A curious proof of the Baker-Campbell-Hausdorff formula

Equation (39) of [1] states the Baker-Campbell-Hausdorff formula for two operators a, b that commute with their commutator $[a, b]$

$$
\begin{equation*}
e^{a} e^{b}=e^{a+b+[a, b] / 2}, \tag{1.1}
\end{equation*}
$$

and provides the outline of an interesting method of proof. That method is to consider the derivative of

$$
\begin{equation*}
f(\lambda)=e^{\lambda a} e^{\lambda b} e^{-\lambda(a+b)}, \tag{1.2}
\end{equation*}
$$

That derivative is

$$
\begin{align*}
\frac{d f}{d \lambda} & =e^{\lambda a} a e^{\lambda b} e^{-\lambda(a+b)}+e^{\lambda a} b e^{\lambda b} e^{-\lambda(a+b)}-e^{\lambda a} b e^{\lambda b}(a+b) e^{-\lambda(a+b)} \\
& =e^{\lambda a}\left(a e^{\lambda b}+b e^{\lambda b}-e^{\lambda b}(a+b)\right) e^{-\lambda(a+b)} \tag{1.3}\\
& =e^{\lambda a}\left(\left[a, e^{\lambda b}\right]+\left[b, e^{\lambda b]}\right]\right) e^{-\lambda(a+b)} \\
& =e^{\lambda a}\left[a, e^{\lambda b}\right] e^{-\lambda(a+b)} .
\end{align*}
$$

The commutator above is proportional to $[a, b]$

$$
\begin{align*}
{\left[a, e^{\lambda b}\right] } & =\sum_{k=0}^{\infty} \frac{\lambda^{k}}{k!}\left[a, b^{k}\right] \\
& =\sum_{k=0}^{\infty} \frac{\lambda^{k}}{k!} k b^{k-1}[a, b] \tag{1.4}\\
& =\lambda \sum_{k=1}^{\infty} \frac{\lambda^{k-1}}{(k-1)!} b^{k-1}[a, b] \\
& =\lambda e^{\lambda b}[a, b],
\end{align*}
$$

so

$$
\begin{equation*}
\frac{d f}{d \lambda}=\lambda[a, b] f . \tag{1.5}
\end{equation*}
$$

To get the above, we should also do the induction demonstration for $\left[a, b^{k}\right]=k b^{k-1}[a, b]$. This clearly holds for $k=0,1$. For any other k we have

$$
\begin{align*}
{\left[a, b^{k+1}\right] } & =a b^{k+1}-b^{k+1} a \\
& =\left(\left[a, b^{k}\right]+b^{k} a\right) b-b^{k+1} a \tag{1.6}\\
& =k b^{k-1}[a, b] b+b^{k}([a, b]+b a)-b^{k+1} a \\
& =k b^{k}[a, b]+b^{k}[a, b] \\
& =(k+1) b^{k}[a, b]
\end{align*}
$$

Observe that eq. (1.5) is solved by

$$
\begin{equation*}
f=e^{\lambda^{2}[a, b] / 2}, \tag{1.7}
\end{equation*}
$$

which gives

$$
\begin{equation*}
e^{\lambda^{2}[a, b] / 2}=e^{\lambda a} e^{\lambda b} e^{-\lambda(a+b)} . \tag{1.8}
\end{equation*}
$$

Right multiplication by $e^{\lambda(a+b)}$ which commutes with $e^{\lambda^{2}[a, b] / 2}$ and setting $\lambda=1$ recovers eq. (1.1) as desired.

What I wonder looking at this, is what thought process led to trying this in the first place? This is not what I would consider an obvious approach to demonstrating this identity.

Bibliography

[1] Roy J Glauber. Some notes on multiple-boson processes. Physical Review, 84(3):395, 1951. 1

