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Alternate Dirac equation representation

Exercise 1.1 (phy1520 2015 midterm pr. 2)

Given an alternate representation of the Dirac equation

H= mc? _,,\_ Vo Czﬁ ) (1.1)
cp —mc” + Vj
calculate
1. the constant momentum plane wave solutions,
2. the constant momentum hyperbolic solutions,
3. the Heisenberg velocity operator 9, and
4

. find the form of the probability density current.

Answer for Exercise 1.1

Part 1. The action of the Hamiltonian on

P = efkr—iEt/n [?zj (1.2)

is

_[m®+ Vo c(—ih)ik 1| ikx—iEt/h
Hy = [c(—ih)ik —mc2+Vo} { 2] ©
.

(1.3)
_ [me? + v chk
B chk —mc? + V
Writing
mc* + Vy chk
Hi = [ chk —mc? + Vo] (1.4)

the characteristic equation is



0= (mc*+ Vo — A)(—mc* + Vy —

A) — (chk)?

= (A = Vo) = (mc*?) — (chk)?,

SO
A= V() + €,
where
€? = (mc®)? + (chk)>.
We've got
mc? — € chk
H=(Vo+e)= [ chk —mcz—e}
me? + e chk
H_(Vo_e):{ chk —mc2+e}’

so the eigenkets are

—chk
|VQ + €> [e 8 [mcz . €:|
—chk
Vo —€) [mc2 +€} )
Up to an arbitrary phase for each, these are
1
Vore)e L [ chk 2}
\/2¢e(e — mc?) |€ —mc
1 —chk
Vo—e) = e | ]
\/2€(€ + mc?) € +mc
We can now write
_ V(] + € 0 | 1
Hk—E[ 0 Vo—e_E ,
where .
1 v chik _ . \/chk .
E=—_ e—mc e+mc , k>0
V2e |Ve—m® e+ mc? |
1 __ chk __ chk
E=__"_ e—mc? Ve+mc? , k <O0.
V2e | —vVe—me? Ve+mc?

(1.5)

(1.10)

(1.11)

(1.12)

Here the signs have been adjusted to ensure the transformation matrix has a unit determinant.

Observe that there’s redundancy in this matrix since c/i|k| /v/e — mc2 = Ve + mc2, and chi|k| / Ve + mc? =

ve — mc?, which allows the transformation matrix to be written in the form of a rotation matrix



1 chik __ chk
E = > [\/ehlr{ncz \/C%+mc2] , k>0
V2E€ | Verme Ve—mc? (1.13)
1 _ chk _ chk ’
E=—= [ verme \/eg,;f,?cz] k<0
€ Ve+mc? Ve—mc?
With
o0 chilk| Ve +mc?

B \/2€e(e — mc?) B V2e (1.14)

S]n9 = = ,

\/2€(€e + mc2) V2e

the transformation matrix (and eigenkets) is

cosf —sinf
E = UVO +€> |V() — €>] = [sin@ cos 0 ] 5 (115)
serve that eq. (1.14) can be simplifie using double angle formulas
Ob hat eq. (1.14) be simplified by using double angle f 1
_(e+mc?) (e —mc?)
cos(20) = e — e
= % (€ + mc* — € + mc?) (1.16)
_me
=
and )
sin(26) = 2— sgn(k)+\/€2 — (mc?)?
(20) hii gn(k) (mc?) 1.17)
T e
This allows all the § dependence on fikc and mc? to be expressed as a ratio of momenta
tan(20) = ch (1.18)
Part 2. For a wave function of the form
II) — ekxfiEt/h [z;] , (119)

some of the work above can be recycled if we substitute k — —ik, which yields unnormalized
eigenfunctions



ichk
s [mcz - e] (1.20)
]V B €> ~ ichik )
0 mc? +el|’

where

€2 = (mc*)? — (chk)>. (1.21)

The squared magnitude of these wavefunctions are

(chik)? + (mc* F €)? = (chik)® + (mc?)? + €2 F 2mc’e

(chk)? + (mc?)? + (mc?)? F (chk)? — 2mc*e (1.22)
= 2(mc*)? F 2mc’e

= 2mc*(mc® Fe),

so, up to a constant phase for each, the normalized kets are

Vo+e) = 1 [ 1§hk }
2mc2(mc? —€) [Mc” — €
Vo—e) = 1 [ ichk ]’

2
\/2mc2(mc? +¢) [Mc” +€

After the k — —ik substitution, Hy is not Hermitian, so these kets aren’t expected to be orthonor-
mal, which is readily verified

(1.23)

(Vo+e|Vo—¢€) = ! ! [—ichk mc* — €] { 1(:2hk ]
\/2mc2(mc2 — €) \/2mc2(mc? + €) me= +¢€
2
A C (1.24)
2mc?+/ (hikc)?
hik
= sgn(k)%.
Part 3. .
0= 7 [%, H]
1
== (%, mc*o, + Vo + cpoy] (1.25)
Cox . .
== [&7]
= COy.



Part 4. Acting against a completely general wavefunction the Hamiltonian action Hy is

el 5 R
ith— = mc o, + Vo + choy
ot P+ oy tep lpaq; (1.26)

= mczang + Vo — ilicoy

a.
Conversely, the conjugate (Hy)" is
Ot oy o Oy
—1h¥ =mc Yo+ Voy' + zhcgax. (1.27)
These give
ith*%l/; =mc*pT o + oyt — ihcgu*ang
(1.28)
oYt o L
—zhﬁlp =mc P o+ Vo' + zhcgaxlp.
Taking differences
A Iy’ o _ 9y’
top oy o _ ot Y dY
P 5 P cpoy 5% S x oy, (1.29)
or
_ 9 (4t J t
0= (zp l/J) ‘= (a,u mu) . (1.30)

The probability current still has the usual form p = YTy = ;i + P39, but the probability current
with this representation of the Dirac Hamiltonian is

j=cpoy

~clvi vl |1°] (131)

=c (P2 + P31 -



