Peeter Joot peeterjoot@protonmail.com

More on (SHO) coherent states

[1] *pr.* 2.19(*c*) Show that $|f(n)|^2$ for a coherent state written as

$$|z\rangle = \sum_{n=0}^{\infty} f(n) |n\rangle$$
(1.1)

has the form of a Poisson distribution, and find the most probable value of n, and thus the most probable energy.

A: The Poisson distribution has the form

$$P(n) = \frac{\mu^n e^{-\mu}}{n!}.$$
 (1.2)

Here μ is the mean of the distribution

$$\langle n \rangle = \sum_{n=0}^{\infty} n P(n) = \sum_{n=1}^{\infty} n \frac{\mu^n e^{-\mu}}{n!} = \mu e^{-\mu} \sum_{n=1}^{\infty} \frac{\mu^{n-1}}{(n-1)!} = \mu e^{-\mu} e^{\mu} = \mu.$$
 (1.3)

We found that the coherent state had the form

$$|z\rangle = c_0 \sum_{n=0} \frac{z^n}{\sqrt{n!}} |n\rangle , \qquad (1.4)$$

so the probability coefficients for $|n\rangle$ are

$$P(n) = c_0^2 \frac{|z^n|^2}{n!}$$

= $e^{-|z|^2} \frac{|z^n|^2}{n!}$. (1.5)

This has the structure of the Poisson distrubution with mean $\mu = |z|^2$. The most probable value of *n* is that for which $|f(n)|^2$ is the largest. This is, in general, hard to compute, since we have a maximization problem in the integer domain that falls outside the normal toolbox. If we assume that *n* is large, so that Stirlings approximation can be used to approximate the factorial, and also seek a non-integer value that maximizes the distribution, the most probable value will be the closest integer to that, and this can be computed. Let

$$g(n) = |f(n)|^{2}$$

= $\frac{e^{-\mu}\mu^{n}}{n!}$
= $\frac{e^{-\mu}\mu^{n}}{e^{\ln n!}}$
 $\approx e^{-\mu - n\ln n + n}\mu^{n}.$
= $e^{-\mu - n\ln n + n + n\ln \mu}$ (1.6)

This is maximized when

$$0 = \frac{dg}{dn}$$
(1.7)
= $(-\ln n - 1 + 1 + \ln \mu) g(n),$

which is maximized at $n = \mu$. One of the integers $n = \lfloor \mu \rfloor$ or $n = \lceil \mu \rceil$ that brackets this value $\mu = |z|^2$ is the most probable. So, if an energy measurement is made of a coherent state $|z\rangle$, the most probable value will be one of

$$E = \hbar \left(\lfloor |z|^2 \rfloor + \frac{1}{2} \right), \tag{1.8}$$

or

$$E = \hbar \left(\left\lceil \left| z \right|^2 \right\rceil + \frac{1}{2} \right), \tag{1.9}$$

Bibliography

[1] Jun John Sakurai and Jim J Napolitano. Modern quantum mechanics. Pearson Higher Ed, 2014. 1