# Peeter Joot <br> peeter.joot@gmail.com 

## Can anticommuting operators have a simultaneous eigenket?

## Exercise 1.1 Can anticommuting operators have a simultaneous eigenket? ([1] pr. 1.16)

Two Hermitian operators anticommute

$$
\begin{align*}
\{A, B\} & =A B+B A  \tag{1.1}\\
& =0 .
\end{align*}
$$

Is it possible to have a simultaneous eigenket of $A$ and $B$ ? Prove or illustrate your assertion.

## Answer for Exercise 1.1

Suppose that such a simultaneous non-zero eigenket $|\alpha\rangle$ exists, then

$$
\begin{equation*}
A|\alpha\rangle=a|\alpha\rangle, \tag{1.2}
\end{equation*}
$$

and

$$
\begin{equation*}
B|\alpha\rangle=b|\alpha\rangle \tag{1.3}
\end{equation*}
$$

This gives

$$
\begin{align*}
(A B+B A)|\alpha\rangle & =(A b+B a)|\alpha\rangle  \tag{1.4}\\
& =2 a b|\alpha\rangle .
\end{align*}
$$

If this is zero, one of the operators must have a zero eigenvalue. Knowing that we can construct an example of such operators. In matrix form, let

$$
\begin{align*}
& A=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & a
\end{array}\right]  \tag{1.5a}\\
& B=\left[\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & b
\end{array}\right] . \tag{1.5b}
\end{align*}
$$

These are both Hermitian, and anticommute provided at least one of $a, b$ is zero. These have a common eigenket

$$
|\alpha\rangle=\left[\begin{array}{l}
0  \tag{1.6}\\
0 \\
1
\end{array}\right] .
$$

A zero eigenvalue of one of the commuting operators may not be a sufficient condition for such anticommutation.

## Bibliography

[1] Jun John Sakurai and Jim J Napolitano. Modern quantum mechanics. Pearson Higher Ed, 2014. 1.1

