Peeter Joot
 peeter.joot@gmail.com

Antenna array design with Chebychev polynomials

Prof. Eleftheriades desribed a Chebychev antenna array design method that looks different than the one of the text [1].

Portions of that procedure are like that of the text. For example, if a side lobe level of $20 \log _{10} R$ is desired, a scaling factor

$$
\begin{equation*}
x_{0}=\cosh \left(\frac{1}{m} \cosh ^{-1} R\right), \tag{1.1}
\end{equation*}
$$

is used. Given N elements in the array, a Chebychev polynomial of degree $m=N-1$ is used. That is

$$
\begin{equation*}
T_{m}(x)=\cos \left(m \cos ^{-1} x\right) . \tag{1.2}
\end{equation*}
$$

Observe that the roots x_{n}^{\prime} of this polynomial lie where

$$
\begin{equation*}
m \cos ^{-1} x_{n}^{\prime}=\frac{\pi}{2} \pm \pi n \tag{1.3}
\end{equation*}
$$

or

$$
\begin{equation*}
x_{n}^{\prime}=\cos \left(\frac{\pi}{2 m}(2 n \pm 1)\right) \tag{1.4}
\end{equation*}
$$

The class notes use the negative sign, and number $n=1,2, \cdots, m$. It is noted that the roots are symmetric with $x_{1}^{\prime}=-x_{m}^{\prime}$, which can be seen by direct expansion

$$
\begin{align*}
x_{m-r}^{\prime} & =\cos \left(\frac{\pi}{2 m}(2(m-r)-1)\right) \\
& =\cos \left(\pi-\frac{\pi}{2 m}(2 r+1)\right) \\
& =-\cos \left(\frac{\pi}{2 m}(2 r+1)\right) \tag{1.5}\\
& =-\cos \left(\frac{\pi}{2 m}(2(r+1)-1)\right) \\
& =-x_{r+1}^{\prime} . \quad \square
\end{align*}
$$

The next step in the procedure is the identification

$$
\begin{align*}
& u_{n}^{\prime}=2 \cos ^{-1}\left(\frac{x_{n}^{\prime}}{x_{0}}\right) \tag{1.6}\\
& z_{n}=e^{j u_{n}^{\prime}} .
\end{align*}
$$

This has a factor of two that does not appear in the Balanis design method. It seems plausible that this factor of two was introduced so that the roots of the array factor z_{n} are conjugate pairs. Since $\cos ^{-1}(-z)=\pi-\cos ^{-1} z$, this choice leads to such conjugate pairs

$$
\begin{align*}
\exp \left(j u_{m-r}^{\prime}\right) & =\exp \left(j 2 \cos ^{-1}\left(\frac{x_{m-r}^{\prime}}{x_{0}}\right)\right) \\
& =\exp \left(j 2 \cos ^{-1}\left(-\frac{x_{r+1}^{\prime}}{x_{0}}\right)\right) \tag{1.7}\\
& =\exp \left(j 2\left(\pi-\cos ^{-1}\left(\frac{x_{r+1}^{\prime}}{x_{0}}\right)\right)\right) \\
& =\exp \left(-j u_{r+1}\right) .
\end{align*}
$$

Because of this, the array factor can be written

$$
\begin{align*}
\mathrm{AF} & =\left(z-z_{1}\right)\left(z-z_{2}\right) \cdots\left(z-z_{m-1}\right)\left(z-z_{m}\right) \\
& =\left(z-z_{1}\right)\left(z-z_{1}^{*}\right)\left(z-z_{2}\right)\left(z-z_{2}^{*}\right) \cdots \\
& =\left(z^{2}-z\left(z_{1}+z_{1}^{*}\right)+1\right)\left(z^{2}-z\left(z_{2}+z_{2}^{*}\right)+1\right) \cdots \\
& =\left(z^{2}-2 z \cos \left(2 \cos ^{-1}\left(\frac{x_{1}^{\prime}}{x_{0}}\right)\right)+1\right)\left(z^{2}-2 z \cos \left(2 \cos ^{-1}\left(\frac{x_{2}^{\prime}}{x_{0}}\right)\right)+1\right) \cdots \tag{1.8}\\
& =\left(z^{2}-2 z\left(2\left(\frac{x_{1}^{\prime}}{x_{0}}\right)^{2}-1\right)+1\right)\left(z^{2}-2 z\left(2\left(\frac{x_{2}^{\prime}}{x_{0}}\right)^{2}-1\right)+1\right) \cdots
\end{align*}
$$

When m is even, there will only be such conjugate pairs of roots. When m is odd, the remainding factor will be

$$
\begin{equation*}
z-e^{2 j \cos ^{-1}\left(0 / x_{0}\right)}=z-e^{2 j \pi / 2}=z-e^{j \pi}=z+1 \tag{1.9}
\end{equation*}
$$

Example 1.1: Expand AF for $N=4$.

The roots of $T_{3}(x)$ are

$$
\begin{equation*}
x_{n}^{\prime} \in\left\{0, \pm \frac{\sqrt{3}}{2}\right\} \tag{1.10}
\end{equation*}
$$

so the array factor is

$$
\begin{align*}
\mathrm{AF} & =\left(z^{2}+z\left(2-\frac{3}{x_{0}^{2}}\right)+1\right)(z+1) \tag{1.11}\\
& =z^{3}+3 z^{2}\left(1-\frac{1}{x_{0}^{2}}\right)+3 z\left(1-\frac{1}{x_{0}^{2}}\right)+1
\end{align*}
$$

With $20 \log _{10} R=30 \mathrm{~dB}, x_{0}=2.1$, so this is

$$
\begin{equation*}
\mathrm{AF}=z^{3}+2.33089 z^{2}+2.33089 z+1 \tag{1.12}
\end{equation*}
$$

With

$$
\begin{align*}
z & =e^{j\left(u+u_{0}\right)} \tag{1.13}\\
& =e^{j k d \cos \theta+j k u_{0}},
\end{align*}
$$

the array factor takes the form

$$
\begin{equation*}
\mathrm{AF}=e^{j 3 k d \cos \theta+j 3 k u_{0}}+2.33089 e^{j 2 k d \cos \theta+j 2 k u_{0}}+2.33089 e^{j k d \cos \theta+j k u_{0}}+1 . \tag{1.14}
\end{equation*}
$$

This array function is highly phase dependent, plotted for $u_{0}=0$ in fig. 1.1, and fig. 1.2.

Figure 1.1: Plot with $u_{0}=0, d=\lambda / 4$.

Figure 1.2: Spherical plot with $u_{0}=0, d=\lambda / 4$.
This can be directed along a single direction (z-axis) with higher phase choices as illustrated in fig. 1.3, and fig. 1.4.

Figure 1.3: Plot with $u_{0}=3.5, d=0.4 \lambda$.

Figure 1.4: Spherical plot with $u_{0}=3.5, d=0.4 \lambda$.
These can be explored interactively in http://goo.gl/DRDIsr.

Bibliography

[1] Constantine A Balanis. Antenna theory: analysis and design. John Wiley \& Sons, 3rd edition, 2005. 1

