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P R E FA C E

This document was produced while taking the Spring 2015, University of Toronto Ad-
vanced Antenna Theory course (ECE1229H), taught by Professor G. V. Eleftheriades.

Official course description: “This course deals with the analysis and design of a range
of antennas. Topics addressed include: definitions of antenna parameters; vector po-
tentials; solutions to the inhomogeneous wave equation; principles of duality and
reciprocity; wire antennas; antenna arrays; phased arrays; synthesis techniques for dis-
crete and continuous line sources; integral equations and solutions using the method
of moments; field equivalence principle; aperture antennas; antenna measurement
techniques; diffraction; horn antennas; reflector antennas; microstrip antennas; reflec-
tarrays; electrically small antennas; and broadband antennas.”

Synopsis

1. Fundamental Antenna Parameters (patterns, directivity, effective aperture, input
impedance, Friis transmission equation, radar range equations, RCS)

2. Review of Maxwell’s Equations

3. Radiation from arbitrary current distributions

4. Wire and Mobile Communication Antennas: Dipoles, loops, ground effects

5. Reciprocity; Equivalence of transmit and receive radiation patterns

6. Phased Arrays

7. Self Impedance: Integral equations and method of moments (MoM)

8. Mutual Impedance : Induced EMF method

9. Aperture Antennas I : Equivalent current method, rectangular apertures, horn
antennas

10. Apertures Antennas II : Plane-wave expansion, slots

11. Printed and IC Antennas : Microstrip patch antennas, miniaturized antennas

12. Metamaterial Antennas
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13. Broadband Antennas : Self complementarity, spirals, log periodic, Yagi Uda

Recommended texts include

Main Text [5] C.A. Balanis, “Antenna Theory,” Wiley, 3rd Edition

Recommended [22] W.L. Stutzman and G. A. Thiele, “Antenna Theory and Design” 2nd Edition,
Wiley.

Recommended [9] G.V. Eleftheriades and K.G. Balmain (Edt.) “Negative-Refraction Metamate-
rials”, Wiley and IEEE Press.

This document contains:

• Personal notes exploring details that were not clear to me from the lectures, or
from the texts associated with the lecture material.

This set of notes is significantly different from my notes for many other classes. With
the class taught on slides (and some of those slides mirroring the text closely), I did
not take live notes in class. These notes fill in details that I felt deserved clarification,
contain problem sets solutions, as well as a number of loosely related musings on
Geometric Algebra equivalents to some of the generalized concepts of electromagnetic
theory encountered in this class (i.e. magnetic sources).

My thanks go to Professor Eleftheriades for teaching this course.
Peeter Joot peeterjoot@protonmail.com
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Part I

R E A D I N G N O T E S





1
F U N D A M E N TA L PA R A M E T E R S O F A N T E N N A S

1.1 poynting vector

The Poynting vector was written in an unfamiliar form

(1.1)W = E ×H.

I can roll with the use of a different symbol (i.e. not S) for the Poynting vector, but
I’m used to seeing a c/4π factor ([20] and [15]). I remembered something like that in
SI units too, so was slightly confused not to see it here.

Per [10] that something is a µ0, as in

(1.2)W =
1
µ0

E × B.

Note that the use of H instead of B is what wipes out the requirement for the 1/µ0

term since H = B/µ0, assuming linear media, and no magnetization.

1.2 typical far-field radiation intensity

It was mentioned that

(1.3)
U(θ, φ) =

r2

2η0
|E(r, θ, φ)|2

=
1

2η0

(
|Eθ(θ, φ)|2 +

∣∣Eφ(θ, φ)
∣∣2) ,

where the intrinsic impedance of free space is

(1.4)η0 =
√

µ0

ε0
= 377Ω.

(this is also eq. 2-19 in the text.)

3



4 fundamental parameters of antennas

To get an understanding where this comes from, consider the far field radial solu-
tions to the electric and magnetic dipole problems, which have the respective forms
(from [10]) of

(1.5a)
E = −µ0 p0ω2

4π

sin θ

r
cos (wt − kr) θ̂

B = −µ0 p0ω2

4πc
sin θ

r
cos (wt − kr) φ̂

(1.5b)
E =

µ0m0ω2

4πc
sin θ

r
cos (wt − kr) φ̂

B = −µ0m0ω2

4πc2
sin θ

r
cos (wt − kr) θ̂.

In neither case is there a component in the direction of propagation, and in both
cases (using µ0ε0 = 1/c2)

(1.6)

|H| =
|E |
µ0c

= |E |
√

ε0

µ0

=
1
η0
|E |.

Note that the signs of E vs. B in eq. (1.5a) and eq. (1.5b) and are determined by the
far field relation E = cB× r̂ (see: eq. 9.19,9.39 [15]). The effect of dependency is that
the Poynting vector will be radial, which will be seen below.

A superposition of the phasors for such dipole fields, in the far field, will have the
form

(1.7)
E =

1
r
(
Eθ(θ, φ)θ̂ + Eφ(θ, φ)φ̂

)
B =

1
rc
(
Eθ(θ, φ)θ̂− Eφ(θ, φ)φ̂

)
,

with a corresponding time averaged Poynting vector

(1.8)

Wav =
1

2µ0
E× B∗

=
1

2µ0cr2

(
Eθ θ̂ + Eφφ̂

)
×
(

E∗θ θ̂− E∗φφ̂
)

=
θ̂× φ̂

2µ0cr2

(
|Eθ |2 +

∣∣Eφ

∣∣2)
=

r̂
2η0r2

(
|Eθ |2 +

∣∣Eφ

∣∣2) ,



1.3 field plots 5

Figure 1.1: Plot methods for fields and intensities.

rcap = {Cos[#], Sin[#]} & ;

scap = {Sin[#1] Cos[#2], Sin[#1] Sin[#2], Cos[#1]} & ;

ParametricPlot[ f[r0, θ, 0] rcap, {θ, 0, Pi}]

ParametricPlot3D[ f[r0, θ, φ] scap, {θ, 0, Pi}, {φ, 0, 2 Pi}] �

verifying eq. (1.3) for a superposition of electric and magnetic dipole fields. This
can likely be shown for more general fields too.

1.3 field plots

We can plot the fields, or intensity (or log plots in dB of these). It is pointed out in
[10] that when there is r dependence these plots are done by considering the values
of at fixed r.

The field plots are conceptually the simplest, since that vector parameterizes a sur-
face. Any such radial field with magnitude f (r, θ, φ) can be plotted in Mathematica in
the φ = 0 plane at r = r0, or in 3D (respectively, but also at r = r0) with code like fig. 1.1

Intensity plots can use the same code, with the only difference being the interpreta-
tion. The surface doesn’t represent the value of a vector valued radial function, but is
the magnitude of a scalar valued function evaluated at f (r0, θ, φ).

The surfaces for U = cos θ, cos2 θ and for U = sin θ, sin2 θ in the plane are paramet-
rically plotted in fig. 1.2, and for cosines in ?? to compare with textbook figures.

Three dimensional visualizations of U = sin2 θ and U = cos2 θ can be found in
fig. 1.3 Even for such simple functions these look pretty cool.

1.4 db vs dbi

Note that dBi is used to indicate that the gain is with respect to an “isotropic” radiator.
This is detailed more in [7].
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(a) (b)

Figure 1.2: Cosinusoidal and sinusoidal radiation intensities.

(a) (b)

Figure 1.3: Square sinusoidal and cosinusoidal radiation intensity.

Table 1.1:
´ π/2

0 sinn θdθ =
´ π/2

0 cosn θdθ

n 1 2 3 4 5 6 7

1 π/4 2/3 3π/16 8/15 5π/32 16/35

Table 1.2:
´ π

0 sinn θdθ

n 1 2 3 4 5 6 7

2 π/2 4/3 3π/8 16/15 5π/16 32/35



1.5 trig integrals 7

Table 1.3:
´ π

0 cosn θdθ

n 1 2 3 4 5 6 7

0 π/2 0 3π/8 0 5π/16 0

1.5 trig integrals

1.6 polarization vectors

The text introduces polarization vectors ρ̂ , but doesn’t spell out their form. Consider
a plane wave field of the form

(1.9)E = Exejφx ej(ωt−kz)x̂ + Eyejφy ej(ωt−kz)ŷ.

The x, y plane directionality of this phasor can be written

(1.10)ρ = Exejφx x̂ + Eyejφy ŷ,

so that

(1.11)E = ρej(ωt−kz).

Separating this direction and magnitude into factors

(1.12)ρ = |E|ρ̂,

allows the phasor to be expressed as

(1.13)E = ρ̂|E|ej(ωt−kz).

As an example, suppose that Ex = Ey, and set φx = 0. Then

(1.14)ρ̂ = x̂ + ŷejφy .

Demonstrating the geometry. It seems worthwhile to review how a generally polar-
ized field phasor leads to linear, circular, and elliptic geometries.

The most general field polarized in the x, y plane has the form

(1.15)
E =

(
x̂aejα + ŷbejβ

)
ej(ωt−kz)

=
(

x̂aej(α−β)/2 + ŷbej(β−α)/2
)

ej(ωt−kz+(α+β)/2).
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Knowing to factor out the average phase angle above is only because I tried initially
without that and things got ugly and messy. I guessed this would help (it does).

