Alternate Dirac equation representation

Exercise $1.1 \quad$ (phy1520 2015 midterm pr. 2)

Given an alternate representation of the Dirac equation

$$
H=\left[\begin{array}{cc}
m c^{2}+V_{0} & c \hat{p} \tag{1.1}\\
c \hat{p} & -m c^{2}+V_{0}
\end{array}\right],
$$

calculate

1. the constant momentum plane wave solutions,
2. the constant momentum hyperbolic solutions,
3. the Heisenberg velocity operator \hat{v}, and
4. find the form of the probability density current.

Answer for Exercise 1.1

Part 1. The action of the Hamiltonian on

$$
\psi=e^{i k x-i E t / \hbar}\left[\begin{array}{l}
\psi_{1} \tag{1.2}\\
\psi_{2}
\end{array}\right]
$$

is

$$
\begin{align*}
H \psi & =\left[\begin{array}{cc}
m c^{2}+V_{0} & c(-i \hbar) i k \\
c(-i \hbar) i k & -m c^{2}+V_{0}
\end{array}\right]\left[\begin{array}{l}
\psi_{1} \\
\psi_{2}
\end{array}\right] e^{i k x-i E t / \hbar} \tag{1.3}\\
& =\left[\begin{array}{cc}
m c^{2}+V_{0} & c \hbar k \\
c \hbar k & -m c^{2}+V_{0}
\end{array}\right] \psi .
\end{align*}
$$

Writing

$$
H_{k}=\left[\begin{array}{cc}
m c^{2}+V_{0} & c \hbar k \tag{1.4}\\
c \hbar k & -m c^{2}+V_{0}
\end{array}\right]
$$

the characteristic equation is

$$
\begin{align*}
0 & =\left(m c^{2}+V_{0}-\lambda\right)\left(-m c^{2}+V_{0}-\lambda\right)-(c \hbar k)^{2} \tag{1.5}\\
& =\left(\left(\lambda-V_{0}\right)^{2}-\left(m c^{2}\right)^{2}\right)-(c \hbar k)^{2}
\end{align*}
$$

so

$$
\begin{equation*}
\lambda=V_{0} \pm \epsilon \tag{1.6}
\end{equation*}
$$

where

$$
\begin{equation*}
\epsilon^{2}=\left(m c^{2}\right)^{2}+(c \hbar k)^{2} \tag{1.7}
\end{equation*}
$$

We've got

$$
\begin{align*}
& H-\left(V_{0}+\epsilon\right)=\left[\begin{array}{cc}
m c^{2}-\epsilon & c \hbar k \\
c \hbar k & -m c^{2}-\epsilon
\end{array}\right] \\
& H-\left(V_{0}-\epsilon\right)=\left[\begin{array}{cc}
m c^{2}+\epsilon & c \hbar k \\
c \hbar k & -m c^{2}+\epsilon
\end{array}\right] \tag{1.8}
\end{align*}
$$

so the eigenkets are

$$
\begin{align*}
& \left|V_{0}+\epsilon\right\rangle \propto\left[\begin{array}{c}
-c \hbar k \\
m c^{2}-\epsilon
\end{array}\right] \\
& \left|V_{0}-\epsilon\right\rangle \propto\left[\begin{array}{c}
-c \hbar k \\
m c^{2}+\epsilon
\end{array}\right] . \tag{1.9}
\end{align*}
$$

Up to an arbitrary phase for each, these are

$$
\begin{align*}
& \left|V_{0}+\epsilon\right\rangle=\frac{1}{\sqrt{2 \epsilon\left(\epsilon-m c^{2}\right)}}\left[\begin{array}{c}
c \hbar k \\
\epsilon-m c^{2}
\end{array}\right] \\
& \left|V_{0}-\epsilon\right\rangle=\frac{1}{\sqrt{2 \epsilon\left(\epsilon+m c^{2}\right)}}\left[\begin{array}{c}
-c \hbar k \\
\epsilon+m c^{2}
\end{array}\right] \tag{1.10}
\end{align*}
$$

We can now write

$$
H_{k}=E\left[\begin{array}{cc}
V_{0}+\epsilon & 0 \tag{1.11}\\
0 & V_{0}-\epsilon
\end{array}\right] E^{-1}
$$

where

$$
\begin{array}{ll}
E=\frac{1}{\sqrt{2 \epsilon}}\left[\begin{array}{cc}
\frac{c \hbar k}{\sqrt{\epsilon-m c^{2}}} & -\frac{c \hbar k}{\sqrt{\epsilon+m c^{2}}} \\
\sqrt{\epsilon-m c^{2}} & \sqrt{\epsilon+m c^{2}}
\end{array}\right], & k>0 \\
E=\frac{1}{\sqrt{2 \epsilon}}\left[\begin{array}{cc}
-\frac{c \hbar k}{\sqrt{\epsilon-m c^{2}}} & -\frac{c \hbar k}{\sqrt{\epsilon+m c^{2}}} \\
-\sqrt{\epsilon-m c^{2}} & \sqrt{\epsilon+m c^{2}}
\end{array}\right], & k<0 \tag{1.12}
\end{array}
$$

