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A curious proof of the Baker-Campbell-Hausdorff formula

Equation (39) of [1] states the Baker-Campbell-Hausdorff formula for two operators a,b that com-
mute with their commutator [a, ]

eaeb — eu+b+[u,b]/2’ (1‘1)

and provides the outline of an interesting method of proof. That method is to consider the deriva-
tive of

f()\) — e/\ae)\hef/\(th)/ (1.2)

That derivative is
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The commutator above is proportional to [a, b]
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To get the above, we should also do the induction demonstration for [a, b*] = kb*~! [a, b].
This clearly holds for k = 0, 1. For any other k we have
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Observe that eq. (1.5) is solved by
f=eVlobl?) (1.7)
which gives
MN1ab1/2 _ A b, —Aath) (1.8)

Right multiplication by e*@*?) which commutes with eMlab)/2 and setting A = 1 recovers eq. (1.1) as
desired.

What I wonder looking at this, is what thought process led to trying this in the first place? This is
not what I would consider an obvious approach to demonstrating this identity.
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