Let E = Re E = x̂x + ŷy, θ = ωt + (α + β)/2, and φ = (α− β)/2, so that

(1.16)E =
(

x̂aejφ + ŷbe−jφ
)

ejθ .

The coordinates can now be read off

(1.17a)
x
a

= cos φ cos θ − sin φ sin θ

(1.17b)
y
b

= cos φ cos θ + sin φ sin θ,

or in matrix form

(1.18)

[
x/a

y/b

]
=

[
cos φ − sin φ

cos φ sin φ

] [
cos θ

sin θ

]
.

The goal is to eliminate all the θ (i.e. time dependence), converting the parametric
relationship into a conic form. Assuming that neither cos θ, nor sin θ are zero for now
(those are special cases and lead to linear polarization), inverting the matrix will allow
the θ dependence to be eliminated

(1.19)
1

sin
(
2φ
) [ sin φ sin φ

− cos φ cos φ

] [
x/a

y/b

]
=

[
cos θ

sin θ

]
.

Squaring and summing both rows of these equation gives

(1.20)

1 =
1

sin2 (2φ
) (sin2 φ

( x
a

+
y
b

)2
+ cos2 φ

(
− x

a
+

y
b

)2
)

=
1

sin2 (2φ
) ( x2

a2 +
y2

b2 + 2
xy
ab
(
sin2 φ − cos2 φ

))
=

1
sin2 (2φ

) ( x2

a2 +
y2

b2 − 2
xy
ab

cos
(
2φ
))

Time to summarize and handle the special cases.

1. To have cos φ = 0, the phase angles must satisfy α− β = (1 + 2k)π, k ∈ Z.

For this case eq. (1.17) reduces to

(1.21)− x
a

=
y
b

,

which is just a line.
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Example 1.1: Linear polarization.

Let α = 0, β = −π, so that the phasor has the value

(1.22)E = (x̂a − ŷb) ejωt

For have sin φ = 0, the phase angles must satisfy α− β = 2πk, k ∈ Z.

For this case eq. (1.17) reduces to

(1.23)
x
a

=
y
b

,

also just a line.

Example 1.2: Elliptical polarization.

Let α = β = 0, so that the phasor has the value

(1.24)E = (x̂a + ŷb) ejωt

Last is the circular and elliptically polarized case. The system is clearly
elliptically polarized if cos(2φ) = 0, or α− β = (π/2)(1 + 2k), k ∈ Z. When
that is the case and a = b also holds, the ellipse is a circle.

When the cos(2φ) = 0 condition does not hold, a rotation of coordinates

(1.25)

[
x

y

]
=

[
cos µ sin µ

− sin µ cos µ

] [
u

v

]

where

(1.26)µ =
1
2

tan−1
(

2 cos(α − β)
b − a

)
puts the trajectory into a standard (but messy) conic form
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(1.27)
1 =

u2

ab

(
b
a

cos2 µ +
a
b

sin2 µ +
1
2

sin
(
2µ + α − β

))
+

v2

ab

(
b
a

sin2 µ +
a
b

cos2 µ − 1
2

sin
(
2µ + α − β

))

It isn’t obvious to me that the factors of the u2, v2 terms are necessarily
positive, which is required for the conic to be an ellipse and not a hyperbola.

Example 1.3: Circular polarization.

With a = b = E0, α = 0, β = ±π/2, all the circular polarization conditions are
met, leaving the phasor with values

(1.28)E = E0
(
x̂± jŷ

)
ejωt

1.7 phasor power

In §2.13 the phasor power is written as

(1.29)I2R/2,

where I, R are the magnitudes of phasors in the circuit.
I vaguely recall this relation, but had to refer back to [14] for the details. This

relation expresses average power over a period associated with the frequency of the
phasor

(1.30)

P =
1
T

ˆ t0+T

t0

p(t)dt

=
1
T

ˆ t0+T

t0

|V| cos
(
ωt + φV

)
|I| cos

(
ωt + φI

)
dt

=
1
T

ˆ t0+T

t0

|V||I|
(
cos

(
φV − φI

)
+ cos

(
2ωt + φV + φI

))
dt

=
1
2
|V||I| cos

(
φV − φI

)
.

Introducing the impedance for this circuit element
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(1.31)
Z =
|V|ejφV

|I|ejφI

=
|V|
|I| ej(φV−φI),

this average power can be written in phasor form

(1.32)P =
1
2
|I|2Z,

with

(1.33)P = Re P.

Observe that we have to be careful to use the absolute value of the current phasor I,
since I2 differs in phase from |I|2. This explains the conjugation in the [14] definition
of complex power, which had the form

(1.34)S = VrmsI∗rms.

1.8 radar cross section examples

Flat plate.

(1.35)σmax =
4π (LW)2

λ2

Figure 1.4: Square geometry for RCS example.

Sphere. In the optical limit the radar cross section for a sphere

(1.36)σmax = πr2

Note that this is smaller than the physical area 4πr2.



12 fundamental parameters of antennas

Figure 1.5: Sphere geometry for RCS example.

Figure 1.6: Cylinder geometry for RCS example.

Cylinder.

(1.37)σmax =
2πrh2

λ

Tridedral corner reflector

(1.38)σmax =
4πL4

3λ2

1.9 scattering from a sphere vs frequency

Frequency dependence of spherical scattering is sketched in fig. 1.8.

• Low frequency (or small particles): Rayleigh

σ =
(
πr2) 7.11 (κr)4 , κ = 2π/λ. (1.39)

• Mie scattering (resonance),

(1.40)σmax(A) = 4πr2

(1.41)σmax(B) = 0.26πr2.

• optical limit ( r � λ )

(1.42)σ = πr2.

FIXME: Do I have a derivation of this in my optics notes?
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Figure 1.7: Trihedral corner reflector geometry for RCS example.

Figure 1.8: Scattering from a sphere vs frequency (from Prof. Eleftheriades’ class notes).

1.10 eirp

Prof. Eleftheriades introduces the term EIRP, the Effective Isotropic Receiving Power,
the product of power and gain PtGt, measured in W.

1.11 free space impedance

In class we’ve seen

(1.43)η =
√

µ0

ε0
.

expressed as 120π ≈ 377. It seemed curious to me that this was an exact value. With

• ε0 = 8.85× 10−12 C2/Nm2 (number from [10])

• µ0 = 4π × 10−7N/A2 (exact),

the numeric value of η/π is 119.945 (eta.jl), which is close to 120. It’s pointed out in
[24] that this is just the consequence of using c = 3× 108m/s.

This can be seen by writing η in an alternate form
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(1.44)

η =
1

cε0
= µ0c
= (4π × 10−7N/A2)(3× 108m/s)
= 120πNm/A2s
= 120πΩ.

1.12 notation

• Time average. Both Prof. Eleftheriades and the text [5] use square brackets [· · ·]
for time averages, not 〈· · ·〉. Was that an engineering convention?

• Bold vectors are usually phasors, with (bold) calligraphic script used for the
time domain fields. Example: E(x, y, z, t) = êE(x, y)ej(ωt−kz), E(x, y, z, t) = Re E.

1.13 problems

Exercise 1.1 Max power density and directivity. (2015 problem set 1, p1)

The power radiated by a lossless antenna is 10 W. The corresponding radiation inten-
sity is given by,

U = B0 cos3 θ, 0 ≤ θ < π/2, 0 ≤ φ < 2π. (1.45)

Calculate

a. the maximum power density at a distance of 1 km.

b. the directivity of the antenna (dimensionless and dB).

Answer for Exercise 1.1

Part a. The radiated power density is

Wr(r, θ) =
U
r2 =

B0 cos3 θ

r2 , W/m2, (1.46)

with the maximum at θ = 0 of
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(1.47)Wr(r)|max =
B0

r2 , W/m2.

Since the average power density is

(1.48)

Pav =
‹

UdΩ

= 2πB0

ˆ π/2

0
cos3 θ sin θdθ

= −2πB0

ˆ π/2

0
cos3 θd cos θ

= 2πB0
cos4 θ

4

∣∣∣∣0
π/2

=
πB0

2
= 10 (W),

the constant B0 = 20/π ≈ 6.37W, so the maximum power density at 1 km is

Wr(1 km)|max =
20
π
× 10−6 ≈ 6.37× 10−6 (W/m2). (1.49)

Part b. The maximum directivity of the antenna is

(1.50)

D0 = 4π
Umax

Prad

= 4π
Umax

Pav

=
4���πB0

��
�πB0/2

= 8,

so the directivity is

D = 8 cos3 θ. (1.51)

In dB the maximum directivity is

D0 = 10 log10 8 = 9 dB. (1.52)
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Exercise 1.2 Directivity and free space loss. (2015 problem set 1, p2)

A satellite dish has a diameter d = 1.5m and an aperture efficiency of 70%. Calculate
the directivity of the dish at 12 GHz. If the distance from a geostationary satellite is
37,000 km calculate the corresponding free-space loss in dB.

