Peeter Joot
 peeter.joot@gmail.com

Dynamics of non-Hermitian Hamiltonian

Exercise 1.1 Dynamics of non-Hermitian Hamiltonian ([1] pr. 2.2)

Revisiting an earlier Hamiltonian, but assuming it was entered incorrectly as

$$
\begin{equation*}
H=H_{11}|1\rangle\langle 1|+H_{22}|2\rangle\langle 2|+H_{12}|1\rangle\langle 2| . \tag{1.1}
\end{equation*}
$$

What principle is now violated? Illustrate your point explicitly by attempting to solve the most generaqtl time-dependent problem using an illegal Hamiltonian of this kind. You may assume that $H_{11}=H_{22}$ for simplicity.

Answer for Exercise 1.1

In matrix form this Hamiltonian is

$$
\begin{align*}
H & =\left[\begin{array}{ll}
\langle 1| H|1\rangle & \langle 1| H|2\rangle \\
\langle 2| H|1\rangle & \langle 2| H|2\rangle
\end{array}\right] \tag{1.2}\\
& =\left[\begin{array}{cc}
H_{11} & H_{12} \\
0 & H_{22}
\end{array}\right] .
\end{align*}
$$

This is not a Hermitian operator. What is the physical implication of this non-Hermicity? Consider the simpler case where $H_{11}=H_{22}$. Such a Hamiltonian has the form

$$
H=\left[\begin{array}{ll}
a & b \tag{1.3}\\
0 & a
\end{array}\right] .
$$

This has only one unique eigenvector ($(1,0)$, but we can still solve the time evolution equation

$$
\begin{equation*}
i \hbar \frac{\partial U}{\partial t}=H U \tag{1.4}
\end{equation*}
$$

since for constant H, we have

$$
\begin{equation*}
U=e^{-i H t / \hbar} . \tag{1.5}
\end{equation*}
$$

To exponentiate, note that we have

$$
\left[\begin{array}{cc}
a & b \tag{1.6}\\
0 & a
\end{array}\right]^{n}=\left[\begin{array}{cc}
a^{n} & n a^{n-1} b \\
0 & a^{n}
\end{array}\right]
$$

To prove the induction, the $n=2$ case follows easily

$$
\left[\begin{array}{ll}
a & b \tag{1.7}\\
0 & a
\end{array}\right]\left[\begin{array}{cc}
a & b \\
0 & a
\end{array}\right]=\left[\begin{array}{cc}
a^{2} & 2 a b \\
0 & a^{2}
\end{array}\right],
$$

as does the general case

$$
\left[\begin{array}{cc}
a^{n} & n a^{n-1} b \tag{1.8}\\
0 & a^{n}
\end{array}\right]\left[\begin{array}{cc}
a & b \\
0 & a
\end{array}\right]=\left[\begin{array}{cc}
a^{n+1} & (n+1) a^{n} b \\
0 & a^{n+1}
\end{array}\right] .
$$

The exponential sum is thus

$$
e^{H \tau}=\left[\begin{array}{cc}
e^{a \tau} & 0+\frac{b \tau}{1!}+\frac{2 a b \tau^{2}}{2!}+\frac{3 a^{2} b \tau^{3}}{3!}+\cdots \tag{1.9}\\
0 & e^{a \tau}
\end{array}\right] .
$$

That sum simplifies to

$$
\begin{align*}
& \frac{b \tau}{0!}+\frac{a b \tau^{2}}{1!}+\frac{a^{2} b \tau^{3}}{2!}+\cdots \\
& \quad=b \tau\left(1+\frac{a \tau}{1!}+\frac{(a \tau)^{2}}{2!}+\cdots\right) \tag{1.10}\\
& \quad=b \tau e^{a \tau} .
\end{align*}
$$

The exponential is thus

$$
\begin{align*}
e^{H \tau} & =\left[\begin{array}{cc}
e^{a \tau} & b \tau e^{a \tau} \\
0 & e^{a \tau}
\end{array}\right] \tag{1.11}\\
& =\left[\begin{array}{cc}
1 & b \tau \\
0 & 1
\end{array}\right] e^{a \tau} .
\end{align*}
$$

In particular

$$
\begin{align*}
U & =e^{-i H t / \hbar} \\
& =\left[\begin{array}{cc}
1 & -i b t / \hbar \\
0 & 1
\end{array}\right] e^{-i a t / \hbar} . \tag{1.12}
\end{align*}
$$

We can verify that this is a solution to eq. (1.4). The left hand side is

$$
\begin{align*}
i \hbar \frac{\partial U}{\partial t} & =i \hbar\left[\begin{array}{cc}
-i a / \hbar & -i b / \hbar+(-i b t / \hbar)(-i a / \hbar) \\
0 & -i a / \hbar
\end{array}\right] e^{-i a t / \hbar} \tag{1.13}\\
& =\left[\begin{array}{cc}
a & b-i a b t / \hbar \\
0 & a
\end{array}\right] e^{-i a t / \hbar},
\end{align*}
$$

and for the right hand side

$$
\begin{align*}
H U & =\left[\begin{array}{ll}
a & b \\
0 & a
\end{array}\right]\left[\begin{array}{cc}
1 & -i b t / \hbar \\
0 & 1
\end{array}\right] e^{-i a t / \hbar} \\
& =\left[\begin{array}{cc}
a & b-i a b t / \hbar \\
0 & a
\end{array}\right] e^{-i a t / \hbar} \tag{1.14}\\
& =i \hbar \frac{\partial U}{\partial t} .
\end{align*}
$$

While the Schrödinger is satisfied, we don't have the unitary invertion physical property that is desired for the time evolution operator U. Namely

$$
\begin{align*}
U^{+} U & =\left[\begin{array}{cc}
1 & 0 \\
i b t / \hbar & 1
\end{array}\right] e^{i a t / \hbar}\left[\begin{array}{cc}
1 & -i b t / \hbar \\
0 & 1
\end{array}\right] e^{-i a t / \hbar} \\
& =\left[\begin{array}{cc}
1 & -i b t / \hbar \\
i b t / \hbar & (b t)^{2} / \hbar^{2}
\end{array}\right] \tag{1.15}\\
& \neq I .
\end{align*}
$$

We required $U^{\dagger} U=I$ for the time evolution operator, but don't have that property for this nonHermitian Hamiltonian.

Bibliography

[1] Jun John Sakurai and Jim J Napolitano. Modern quantum mechanics. Pearson Higher Ed, 2014. 1.1

