Peeter Joot
 peeter.joot@gmail.com

Chebychev antenna design

In our text [1] is a design procedure that applies Chebychev polynomials to the selection of current magnitudes for an evenly spaced array of identical antennas placed along the z -axis.

For an even number $2 M$ of identical antennas placed at positions $\mathbf{r}_{m}=(d / 2)(2 m-1) \mathbf{e}_{3}$, the array factor is

$$
\begin{equation*}
\mathrm{AF}=\sum_{m=-N}^{N} I_{m} e^{-j k \hat{\mathbf{r}} \mathbf{r}_{m}} . \tag{1.1}
\end{equation*}
$$

Assuming the currents are symmetric $I_{-m}=I_{m}$, with $\hat{\mathbf{r}}=(\sin \theta \cos \phi, \sin \theta \sin \phi, \cos \theta)$, and $u=$ $\frac{\pi d}{\lambda} \cos \theta$, this is

$$
\begin{align*}
\mathrm{AF} & =\sum_{m=-N}^{N} I_{m} e^{-j k(d / 2)(2 m-1) \cos \theta} \\
& =2 \sum_{m=1}^{N} I_{m} \cos (k(d / 2)(2 m-1) \cos \theta) \tag{1.2}\\
& =2 \sum_{m=1}^{N} I_{m} \cos ((2 m-1) u)
\end{align*}
$$

This is a sum of only odd cosines, and can be expanded as a sum that includes all the odd powers of $\cos u$. Suppose for example that this is a four element array with $N=2$. In this case the array factor has the form

$$
\begin{align*}
\mathrm{AF} & =2\left(I_{1} \cos u+I_{2}\left(4 \cos ^{3} u-3 \cos u\right)\right) \tag{1.3}\\
& =2\left(\left(I_{1}-3 I_{2}\right) \cos u+4 I_{2} \cos ^{3} u\right) .
\end{align*}
$$

The design procedure in the text sets $\cos u=z / z_{0}$, and then equates this to $T_{3}(z)=4 z^{3}-3 z$ to determine the current amplitudes I_{m}. That is

$$
\begin{equation*}
\frac{2 I_{1}-6 I_{2}}{z_{0}} z+\frac{8 I_{2}}{z_{0}^{3}} z^{3}=-3 z+4 z^{3}, \tag{1.4}
\end{equation*}
$$

or

$$
\begin{align*}
{\left[\begin{array}{c}
I_{1} \\
I_{2}
\end{array}\right] } & =\left[\begin{array}{cc}
2 / z_{0} & -6 / z_{0} \\
0 & 8 / z_{0}^{3}
\end{array}\right]^{-1}\left[\begin{array}{c}
-3 \\
4
\end{array}\right] \tag{1.5}\\
& =\frac{z_{0}}{2}\left[\begin{array}{c}
3\left(z_{0}^{2}-1\right) \\
z_{0}^{2}
\end{array}\right]
\end{align*}
$$

The currents in the array factor are fully determined up to a scale factor, reducing the array factor to

$$
\begin{equation*}
\mathrm{AF}=4 z_{0}^{3} \cos ^{3} u-3 z_{0} \cos u \tag{1.6}
\end{equation*}
$$

The zeros of this array factor are located at the zeros of

$$
\begin{equation*}
T_{3}\left(z_{0} \cos u\right)=\cos \left(3 \cos ^{-1}\left(z_{0} \cos u\right)\right) \tag{1.7}
\end{equation*}
$$

which are at $3 \cos ^{-1}\left(z_{0} \cos u\right)=\pi / 2+m \pi=\pi\left(m+\frac{1}{2}\right)$

$$
\begin{align*}
\cos u & =\frac{1}{z_{0}} \cos \left(\frac{\pi}{3}\left(m+\frac{1}{2}\right)\right) \\
& =\left\{0, \pm \frac{\sqrt{3}}{2 z_{0}}\right\} . \tag{1.8}
\end{align*}
$$

showing that the scaling factor z_{0} effects the locations of the zeros. It also allows the values at the extremes $\cos u= \pm 1$, to increase past the ± 1 non-scaled limit values. These effects can be explored in http://goo.gl/KPqcjX, but can also be seen in fig. 1.1.

Figure 1.1: $T_{3}\left(z_{0} x\right)$ for a few different scale factors z_{0}.
The scale factor can be fixed for a desired maximum power gain. For $R \mathrm{~dB}$, that will be when

$$
\begin{equation*}
20 \log _{10} \cosh \left(3 \cosh ^{-1} z_{0}\right)=R \mathrm{~dB} \tag{1.9}
\end{equation*}
$$

or

$$
\begin{equation*}
z_{0}=\cosh \left(\frac{1}{3} \cosh ^{-1}\left(10^{\frac{R}{20}}\right)\right) \tag{1.10}
\end{equation*}
$$

For $R=30 \mathrm{~dB}$ (say), we have $z_{0}=2.1$, and

$$
\begin{equation*}
\mathrm{AF}=40 \cos ^{3}\left(\frac{\pi d}{\lambda} \cos \theta\right)-6.4 \cos \left(\frac{\pi d}{\lambda} \cos \theta\right) . \tag{1.11}
\end{equation*}
$$

These are plotted in fig. 1.2 (linear scale), and fig. 1.3 (dB scale) for a couple values of d / λ.

Figure 1.2: T_{3} fitting of $N=4$ array.

Figure 1.3: T_{3} fitting of $N=4$ array (dB scale).
A Manipulate for exploring the d / λ dependence is available in http://goo.gl/8FhUwC.

Bibliography

[1] Constantine A Balanis. Antenna theory: analysis and design. John Wiley \& Sons, 3rd edition, 2005. 1

