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Dirac delta function potential

Q:Dirac delta function potential ~ Problem 2.24/2.25 [1] introduces a Dirac delta function potential
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which vanishes after t+ = 0. Solve for the bound state for t < 0 and then the time evolution after

that.

A:  The first part of this problem was assigned back in phy356, where we solved this for a rectan-
gular potential that had the limiting form of a delta function potential. However, this problem can
be solved directly by considering the |x| > 0 and x = 0 regions separately.

For |x| > 0 Schroédinger’s equation takes the form
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this has solutions
P = et (1.4)
For x > 0 we must have
P =ae ™, (1.5)
and for x < 0
lp = ber, (16)
requiring that ¢ is continuous at x = 0 means a = b, or
P = p(0)e . (1.7)

For the x = 0 region, consider an interval [—¢, €] region around the origin. We must have
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In the € — 0 limit this gives
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Equating relations for x we have
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P(x,t < 0)=Cexp (—iEt/i —x|x]).

The normalization requires

1= 2|C|2/ e~ ¥ dx
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P(x,t < 0) = \}E expl(—iBt i — x|x]) -
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There is only one bound state for such a potential. After turning off the potential, any plane wave

P(x, 1) = oikx—iE®)/n

where

is a solution. In particular, at t = 0, the wave packet

¥(x,0) = e** A(k)dk,

e

is a solution. To solve for A(k), we require
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The initial time state established by the delta function potential evolves as
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