Here the signs have been adjusted to ensure the transformation matrix has a unit determinant. Observe that there's redundancy in this matrix since $c \hbar|k| / \sqrt{\epsilon-m c^{2}}=\sqrt{\epsilon+m c^{2}}$, and $c \hbar|k| / \sqrt{\epsilon+m c^{2}}=$ $\sqrt{\epsilon-m c^{2}}$, which allows the transformation matrix to be written in the form of a rotation matrix

$$
\begin{align*}
& E=\frac{1}{\sqrt{2 \epsilon}}\left[\begin{array}{cc}
\frac{c \hbar k}{\sqrt{\epsilon-m c^{2}}} & -\frac{c \hbar k}{\sqrt{\epsilon+m c^{2}}} \\
\frac{c \hbar k}{\sqrt{\epsilon+m c^{2}}} & \frac{c k k}{\sqrt{\epsilon-m c^{2}}}
\end{array}\right],
\end{align*} \quad k>0
$$

With

$$
\begin{align*}
& \cos \theta=\frac{c \hbar|k|}{\sqrt{2 \epsilon\left(\epsilon-m c^{2}\right)}}=\frac{\sqrt{\epsilon+m c^{2}}}{\sqrt{2 \epsilon}} \\
& \sin \theta=\frac{c \hbar k}{\sqrt{2 \epsilon\left(\epsilon+m c^{2}\right)}}=\frac{\operatorname{sgn}(k) \sqrt{\epsilon-m c^{2}}}{\sqrt{2 \epsilon}} \tag{1.14}
\end{align*}
$$

the transformation matrix (and eigenkets) is

$$
E=\left[\begin{array}{ll}
\left|V_{0}+\epsilon\right\rangle & \left|V_{0}-\epsilon\right\rangle
\end{array}\right]=\left[\begin{array}{cc}
\cos \theta & -\sin \theta \tag{1.15}\\
\sin \theta & \cos \theta
\end{array}\right]
$$

Observe that eq. (1.14) can be simplified by using double angle formulas

$$
\begin{align*}
\cos (2 \theta) & =\frac{\left(\epsilon+m c^{2}\right)}{2 \epsilon}-\frac{\left(\epsilon-m c^{2}\right)}{2 \epsilon} \\
& =\frac{1}{2 \epsilon}\left(\epsilon+m c^{2}-\epsilon+m c^{2}\right) \tag{1.16}\\
& =\frac{m c^{2}}{\epsilon}
\end{align*}
$$

and

$$
\begin{align*}
\sin (2 \theta) & =2 \frac{1}{2 \epsilon} \operatorname{sgn}(k) \sqrt{\epsilon^{2}-\left(m c^{2}\right)^{2}} \tag{1.17}\\
& =\frac{\hbar k c}{\epsilon}
\end{align*}
$$

This allows all the θ dependence on $\hbar k c$ and $m c^{2}$ to be expressed as a ratio of momenta

$$
\begin{equation*}
\tan (2 \theta)=\frac{\hbar k}{m c} \tag{1.18}
\end{equation*}
$$

Part 2. For a wave function of the form

$$
\psi=e^{k x-i E t / \hbar}\left[\begin{array}{l}
\psi_{1} \tag{1.19}\\
\psi_{2}
\end{array}\right]
$$

some of the work above can be recycled if we substitute $k \rightarrow-i k$, which yields unnormalized eigenfunctions

$$
\begin{align*}
& \left|V_{0}+\epsilon\right\rangle \propto\left[\begin{array}{c}
i c \hbar k k \\
m c^{2}-\epsilon
\end{array}\right] \tag{1.20}\\
& \left|V_{0}-\epsilon\right\rangle \propto\left[\begin{array}{c}
i c \hbar k \\
m c^{2}+\epsilon
\end{array}\right],
\end{align*}
$$

where

$$
\begin{equation*}
\epsilon^{2}=\left(m c^{2}\right)^{2}-(c \hbar k)^{2} . \tag{1.21}
\end{equation*}
$$

The squared magnitude of these wavefunctions are

$$
\begin{align*}
(c \hbar k)^{2}+\left(m c^{2} \mp \epsilon\right)^{2} & =(c \hbar k)^{2}+\left(m c^{2}\right)^{2}+\epsilon^{2} \mp 2 m c^{2} \epsilon \\
& =(c \hbar k)^{2}+\left(m c^{2}\right)^{2}+\left(m c^{2}\right)^{2} \mp(c \hbar k)^{2}-2 m c^{2} \epsilon \tag{1.22}\\
& =2\left(m c^{2}\right)^{2} \mp 2 m c^{2} \epsilon \\
& =2 m c^{2}\left(m c^{2} \mp \epsilon\right),
\end{align*}
$$

so, up to a constant phase for each, the normalized kets are

$$
\begin{align*}
& \left|V_{0}+\epsilon\right\rangle=\frac{1}{\sqrt{2 m c^{2}\left(m c^{2}-\epsilon\right)}}\left[\begin{array}{c}
i c \hbar k \\
m c^{2}-\epsilon
\end{array}\right] \\
& \left|V_{0}-\epsilon\right\rangle=\frac{1}{\sqrt{2 m c^{2}\left(m c^{2}+\epsilon\right)}}\left[\begin{array}{c}
i c \hbar k \\
m c^{2}+\epsilon
\end{array}\right], \tag{1.23}
\end{align*}
$$