Answer for Exercise 1.2

Ignoring any concavity in the dish (which is probably parabolic, with physical area
somewhere between πr2, and 2π2), the maximum effective area is

(1.53)

Aem = εemAp

= 0.7π0.752

= 0.39π

= 1.24 (m2)

The maximum directivity is

(1.54)

D0 =
4πAem

λ2

=
4πAemν2

c2

= 4π × 1.24 m2 ×
(

12× 109 s−1
)2

/
(
3× 108 m/s

)2

= 2.5× 104.

The free-space loss factor at R = 37× 106 m is

(1.55)

(
λ

4πR

)2

=
( c

4πRν

)2

=

 3× 108 m/s

4π
(
37× 106 m

) (
12× 109 s−1

)
2

= 2.9× 10−21

= −205 dB.

Exercise 1.3 Approximating directivity. (2015 problem set 1, p3)

A beam antenna has half-power beamwidths of 30◦ and 35◦ in orthogonal planes
intersecting at the maximum of the mainbeam. Determine the approximate maximum
directivity
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Answer for Exercise 1.3

(1.56)

D0 ≈
4π

Θ1rΘ2r

=
4× 1802

π(30)(35)
= 39.3.

Exercise 1.4 Polarization power loss. (2015 problem set 1, p4)

Transmitting and receiving antennas operating at 1 GHz have gains of 20 and 15

dB respectively and are separated by a distance of 1 km. Find the power delivered to
a matched load when the input power is 150 W and when

a. both antennas are polarization matched.

b. One antenna is linearly polarized and the other is circularly polarized.

Answer for Exercise 1.4

Part a. Answering this requires an application of the Friis transmission equation.
First note that the gains in non-dB units are

(1.57a)G1 = 1020/10,

(1.57b)G2 = 1015/10

The wavelength is

(1.58)

λ =
c
ν

=
3× 108 m/s

109 s−1

= 0.3 m

From the Friis equation, the receiving antenna has power

(1.59)

Pr = Pt

(
λ

4πR

)2

G1G2

= 150 W
(

0.3 m
4π(103 m)

)2

103.5

= 0.27 mW.
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Part b. Suppose that the linear polarization vector is

(1.60)ρ̂1 = x̂

and the circular polarization vector is

(1.61)ρ̂2 =
1√
2

(
x̂ + jŷ

)
The polarization factor is

(1.62)|ρ̂1 · ρ̂2|2 =
1
2

,

so the power found in eq. (1.59) must be reduced by 50 % when there is a linear vs.
circular polarization mismatch.

Rotating one of these polarization vectors, say the linear polarization vector, does
not change the result. For example, let

(1.63)ρ̂1 =
1√

a2 + b2
(ax̂ + bŷ) .

The polarization factor is now

(1.64)

|ρ̂1 · ρ̂2|2 =

∣∣∣∣∣ a√
2(a2 + b2)

+
jb√

2(a2 + b2)

∣∣∣∣∣
2

=
1

2(a2 + b2)
(
a2 + b2)

=
1
2

,

yielding the same factor of two reduction in power.

Exercise 1.5 Transmission power determination. (2015 problem set 1, p5)

A repeater link consists of a transmitter and a receiver at 10 GHz in a line-of-sight
arrangement of distance 10km. The transmitting and receiving antennas are identical
horns with gain over isotropic equal to 15 dB. For acceptable signal-to-noise ratio, the
power received must be greater than 10 nW. Loss due to polarization mismatch is not
expected to exceed 3 dB. Determine the minimum transmitted power that should be
used.
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Answer for Exercise 1.5

This is another Friis equation application. Each of the respective gains (converted
from dB) are

(1.65)G = 1015/10 W.

The polarization loss factor is

(1.66)|ρ̂r · ρ̂t|2 ≤ 10−3/10.

The wavelength is

(1.67)λ =
3× 108 m/s

1010 s−1

= 3× 10−2 m.

Put together we are looking for a value of Pt at least that of

(1.68)

Pr

Pt
=

10−8 W
Pt

=
(

0.03 m
4π104 m

)2 (
103/2

)2
10−0.3

= 2.9× 10−11,

or

Pt ≥ 350 W. (1.69)

Exercise 1.6 Radar cross section. (2015 problem set 1, p6)

A rectangular X-band horn, with aperture dimensions 5.5cm× 7.4cm and a gain
of 16.3 dB at 10 GHz, transmits and receives power scattered by the objects specified
below.

In each case, determine the maximum scattered power delivered to the load when
the distance between the horn and scattering object is nλ, where n is

1. 200

2. 500.
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The scattering objects to consider are a perfectly conducting

a. sphere of radius a = 5λ,

b. plate of dimensions 10λ× 10λ.

Answer for Exercise 1.6

This is an application of the Radar Cross Section equation

(1.70)

Pr

Pt
= σ

G2

4π

(
λ

4πn2λ2

)2

= σ
G2

4π

(
1

4πn2λ

)2

.

The same gain is used for transmission and reception, since both are for the same
horn. That gain (not in dB) is

(1.71)G = 1016.3/10

= 43.

The wavelength is

(1.72)λ =
3× 108 m/s

1010 m
= 0.03 m.

Part a. For the sphere the scattering area is

(1.73)
σ = πr2

= π(5λ)2

= 25πλ2

so the ratio of delivered power to the transmitted power is

(1.74)

Pr

Pt
= 25πλ2 G2

4π

(
1

4πn2λ

)2

=
25(43)2

64π2n4

=
73
n4 .

For the n = 200, 500 cases respectively, the delivered power ratio is
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1. n = 200

(1.75)
Pr

Pt
=

73
2004

= 4.6× 10−8

2. R = 500λ

(1.76)
Pr

Pt
=

73
5004

= 1.2× 10−9

Part b. For the plate the scattering area is

(1.77)

σ = 4π
(LW)2

λ2

= 4π

(
100λ2)2

λ2

= 4πλ2 × 104.

so the ratio of delivered power to the transmitted power is

(1.78)

Pr

Pt
= 4πλ2 × 104 G2

4π

(
1

4πn2λ

)2

=
(43)2 × 104

16π2n4

=
1.2× 105

n4 .

For the n = 200, 500 cases respectively, the delivered power ratio is

1. n = 200

(1.79)Pr

Pt
=

1.2× 105

2004

= 7.3× 10−5.
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2. R = 500λ

(1.80)Pr

Pt
=

1.2× 105

5004

= 1.9× 10−6.

Exercise 1.7 Directivities for a short horizontal electrical dipole.

In [23] a field for which directivities can be calculated exactly was used in compar-
isons of some directivity approximations

(1.81)E = E0
(
cos θ cos φθ̂− sin φφ̂

)
.

(Observe that an inverse radial dependence in E0 must be implied here for this to
be a valid far-field representation of the field.)

Show that Tai & Pereira’s formula gives D1 = 3, and D2 = 1 respectively for this
field.

Calculate the exact directivity for this field.
Answer for Exercise 1.7

The field components are

(1.82a)Eθ = E0 cos θ cos φ

(1.82b)Eφ = −E0 sin φ

Using eq. (1.91) from the paper, the directivities are

(1.83)

D1 =
2´ π

0 cos2 θ sin θdθ

=
2

− 1
3 cos3 θ

∣∣π
0

= 3,

and

(1.84)

D2 =
2´ π

0 sin θdθ

=
2

− cos θ|π0
= 1.
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To find the exact directivity, first the Poynting vector is required. That is

(1.85)

P =
|E0|2

2cµ0

(
cos θ cos φθ̂− sin φφ̂

)
×
(
r̂×

(
cos θ cos φθ̂− sin φφ̂

))
=
|E0|2

2cµ0

(
cos θ cos φθ̂− sin φφ̂

)
×
(
cos θ cos φφ̂ + sin φθ̂

)
=
|E0|2r̂
2cµ0

(
cos2 θ cos2 φ + sin2 φ

)
,

so the radiation intensity is

(1.86)U(θ, φ) ∝ cos2 θ cos2 φ + sin2 φ.

The θ̂, and φ̂ contributions to this intensity, and the total intensity are all plotted in
fig. 1.9

FIXME: did I save these under the right paths? Recall thetacap and phicap reversed.

(a) (b) (c)

Figure 1.9: Radiation intensity.

Given this the total radiated power is

(1.87)
Prad =

ˆ 2π

0

ˆ π

0

(
cos2 θ cos2 φ + sin2 φ

)
sin θdθdφ

=
8π

3
.

Observe that the radiation intensity U can also be decomposed into two compo-
nents, one for each component of the original E phasor.

(1.88a)Uθ = cos2 θ cos2 φ
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(1.88b)Uφ = sin2 φ

This decomposition allows for expression of the partial directivities in these respec-
tive (orthogonal) directions

Dθ =
4πUθ

Prad
=

3
2

cos2 θ cos2 φ (1.89a)

Dφ =
4πUφ

Prad
=

3
2

sin2 φ (1.89b)

The maximum of each of these partial directivities is both 3/2, giving a maximum
directivity of

D0 = Dθ |max + Dφ

∣∣
max = 3, (1.90)

the exact value from the paper.

Exercise 1.8 E and H plane directivities.

