be eigenkets of B, leaving only the second option. That second option means there must be a degeneracy in the system.

Bibliography

[1] Ronald M. Aarts. Commuting Matrices, 2015. URL http://mathworld.wolfram.com/ CommutingMatrices.html. [Online; accessed 22-Oct-2015]. 1
[2] Jun John Sakurai and Jim J Napolitano. Modern quantum mechanics. Pearson Higher Ed, 2014. 1