After the $k \rightarrow-i k$ substitution, H_{k} is not Hermitian, so these kets aren't expected to be orthonormal, which is readily verified

$$
\begin{align*}
\left\langle V_{0}+\epsilon \mid V_{0}-\epsilon\right\rangle & =\frac{1}{\sqrt{2 m c^{2}\left(m c^{2}-\epsilon\right)}} \frac{1}{\sqrt{2 m c^{2}\left(m c^{2}+\epsilon\right)}}\left[\begin{array}{ll}
-i c \hbar k & m c^{2}-\epsilon
\end{array}\right]\left[\begin{array}{c}
i c \hbar k \\
m c^{2}+\epsilon
\end{array}\right] \\
& =\frac{2(c \hbar k)^{2}}{2 m c^{2} \sqrt{(\hbar k c)^{2}}} \tag{1.24}\\
& =\operatorname{sgn}(k) \frac{\hbar k}{m c} .
\end{align*}
$$

Part 3.

$$
\begin{align*}
\hat{v} & =\frac{1}{i \hbar}[\hat{x}, H] \\
& =\frac{1}{i \hbar}\left[\hat{x}, m c^{2} \sigma_{z}+V_{0}+c \hat{p} \sigma_{x}\right] \tag{1.25}\\
& =\frac{c \sigma_{x}}{i \hbar}[\hat{x}, \hat{p}] \\
& =c \sigma_{x} .
\end{align*}
$$

Part 4. Acting against a completely general wavefunction the Hamiltonian action $H \psi$ is

$$
\begin{align*}
i \hbar \frac{\partial \psi}{\partial t} & =m c^{2} \sigma_{z} \psi+V_{0} \psi+c \hat{p} \sigma_{x} \psi \tag{1.26}\\
& =m c^{2} \sigma_{z} \psi+V_{0} \psi-i \hbar c \sigma_{x} \frac{\partial \psi}{\partial x} .
\end{align*}
$$

Conversely, the conjugate $(H \psi)^{\dagger}$ is

$$
\begin{equation*}
-i \hbar \frac{\partial \psi^{\dagger}}{\partial t}=m c^{2} \psi^{\dagger} \sigma_{z}+V_{0} \psi^{\dagger}+i \hbar c \frac{\partial \psi^{\dagger}}{\partial x} \sigma_{x} \tag{1.27}
\end{equation*}
$$

These give

$$
\begin{align*}
i \hbar \psi^{\dagger} \frac{\partial \psi}{\partial t} & =m c^{2} \psi^{\dagger} \sigma_{z} \psi+V_{0} \psi^{\dagger} \psi-i \hbar c \psi^{\dagger} \sigma_{x} \frac{\partial \psi}{\partial x} \\
-i \hbar \frac{\partial \psi^{\dagger}}{\partial t} \psi & =m c^{2} \psi^{\dagger} \sigma_{z} \psi+V_{0} \psi^{\dagger} \psi+i \hbar c \frac{\partial \psi^{\dagger}}{\partial x} \sigma_{x} \psi \tag{1.28}
\end{align*}
$$

Taking differences

$$
\begin{equation*}
\psi^{\dagger} \frac{\partial \psi}{\partial t}+\frac{\partial \psi^{\dagger}}{\partial t} \psi=-c \psi^{\dagger} \sigma_{x} \frac{\partial \psi}{\partial x}-c \frac{\partial \psi^{\dagger}}{\partial x} \sigma_{x} \psi \tag{1.29}
\end{equation*}
$$

or

$$
\begin{equation*}
0=\frac{\partial}{\partial t}\left(\psi^{\dagger} \psi\right)+\frac{\partial}{\partial x}\left(c \psi^{\dagger} \sigma_{x} \psi\right) \tag{1.30}
\end{equation*}
$$

The probability current still has the usual form $\rho=\psi^{\dagger} \psi=\psi_{1}^{*} \psi_{1}+\psi_{2}^{*} \psi_{2}$, but the probability current with this representation of the Dirac Hamiltonian is

$$
\begin{align*}
j & =c \psi^{\dagger} \sigma_{x} \psi \\
& =c\left[\begin{array}{ll}
\psi_{1}^{*} & \psi_{2}^{*}
\end{array}\right]\left[\begin{array}{l}
\psi_{2} \\
\psi_{1}
\end{array}\right] \tag{1.31}\\
& =c\left(\psi_{1}^{*} \psi_{2}+\psi_{2}^{*} \psi_{1}\right) .
\end{align*}
$$