In [23] directivities associated with the half power beamwidths are given as

(1.91a)D1 =
|Eθ |2max

1
2

´ π
0 |Eθ(θ, 0)|2 sin θdθ

(1.91b)D2 =

∣∣Eφ

∣∣2
max

1
2

´ π
0

∣∣Eφ(θ, π/2)
∣∣2 sin θdθ

,

whereas [5] lists these as

(1.92a)
1

D1
=

1
2 ln 2

ˆ Θ1r/2

0
sin θdθ

(1.92b)
1

D2
=

1
2 ln 2

ˆ Θ2r/2

0
sin θdθ.

Reconcile these pairs of relations.
Answer for Exercise 1.8

TODO.
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Exercise 1.9 Radar cross section. (2015 problem set 2, p1)

Consider a flat rectangular metallic plate of physical area Ap (m2). The incident
normal power density is Wi (W/m2). Now consider the plate as a receiving and re-
transmitting antenna having an effective aperture equal to its physical area (the plate
is electrically large). Based on this idea, show that approximately the radar scattering
cross section (RCS) of the plate is given by

(1.93)σ =
4πA2

p

λ2 ,

as we have seen in class.
Answer for Exercise 1.9

A few simplifying assumptions are required to show this result:

1. All the power received is re-radiated as if from a point source.

2. The plate is a perfectly efficient re-radiator.

3. The effective aperture Aeff is also the maximum effective aperture, so it (and the
directivity) has no directional dependence.

The scattering geometry for this problem is sketched in fig. 1.10.

Figure 1.10: Scattering off of plane surface.

First note that the definition of the radar cross section σ is

σ ≡ lim
R→∞

4πR2 Ws

Wi
, (1.94)

where Ws is the scattered power density, Wi is the incident power density, and R is
the distance from the scattering object to the measurement point. Without the point
source approximation for the re-radiation of the incident power, this quantity would
depend on the orientation of the plate with respect to the observation.
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With constant normal incident power density, the captured power is

Pc = Wi Ap, (1.95)

where Ap is the area of the plate. Treating all the power as radiated as if from a
point source, measured at distance R from the plate, and assuming a perfect radiator
(i.e. G = D0), the scattered power density at this point of observation is

Ws =
PcG

4πR2 =
PcD0

4πR2 . (1.96)

The directivity follows from the assumption that the effective area equals the phys-
ical area, since that means

Aeff ≡
λ2D0

4π
= Ap, (1.97)

so

D0 =
4πAp

λ2 . (1.98)

The scattered power density at the receiver is

(1.99)
Ws =

Pc

4πR2 D0

=
Wi Ap

4πR2

4πAp

λ2 .

Plugging this into eq. (1.94), and dropping the limit that becomes irrelevant, gives

(1.100)
σ =���4πR2��Wi Ap

���4πR2
4πAp

λ2
1

��Wi

=
4πA2

p

λ2 ,

as desired.
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Exercise 1.10 Testing antenna gain. (2015 problem set 2, p2)

One way to measure the absolute gain of an antenna under test (AUT) is to use
a “standard-gain” antenna (usually a horn) which has a known gain Gsg. Consider
a two antenna setup, where port #1 is connected to a transmitting antenna Gx. First,
the second antenna connected to port #2 is the standard-gain one. Then at port #2 we
connect the unknown antenna under test GAUT.

Show that,

(1.101)
PAUT

2

Psg
2

=
GAUT

Gsg
,

where the left-hand side of the above equation represents the ratio of the powers
received by the antenna under test and the standard-gain antenna.

Answer for Exercise 1.10

The Friis equation can be used for this measurement task. For the respective set of
antenna configurations, and for fixed transmission power, there are two such equa-
tions

(1.102a)
PAUT

2
Pt

=
(

λ

4πR

)2

GAUTGt

(1.102b)
Psg

2
Pt

=
(

λ

4πR

)2

GsgGt,

where the transmission power is Pt and transmission antenna gain is Gt. That trans-
mit antenna power and gain need not be known, since dividing these equations can-
cels the common factors, including those, leaving

(1.103)
PAUT

2

Psg
2

=
GAUT

Gsg
,

as desired.
This procedure assumes that the standard gain antenna and the antenna under test

have identical polarization, and that neither is orthogonally polarized with respect to
the antenna at port #1.
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M A X W E L L’ S E Q U AT I O N S

2.1 review

For reasons that are yet to be seen (and justified), we work with a generalization of
Maxwell’s equations to include electric AND magnetic charge densities.

(2.1a)∇ × E = −M − ∂B
∂t

(2.1b)∇ ×H = J +
∂D
∂t

(2.1c)∇ ·D = ρ

(2.1d)∇ · B = ρm.

Assuming a phasor relationships of the form E = Re
(
E(r)ejωt) for the fields and the

currents, these reduce to

(2.2a)∇ × E = −M− jωB

(2.2b)∇ ×H = J + jωD

(2.2c)∇ ·D = ρ

(2.2d)∇ · B = ρm.

In engineering the fields

• E : Electric field intensity (V/m, Volts/meter).

• H : Magnetic field intensity (A/m, Amperes/meter).

are designated primary fields, whereas

• D : Electric flux density (or displacement vector) (C/m, Coulombs/meter).

29
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• B : Magnetic flux density (W/m, Webers/meter).

are designated the induced fields. The currents and charges are

• J : Electric current density (A/m).

• M : Magnetic current density (V/m).

• ρ : Electric charge density (C/m3).

• ρm : Magnetic charge density (W/m3).

Because ∇ · (∇× f) = 0 for any (sufficiently continuous) vector f, divergence rela-
tions between the currents and the charges follow from eq. (2.2)

(2.3)0 = −∇ ·M− jω∇ · B
= −∇ ·M− jωρm,

and

(2.4)0 = ∇ · J + jω∇ ·D
= ∇ · J + jωρ,

These are the phasor forms of the continuity equations

(2.5a)∇ ·M = −jωρm

(2.5b)∇ · J = −jωρ.

Integral forms The integral forms of Maxwell’s equations follow from Stokes’ theo-
rem and the divergence theorems. Stokes’ theorem is a relation between the integral
of the curl and the outwards normal differential area element of a surface, to the
boundary of that surface, and applies to any surface with that boundary

(2.6)
¨

dA · (∇ × f) =
‰

f · dl.

The divergence theorem, a special case of the general Stokes’ theorem is

(2.7)
˚

V
∇ · f dV =

¨
∂V

f · dA,

where the integral is over the surface of the volume, and the area element of the
bounding integral has an outwards normal orientation.
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See [19] for a derivation of this and various generalizations.
Applying these to eq. (2.2) gives

(2.8a)
‰

dl · E = −
¨

dA ·
(
M + jωB

)

(2.8b)
‰

dl ·H =
¨

dA ·
(
J + jωD

)

(2.8c)
¨

∂V
dA ·D =

˚
ρ dV

(2.8d)
¨

∂V
dA · B =

˚
ρm dV

2.2 constitutive relations

For linear isotropic homogeneous materials, the following constitutive relations apply

• D = εE

• B = µH

• J = σE, Ohm’s law.

where

• ε = εrε0, is the permittivity (F/m, Farads/meter ).

• µ = µrµ0, is the permeability (H/m, Henries/meter), µ0 = 4π × 10−7.

• σ, is the conductivity ( 1
Ωm, where 1/Ω is a Siemens.)

In AM radio, will see ferrite cores with the inductors, which introduces non-unit µr.
This is to increase the radiation resistance.

2.3 boundary conditions

For good electric conductor E = 0. For good magnetic conductor B = 0.
(more on class slides)
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2.4 linear time invariant

Linear time invariant meant that the impulse response h(t, t′) was a function of just
the difference in times h(t, t′) = h(t− t′).

2.5 green’s functions

For electromagnetic problems the impulse function sources δ(r− r′) also has a direc-
tion, and can yield any of Ex, Ey, Ez. A tensor impulse response is required.

Some overview of an approach that uses such tensor Green’s functions is outlined
on the slides. It gets really messy since we require four tensor Green’s functions to
handle electric and magnetic current and charges. Because of this complexity, we don’t
go down this path, and use potentials instead.

In §3.5 [5] and the class notes, a verification of the spherical wave form for the
Helmholtz Green’s function was developed. This was much simpler than the same
verification I did in [18]. Part of the reason for that was that I worked in Cartesian co-
ordinates, which made things much messier. The other part of the reason, for treating
a neighbourhood of |r− r′| ∼ 0, I verified the convolution, whereas Prof. Eleftheriades
argues that a verification that

´ (
∇2 + k2)G(r, r′)dV ′ = 1 is sufficient. Balanis, on the

other hand, argues that knowing the solution for k 6= 0 must just be the solution for
k = 0 (i.e. the Poisson solution) provided it is multiplied by the e−jkr factor.

Note that back when I did that derivation, I used a different sign convention for the
Green’s function, and in QM we used a positive sign instead of the negative in e−jkr.

2.6 tangential and normal field components

The integral forms of Maxwell’s equations can be used to derive relations for the
tangential and normal field components to the sources. These relations were men-
tioned in class, but it is useful to go over the derivation. This isn’t all review from
first year electromagnetism since we are now using a magnetic source modifications
of Maxwell’s equations.

The derivation below follows that of [3] closely, but I am trying it myself to ensure
that I understand the assumptions.

The two infinitesimally thin pillboxes of fig. 2.1 are used in the argument.
Maxwell’s equations with both magnetic and electric sources are

∇× E = −∂B
∂t
−M (2.9a)
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(a)

(b)

Figure 2.1: Pillboxes for tangential and normal field relations
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∇×H = J +
∂D
∂t

(2.9b)

∇ ·D = ρe (2.9c)

∇ ·B = ρm. (2.9d)

After application of Stokes’ and the divergence theorems Maxwell’s equations have
the integral form

‰
E · dl = −

ˆ
dA ·

(
∂B
∂t

+ M
)

(2.10a)

‰
H · dl =

ˆ
dA ·

(
∂D
∂t

+ J
)

(2.10b)

ˆ
∂V

D · dA =
ˆ

V
ρe dV (2.10c)

ˆ
∂V

B · dA =
ˆ

V
ρm dV. (2.10d)

Maxwell-Faraday equation First consider one of the loop integrals, like eq. (2.10a). For
an infinitesimal loop, that integral is

(2.11)

‰
E · dl ≈ E (1)

x ∆x + E (1) ∆y
2

+ E (2) ∆y
2
− E (2)

x ∆x − E (2) ∆y
2
− E (1) ∆y

2

≈
(
E (1)

x − E (2)
x

)
∆x +

1
2

∂E (2)

∂x
∆x∆y +

1
2

∂E (1)

∂x
∆x∆y.

We let ∆y→ 0 which kills off all but the first difference term.
The RHS of eq. (2.11) is approximately

(2.12)−
ˆ

dA ·
(

∂B
∂t

+ M
)
≈ −∆x∆y

(
∂Bz

∂t
+Mz

)
.



2.6 tangential and normal field components 35

If the magnetic field contribution is assumed to be small in comparison to the
magnetic current (i.e. infinite magnetic conductance), and if a linear magnetic current
source of the form is also assumed

(2.13)Ms = lim
∆y→0

(M · ẑ) ẑ∆y,

then the Maxwell-Faraday equation takes the form

(2.14)
(
E (1)

x − E (2)
x

)
∆x ≈ −∆xMs · ẑ.

While M may have components that are not normal to the interface, the surface
current need only have a normal component, since only that component contributes
to the surface integral.

The coordinate expression of eq. (2.14) can be written as

(2.15)
−Ms · ẑ =

(
E (1) − E (2)

)
· (ŷ× ẑ)

=
((

E (1) − E (2)
)
× ŷ

)
· ẑ.

This is satisfied when

(
E (1) − E (2)

)
× n̂ = −Ms, (2.16)

where n̂ is the normal between the interfaces. I’d failed to understand when reading
this derivation initially, how the B contribution was killed off. i.e. If the vanishing area
in the surface integral kills off the B contribution, why do we have a M contribution
left. The key to this is understanding that this magnetic current is considered to be
confined very closely to the surface getting larger as ∆y gets smaller.

Also note that the units of Ms are volts/meter like the electric field (not volts/squared-
meter like M.)

Ampere’s law As above, assume a linear electric surface current density of the form

(2.17)J s = lim
∆y→0

(J · n̂) n̂∆y,

in units of amperes/meter (not amperes/meter-squared like J .)
To apply the arguments above to Ampere’s law, only the sign needs to be adjusted

(
H(1) −H(2)

)
× n̂ = J s. (2.18)
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Gauss’s law Using the cylindrical pillbox surface with radius ∆r, height ∆y, and top
and bottom surface areas ∆A = π (∆r)2, the LHS of Gauss’s law eq. (2.10c) expands
to

(2.19)

ˆ
∂V

D · dA ≈ D(2)
y ∆A +D(2)

ρ 2π∆r
∆y
2

+D(1)
ρ 2π∆r

∆y
2
− D(1)

y ∆A

≈
(
D(2)

y − D(1)
y

)
∆A.

As with the Stokes integrals above it is assumed that the height is infinitesimal
with respect to the radial dimension. Letting that height ∆y → 0 kills off the radially
directed contributions of the flux through the sidewalls.

The RHS expands to approximately

(2.20)
ˆ

V
ρe dV ≈ ∆A∆yρe.

Define a highly localized surface current density (coulombs/meter-squared) as

(2.21)σe = lim
∆y→0

∆yρe.

Equating eq. (2.20) with eq. (2.19) gives

(2.22)
(
D(2)

y − D(1)
y

)
∆A = ∆Aσe,

or

(
D(2) −D(1)

)
· n̂ = σe. (2.23)

Gauss’s law for magnetism The same argument can be applied to the magnetic flux.
Define a highly localized magnetic surface current density (webers/meter-squared)
as

(2.24)σm = lim
∆y→0

∆yρm,

yielding the boundary relation

(
B(2) −B(1)

)
· n̂ = σm. (2.25)
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2.7 energy momentum conservation

Maxwell’s equations with magnetic sources In this section, the form of Maxwell’s equa-
tions to be used are expressed in terms of E and H, assume linear media, and do not
assume a phasor representation

(2.26a)∇ × E = −M − µ0
∂H
∂t

(2.26b)∇ ×H = J + ε0
∂E
∂t

(2.26c)∇ · E = ρ/ε0

(2.26d)∇ ·H = ρm/µ0.

Energy momentum conservation With magnetic sources the Poynting and energy con-
servation relationship has to be adjusted slightly. Let’s derive that result, starting with
the divergence of the Poynting vector

(2.27)
∇ · (E ×H) = H · (∇ × E)− E · (∇ ×H)

= −H ·
(
µ0∂tH + M

)
− E · (J + ε0∂tE)

= −µ0H · ∂tH −H ·M − ε0E · ∂tE − E · J ,

or

1
2

∂

∂t

(
ε0E2 + µ0H2

)
+ ∇ · (E ×H) = −H ·M− E ·J . (2.28)

Momentum conservation The usual relationship is only modified by one additional
term. Recall from electrodynamics [17] that eq. (2.28) (when the magnetic current
density M is omitted) is just one of four components of the energy momentum con-
servation equation

∂µTµν = −1
c

Fνλ jλ. (2.29)

Note that eq. (2.29) was likely not in SI units. The next task is to generalize this
classical relationship to incorporate the magnetic sources used in antenna theory. With
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an eye towards the relativistic nature of the energy momentum tensor, it is natural to
assume that the remainder of the energy momentum tensor conservation relation can
be found by taking the time derivatives of the Poynting vector.

(2.30)

∂

∂t
(E ×H) =

∂E
∂t
×H + E × ∂H

∂t

=
1
ε0

(∇ ×H − J )×H +
1
µ0

E × (−∇ × E −M) ,

or

(2.31)

1
c2

∂

∂t
(E ×H) + µ0J ×H + ε0E ×M

= −µ0H × (∇ ×H)

− ε0E × (∇ × E) .

The µ0J ×H = J × B is a portion of the Lorentz force equation in its density
form. To put eq. (2.31) into the desired form, the remainder of the Lorentz force force
equation ρE = ε0E∇ · E must be added to both sides. To extend the magnetic current
term to its full dual (magnetic) Lorentz force structure, the quantity to add to both
sides is ρmH = µ0H∇ ·H. Performing these manipulations gives

(2.32)
1
c2

∂

∂t
(E ×H) + ρE + µ0J ×H + ρmH + ε0E ×M

= µ0 (H∇ ·H −H × (∇ ×H)) + ε0 (E∇ · E − E × (∇ × E)) .

It seems slightly surprising the sign of the magnetic equivalent of the Lorentz force
terms have an alternation of sign. This is, however, consistent with the duality trans-
formations outlined in ([5] table 3.2)

(2.33a)ρ→ ρm

(2.33b)J →M

(2.33c)µ0 → ε0

(2.33d)E →H

(2.33e)H→ −E ,
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for

ρE + µ0J ×H→ ρmH + ε0M× (−E) = ρmH + ε0E ×M. (2.34)

Comfortable that the LHS has the desired structure, the RHS can expressed as a
divergence. Just expanding one of the differences of vector products on the RHS does
not obviously show that this is possible, for example

(2.35)

ea · (E∇ · E − E × (∇ × E)) = Ea∂bEb − εabcEbεcrs∂rEs

= Ea∂bEb − δ[rs]
ab Eb∂rEs

= Ea∂bEb − Eb (∂aEb − ∂bEa)
= Ea∂bEb − Eb∂aEb + Eb∂bEa.

This happens to equal

(2.36)

∇ ·
((

EaEb −
1
2

δabE2
)

eb

)
= ∂b

(
EaEb −

1
2

δabE2
)

= Eb∂bEa + Ea∂bEb −
1
2

δab2Ec∂bEc

= Eb∂bEa + Ea∂bEb − Eb∂aEb.

This allows a final formulation of the remaining energy momentum conservation
equation in its divergence form. Let

(2.37)Tab = ε0

(
EaEb −

1
2

δabE2
)

+ µ0

(
HaHb −

1
2

δabH2
)

,

so that the remaining energy momentum conservation equation, extended to both
electric and magnetic sources , is

1
c2

∂

∂t
(E ×H) + (ρE + µ0J ×H) + (ρmH + ε0E ×M) = ea∇ ·

(
Tabeb

)
. (2.38)

On the LHS we have the rate of change of momentum density, the electric Lorentz
force density terms, the dual (magnetic) Lorentz force density terms, and on the RHS
the the momentum flux terms.
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In the frequency domain In the frequency domain with E = Re Eejωt,H = Re Hejωt.
Using the electric field dot product as an example, note that we can write

(2.39)E =
1
2

(
Eejωt + E∗e−jωt

)
,

so

(2.40)

E2 =
1
2

(
Eejωt + E∗e−jωt

)
· 1

2

(
Eejωt + E∗e−jωt

)
=

1
4

(
E2e2jωt + E · E∗ + E∗ · E + (E∗)2 e−2jωt

)
=

1
2

Re
(

E · E∗ + E2e2jωt
)

.

Similarly, for the cross product

(2.41)
E ×H =

1
4

(
E×He2jωt + E×H∗ + E∗ ×H + (E∗ ×H∗) e−2jωt

)
=

1
2

Re
(

E×H∗ + E×He2jωt
)

.

Given phasor representations of the sources M = Mejωt,J = Jejωt, eq. (2.28) can
be recast into (a messy) phasor form

(2.42)

1
2

Re
1
2

∂

∂t

(
ε0E · E∗ + µ0H ·H∗ + ε0E2e2jωt + µ0H2e2jωt

)
+

1
2

Re∇ ·
(

E×H∗ + E×He2jωt
)

=
1
2

Re
(
−H ·M∗ − E · J∗ −H ·Me2jωt − E · Je2jωt

)
.

All the time dependence has been moved into the exponential factors, so the ε0E ·
E∗ + µ0H ·H∗ terms are killed by the time derivative operator. Averaging over one
period kills the rest of the oscillatory terms, leaving just

0 = ∇ · (E×H∗) + H ·M∗ + E · J∗. (2.43)

Comparison to the reciprocity theorem result The reciprocity theorem had a striking sim-
ilarity to the Poynting theorem above, which isn’t suprising since both were derived
by calculating the divergence of a Poynting like quantity. Here’s a repetition of the
reciprocity divergence calculation without the single frequency (phasor) assumption
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(2.44)

∇·
(
E (a) ×H(b) − E (b) ×H(a)

)
= H(b) ·

(
∇ × E (a)

)
− E (a) ·

(
∇ ×H(b)

)
−H(a) ·

(
∇ × E (b)

)
+ E (b) ·

(
∇ ×H(a)

)
= −H(b) ·

(
µ0∂tH(a) + M(a)

)
− E (a) ·

(
J (b) + ε0∂tE (b)

)
+ H(a) ·

(
µ0∂tH(b) + M(b)

)
+ E (b) ·

(
J (a) + ε0∂tE (a)

)
= ε0

(
E (b) · ∂tE (a) − E (a) · ∂tE (b)

)
+ µ0

(
H(a) · ∂tH(b) −H(b) · ∂tH(a)

)
+ H(a) ·M(b) −H(b) ·M(a) + E (b) · J (a) − E (a) · J (b)

What do these time derivative terms look like in the frequency domain?

E (b) · ∂tE (a) =
1
4

(
E(b)ejωt + E(b)∗e−jωt

)
· ∂t

(
E(a)ejωt + E(a)∗e−jωt

)
=

jω
4

(
E(b)ejωt + E(b)∗e−jωt

)
·
(

E(a)ejωt − E(a)∗e−jωt
)

=
ω

4

(
jE(a) · E(b)∗ − jE(b) · E(a)∗ + jE(a) · E(b)e2jωt − jE(a)∗ · E(b)∗e−2jωt

)
=

1
2

Re
(

jωE(a) · E(b)∗ + jωE(a) · E(b)e2jωt
)

(2.45)

Taking the difference,

E (b) · ∂tE (a) − E (a) · ∂tE (b)

=
1
2

Re
(

jωE(a) · E(b)∗ − jωE(b) · E(a)∗ + jωE(a) · E(b)e2jωt − jωE(b) · E(a)e2jωt
)

= −ω Im
(

E(a) · E(b)∗ + E(a) · E(b)e2jωt
)

,

(2.46)

so we have

(2.47)
0 =

[
∇ · Re

(
E(a) ×H(b)∗ − E(b) ×H(a)∗

)
+ ω Im

(
ε0E(a) · E(b)∗ + µ0H(a) ·H(b)∗

)
+ Re

(
−H(a) ·M(b)∗ + H(b) ·M(a)∗ − E(b) · J(a)∗ + E(a) · J(b)∗

)]
av

.

Observe that the perfect cancellation of the time derivative terms only occurs when
the cross product differences were those of the phasors. When those cross differences
are those of the actual fields, like those in the Poynting theorem, there is a frequency
dependent term is that expansion.
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Followup Questions FIXME: TODO.

1. What do the energy momentum conservation equations look like in geometric
algebra form with magnetic sources?

2. What do the energy momentum conservation equations look like in tensor form
with magnetic sources?

2.8 duality transformation

In a discussion of Dirac’s monopoles, [15] §6.12 introduces a duality transformation,
forming electric and magnetic fields by forming a rotation that combines a different
pair of electric and magnetic fields. In SI units that transformation becomes

(2.48a)

[
E

ηH

]
=

[
cos θ sin θ

− sin θ cos θ

] [
E ′

ηH′

]

(2.48b)

[
D
B/η

]
=

[
cos θ sin θ

− sin θ cos θ

] [
D′

B′/η

]
,

where η =
√

µ0/ε0. It is left as an exercise to the reader to show that application of
these to Maxwell’s equations

∇ · E = ρe/ε0 (2.49a)

∇ ·H = ρm/µ0 (2.49b)

−∇× E − ∂tB = J m (2.49c)

∇×H− ∂tD = J e, (2.49d)

determine a similar relation between the sources. That transformation of Maxwell’s
equation is

∇ ·
(
cos θE ′ + sin θηH′

)
= ρe/ε0 (2.50a)
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∇ ·
(
− sin θE ′/η + cos θH′

)
= ρm/µ0 (2.50b)

−∇×
(
cos θE ′ + sin θηH′

)
− ∂t

(
− sin θηD′ + cos θB′

)
= J m (2.50c)

∇×
(
− sin θE ′/η + cos θH′

)
− ∂t

(
cos θD′ + sin θB′/η

)
= J e. (2.50d)

A bit of rearranging gives[
ηρe

ρm

]
=

[
cos θ sin θ

− sin θ cos θ

] [
ηρ′e

ρ′m

]
(2.51a)

[
ηJ e

J m

]
=

[
cos θ sin θ

− sin θ cos θ

] [
ηJ ′e
J ′m

]
. (2.51b)

For example, with ρm = J m = 0, and θ = π/2, the transformation of sources is

ρ′e = 0

J ′e = 0

ρ′m = ηρe

J ′m = ηJ e,

(2.52)

and Maxwell’s equations then have only magnetic sources

∇ · E ′ = 0 (2.53a)

∇ ·H′ = ρ′m/µ0 (2.53b)

−∇× E ′ − ∂tB′ = J ′m (2.53c)

∇×H′ − ∂tD′ = 0. (2.53d)

Of this relation Jackson points out that “The invariance of the equations of electro-
dynamics under duality transformations shows that it is a matter of convention to
speak of a particle possessing an electric charge, but not magnetic charge.” This is an
interesting comment, and worth some additional thought.
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2.9 reciprocity theorem

The class slides presented a derivation of the reciprocity theorem, a theorem that
contained the integral of

ˆ (
E(a) ×H(b) − E(b) ×H(a)

)
· dS = · · · (2.54)

over a surface, where the RHS was a volume integral involving the fields and (elec-
tric and magnetic) current sources. The idea was to consider two different source
loading configurations of the same system, and to show that the fields and sources in
the two configurations can be related.

To derive the result in question, a simple way to start is to look at the divergence of
the difference of cross products above. This will require the phasor form of the two
cross product Maxwell’s equations

(2.55a)∇ × E = −(M + jωµ0H)

(2.55b)∇ ×H = J + jωε0E,

so the divergence is

∇ ·
(

E(a) ×H(b) − E(b) ×H(a)
)

= H(b) ·
(
∇ × E(a)

)
− E(a) ·

(
∇ ×H(b)

)
−H(a) ·

(
∇ × E(b)

)
+ E(b) ·

(
∇ ×H(a)

)
= −H(b) ·

(
M(a) + jωµ0H(a)

)
− E(a) ·

(
J(b) + jωε0E(b)

)
+ H(a) ·

(
M(b) + jωµ0H(b)

)
+ E(b) ·

(
J(a) + jωε0E(a)

)
.

(2.56)

The non-source terms cancel, leaving

∇ ·
(

E(a) ×H(b) − E(b) ×H(a)
)

= −H(b) ·M(a) − E(a) · J(b) + H(a) ·M(b) + E(b) · J(a)

(2.57)

Should we be surprised to have a relation of this form? Probably not, given that the
energy momentum relationship between the fields and currents of a single source has
the form

∂

∂t
ε0

2

(
E2 + c2B2

)
+ ∇ · 1

µ0
(E ×B) = −E ·J . (2.58)
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(this is without magnetic sources ).
This initially suggests that the reciprocity theorem can be expressed more generally

in terms of the energy-momentum tensor. However, there are some subtle differences
since the time domain products lead to averages in terms of the real parts of conjugate
pairs such as E ×B → E× B∗, and E ·J → E · J∗.

Far field integral form Employing the divergence theorem over a sphere the identity
above takes the form

(2.59)

ˆ
S

(
E(a)×H(b)−E(b)×H(a)

)
· r̂dS =

ˆ
V

(
−H(b) ·M(a)−E(a) ·J(b) +H(a) ·M(b) +E(b) ·J(a)

)
dV

In the far field, the cross products are strictly radial. That surface integral can be
written asˆ

S

(
E(a) ×H(b) − E(b) ×H(a)

)
· r̂dS =

1
µ0

ˆ
S

(
E(a) ×

(
r̂× E(b)

)
− E(b) ×

(
r̂× E(a)

))
· r̂dS

=
1
µ0

ˆ
S

(
E(a) · E(b) − E(b) · E(a)

)
dS

= 0
(2.60)

The above expansions used eq. (2.64) to expand the terms of the form

(2.61)(A× (r̂× C)) · r̂ = A · C− (A · r̂) (C · r̂) ,

in which only the first dot product survives due to the transverse nature of the
fields.

So in the far field we have a direct relation between the fields and sources of two
source configurations of the same system of the form

ˆ
V

(
H(a) ·M(b) + E(b) · J(a)

)
dV =

ˆ
V

(
H(b) ·M(a) + E(a) · J(b)

)
dV (2.62)

Application to antenna theory. This is the underlying reason that we are able to pose
the problem of what an antenna can receive, in terms of what the antenna can trans-
mit.

Prof. Eleftheriades explained the the send-receive equivalence using the concepts
of a two-port network ([14], [21]).

An alternate, and very intuitive, explanation can be found in appendix A.1 [6], that
directly related the current density sources and scalar current to the voltages in those
regions using an integral representation of the reciprocity theorem.
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Identities

Lemma 2.1: Divergence of a cross product

∇ · (A× B) = B (∇×A)−A (∇× B) .

Proof.

(2.63)
∇ · (A× B) = ∂aεabc AbBc

= εabc(∂a Ab)Bc − εbac Ab(∂aBc)
= B · (∇ × A)− B · (∇ × A).

Lemma 2.2: Triple cross product dotted

(A× (B×C)) ·D = (A ·C) (B ·D)− (A · B) (C ·D)

Proof.

(2.64)

(A× (B× C)) ·D = εabc AbεrscBrCsDa
= δrs

[ab] AbBrCsDa

= AsBrCsDr − ArBrCsDs
= (A · C) (B ·D)− (A · B) (C ·D) .

2.10 notation

Some notes on notation for this chapter and the coverage of this material in class:

• Phasor frequency terms are written as ejωt, not e−jωt, as done in physics. I didn’t
recall that this was always the case in physics, and wouldn’t have assumed it.
This is the case in both [16] and [11]. The latter however, also uses cos(ωt− kr) for
spherical waves possibly implying an alternate phasor sign convention in that
content, so I’d be wary about trusting any absolute “engineering” vs. physics
sign convention without checking carefully.

• In Green’s functions G(r, r′), r is the point of observation, and r′ is the point in
the convolution integration space.

• Both M and Jm are used for magnetic current sources in the class notes.
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2.11 problems

Exercise 2.1 Far field electric field away from sources. (2015 problem set 2, p3)

Show that in a region of space where there are no sources, the electric field derived
from the magnetic vector potential is given by the expression:

(2.65)E =
1

jωε0µ0
∇ × (∇ × A) .

Answer for Exercise 2.1
First consider the expansion of the curls

(2.66)
∇ × (∇ × A) = εrster∂sεtbc∂b Ac

= δ[bc]
rs er∂s∂b Ac

= er∂s (∂r As − ∂s Ar) ,

so

(2.67)∇ × (∇ × A) = ∇ (∇ · A)−∇2A.

This supplies a strong hint of how to proceed. The electric field can be expanded
utilizing this relation and the Helmholtz equation relating A and J

(2.68)

E = −jωA− j
1

ωε0µ0
∇ (∇ · A)

= −jωA− j
1

ωε0µ0

(
∇ × (∇ × A) + ∇2A

)
= −jωA− j

1
ωε0µ0

(
∇ × (∇ × A)−

(
k2A + µ0J

))
.

However,

k2

ωε0µ0
=

ω2/c2

ω(1/c2)
= ω, (2.69)

leaving

(2.70)E = −j
1

ωε0µ0
∇ × (∇ × A) + j

1
ωε0

J.

Since J = 0 in a region of space where there are no sources, the electric field in such
a region is given by eq. (2.65) as stated.





3
L I N E A R W I R E A N T E N N A S

3.1 magnetic vector potential

In class and in the problem set A was referred to as the Magnetic Vector Potential.
I only recalled this referred to as the Vector Potential. Prefixing this with magnetic
seemed counter intuitive to me since it is generated by electric sources (charges and
currents). This terminology can be justified due to the fact that A generates the mag-
netic field by its curl. Some mention of this can be found in [25], which also points
out that the Electric Potential refers to the scalar φ. Prof. Eleftheriades points out that
Electric Vector Potential refers to the vector potential F generated by magnetic sources
(because in that case the electric field is generated by the curl of F.)

3.2 plots of infinitesimal dipole radial dependence

In §4.2 of [5] are some discussions of the kr < 1, kr = 1, and kr > 1 radial dependence
of the fields and power of a solution to an infinitesimal dipole system. Here are some
plots of those kr dependence, along with the kr = 1 contour as a reference. All the θ

dependence and any scaling is left out.
The CDF notebook visualizeDipoleFields.cdf is available to interactively plot these,

rotate the plots and change the ranges of what is plotted.
A plot of the real and imaginary parts of Hφ = jk

r e−jkr
(

1− j
kr

)
can be found in

fig. 3.1.

(a) (b)

Figure 3.1: Radial dependence of Re Hφ and Im Hφ.

49
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A plot of the real and imaginary parts of Er = 1
r2

(
1− j

kr

)
e−jkr can be found in

fig. 3.2

(a) (b)

Figure 3.2: Radial dependence of Re Er and Im Er.

Finally, a plot of the real and imaginary parts of Eθ = jk
r

(
1− j

kr −
1

k2r2

)
e−jkr can be

found in fig. 3.3.

(a) (b)

Figure 3.3: Radial dependence of Re Eθ and Im Eθ .

3.3 electric far field for a spherical potential

It is interesting to look at the far electric field associated with an arbitrary spherical
magnetic vector potential, assuming all of the radial dependence is in the spherical
envelope. That is

(3.1)A =
e−jkr

r
(
r̂ar
(
θ, φ
)

+ θ̂aθ

(
θ, φ
)

+ φ̂aφ

(
θ, φ
))

.

The electric field is

(3.2)E = −jωA− j
1

ωµ0ε0
∇ (∇ · A) .
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The divergence and gradient in spherical coordinates are

(3.3a)∇ · A =
1
r2

∂

∂r
(
r2Ar

)
+

1
r sin θ

∂

∂θ
(Aθ sin θ) +

1
r sin θ

∂Aφ

∂φ

(3.3b)∇ψ = r̂
∂ψ

∂r
+

θ̂

r
∂ψ

∂θ
+

φ̂

r sin θ

∂ψ

∂φ
.

For the assumed potential, the divergence is

(3.4)

∇ · A =
ar

r2
∂

∂r

(
r2 e−jkr

r

)
+

1
r sin θ

e−jkr

r
∂

∂θ
(sin θaθ) +

1
r sin θ

e−jkr

r
∂aφ

∂φ

= are−jkr
(

1
r2 − jk

1
r

)
+

1
r2 sin θ

e−jkr ∂

∂θ
(sin θaθ) +

1
r2 sin θ

e−jkr ∂aφ

∂φ

≈ −jk
ar

r
e−jkr.

The last approximation dropped all the 1/r2 terms that will be small compared to
1/r contribution that dominates when r → ∞, the far field.

The gradient can now be computed

(3.5)

∇ (∇ · A) ≈ −jk∇
( ar

r
e−jkr

)
= −jk

(
r̂

∂

∂r
+

θ̂

r
∂

∂θ
+

φ̂

r sin θ

∂

∂φ

)
ar

r
e−jkr

= −jk
(

r̂ar
∂

∂r

(
1
r

e−jkr
)

+
θ̂

r2 e−jkr ∂ar

∂θ
+ e−jkr φ̂

r2 sin θ

∂ar

∂φ

)
= −jk

(
−r̂

ar

r2

(
1 + jkr

)
+

θ̂

r2
∂ar

∂θ
+

φ̂

r2 sin θ

∂ar

∂φ

)
e−jkr

≈ −k2r̂
ar

r
e−jkr.

Again, a far field approximation has been used to kill all the 1/r2 terms.
The far field approximation of the electric field is now possible

(3.6)

E = −jωA− j
1

ωµ0ε0
∇ (∇ · A)

= −jω
e−jkr

r
(
r̂ar (θ, φ) + θ̂aθ (θ, φ) + φ̂aφ (θ, φ)

)
+ j

1
ωµ0ε0

k2r̂
ar

r
e−jkr

= −jω
e−jkr

r
(
��

���r̂ar (θ, φ) + θ̂aθ (θ, φ) + φ̂aφ (θ, φ)
)

+
���

���
���

j
c2

ω

(ω

c

)2
r̂

ar

r
e−jkr

= −jω
e−jkr

r
(
θ̂aθ (θ, φ) + φ̂aφ (θ, φ)

)
.
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Observe the perfect, somewhat miraculous seeming, cancellation of all the radial
components of the field. If AT is the non-radial projection of A, the electric far field is
just

Eff = −jωAT. (3.7)

3.4 magnetic far field for a spherical potential

Application of the same assumed representation for the magnetic field gives

(3.8)

B = ∇ × A

=
r̂

r sin θ
∂θ

(
Aφ sin θ

)
+

θ̂

r

(
1

sin θ
∂φ Ar − ∂r

(
rAφ

))
+

φ̂

r
(∂r (rAθ)− ∂θ Ar)

=
r̂

r sin θ
∂θ

(
e−jkr

r
aφ sin θ

)
+

θ̂

r

(
1

sin θ
∂φ

(
e−jkr

r
ar

)
− ∂r

(
r

e−jkr

r
aφ

))
+

φ̂

r

(
∂r

(
r

e−jkr

r
aθ

)
− ∂θ

(
e−jkr

r
ar

))
=

r̂
r sin θ

e−jkr

r
∂θ

(
aφ sin θ

)
+

θ̂

r

(
1

sin θ

e−jkr

r
∂φar − ∂r

(
e−jkr

)
aφ

)
+

φ̂

r

(
∂r

(
e−jkr

)
aθ −

e−jkr

r
∂θar

)
≈ jk

(
θ̂aφ − φ̂aθ

) e−jkr

r

= −jkr̂×
(
θ̂aθ + φ̂aφ

) e−jkr

r

=
1
c

Eff.

The approximation above drops the 1/r2 terms. Since

1
µ0c

=
1
µ0

√
µ0ε0 =

√
ε0

µ0
=

1
η

, (3.9)

the magnetic far field can be expressed in terms of the electric far field as

H =
1
η

r̂× E. (3.10)



3.5 plane wave relations between electric and magnetic fields 53

3.5 plane wave relations between electric and magnetic fields

I recalled an identity of the form eq. (3.10) in [15], but didn’t think that it required a
far field approximation. The reason for this was because the Jackson identity assumed
a plane wave representation of the field, something that the far field assumptions also
locally require.

Assuming a plane wave representation for both fields

E(x, t) = Eej(ωt−k·x) (3.11a)

B(x, t) = Bej(ωt−k·x) (3.11b)

The cross product relation between the fields follows from the Maxwell-Faraday
law of induction

0 = ∇× E +
∂B
∂t

, (3.12)

or

(3.13)
0 = er × E∂rej(ωt−k·x) + jωBej(ωt−k·x)

= −jerkr × Eej(ωt−k·x) + jωBej(ωt−k·x)

= (−k× E + ωB) jej(ωt−k·x),

or

(3.14)
H =

k
kcµ0

k̂× E

=
1
η

k̂× E,

which also finds eq. (3.10), but with much less work and less mess.

3.6 transverse only nature of the far-field fields

Also observe that its possible to tell that the far field fields have only transverse com-
ponents using the same argument that they are locally plane waves at that distance.
The plane waves must satisfy the zero divergence Maxwell’s equations
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(3.15a)∇ · E = 0

(3.15b)∇ · B = 0,

so by the same logic

(3.16a)k · E = 0

(3.16b)k · B = 0.

In the far field the electric field must equal its transverse projection

(3.17)E = ProjT

(
−jωA− j

1
ωµ0ε0

∇ (∇ · A)
)

.

Since by eq. (3.5) the scalar potential term has only a radial component, that leaves

(3.18)E = −jω ProjT A,

which provides eq. (3.7) with slightly less work.

3.7 duality transformation of the far field fields

We’ve seen that the far field electric and magnetic fields associated with a magnetic
vector potential were

(3.19a)E = −jω ProjT A,

(3.19b)H =
1
η

k̂× E.

What does H look like in terms of A? Expanding the rejection of the radial compo-
nent answers that

(3.20)H = − jω
η

k̂×
(

A−
(

A · k̂
)

k̂
)

.

The k̂ crossed terms are killed, leaving

(3.21)H = − jω
η

k̂× A.

It’s worth a quick note that the duality transformation for this, referring to [5]
tab. 3.2, is

(3.22a)H = −jω ProjT F

E = ηk̂×H = jωηk̂× F. (3.22b)

These show explicitly that neither the electric or magnetic far field have any radial
component, matching with intuition for transverse propagation of the fields.
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3.8 vertical dipole reflection coefficient

In class a ground reflection scenario was covered for a horizontal dipole. Reading
the text I was surprised to see what looked like the same sort of treatment §4.7.2,
but ending up with a quite different result. It turns out the difference is because the
text was treating the vertical dipole configuration, whereas Prof. Eleftheriades was
treating a horizontal dipole configuration, which have different reflection coefficients.
These differing reflection coefficients are due to differences in the polarization of the
field.

To understand these differences in reflection coefficients, consider first the field
due to a vertical dipole as sketched in fig. 3.4, with a wave vector directed from the
transmission point downwards in the z-y plane.

Figure 3.4: Vertical dipole configuration.

The wave vector has direction

k̂ = ẑeẑx̂θ = ẑ cos θ + ŷ sin θ. (3.23)

Suppose that the (magnetic) vector potential is that of an infinitesimal dipole

A = ẑ
µ0 I0l
4πr

e−jkr (3.24)

The electric field, in the far field, can be computed by computing the normal pro-
jection to the wave vector direction
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(3.25)

E = −jω
(

A ∧ k̂
)
· k̂

= −jω
µ0 I0l
4πr

(ẑ ∧ (ẑ cos θ + ŷ sin θ)) (ẑ cos θ + ŷ sin θ)

= −jω
µ0 I0l
4πr

(ẑŷ sin θ) (ẑ cos θ + ŷ sin θ)

= −jω
µ0 I0l
4πr

sin θ (−ŷ cos θ + ẑ sin θ)

= jω
µ0 I0l
4πr

sin θŷeẑŷθ .

This is directed in the z-y plane rotated an additional π/2 past k̂. The magnetic
field must then be directed into the page, along the x axis. This is sketched in fig. 3.5.

Figure 3.5: Electric and magnetic field directions.

Referring to [12] (eq. 4.40) for the coefficient of reflection component

(3.26)R =
nt cos θi − ni cos θt

ni cos θi + nt cos θt

This is the Fresnel equation for the case when that corresponds to E lies in the plane
of incidence, and the magnetic field is completely parallel to the plane of reflection).
For the no transmission case, allowing vt → 0, the index of refraction is nt = c/vt → ∞,
and the reflection coefficient is 1 as claimed in §4.7.2 of [5]. Because of the symmetry
of this dipole configuration, the azimuthal angle that the wave vector is directed along
does not matter.
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3.9 horizontal dipole reflection coefficient

In the class notes, a horizontal dipole coming out of the page is indicated. With the
page representing the z-y plane, this is a magnetic vector potential directed along the
x-axis direction

A = x̂
µ0 I0l
4πr

e−jkr. (3.27)

For a wave vector directed in the z-y plane as in eq. (3.23), the electric far field is
directed along

(3.28)

(
x̂ ∧ k̂

)
· k̂ = x̂−

(
x̂ · k̂

)
k̂

= x̂−
(
((((

((((
((

x̂ · (ẑ cos θ + ŷ sin θ)
)

k̂

= x̂.

The electric far field lies completely in the plane of reflection. From [12] (eq. 4.34),
the Fresnel reflection coefficients is

(3.29)R =
ni cos θi − nt cos θt

ni cos θi + nt cos θt
,

which approaches −1 when nt → ∞. This is consistent with the image theorem
summation that Prof. Eleftheriades used in class.

Azimuthal angle dependency of the reflection coefficient Now consider a horizontal dipole
directed along the y-axis. For the same wave vector direction as above, the electric far
field is now directed along

(3.30)

(
ŷ ∧ k̂

)
· k̂ = ŷ−

(
ŷ · k̂

)
k̂

= ŷ− (ŷ · (ẑ cos θ + ŷ sin θ)) k̂
= ŷ− k̂ sin θ

= ŷ− sin θ (ẑ cos θ + ŷ sin θ)
= ŷ cos2 θ − sin θ cos θẑ
= cos θ (ŷ cos θ − sin θẑ)
= cos θŷeẑŷθ .

That is
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(3.31)E = −jω
µ0 I0l
4πr

e−jkr cos θŷeẑŷθ .

This far field electric field lies in the plane of incidence (a direction of θ̂ rotated
by π/2), not in the plane of reflection. The corresponding magnetic field should be
directed along the plane of reflection, which is easily confirmed by calculation

(3.32)
k̂× (ŷ cos θ − sin θẑ) = (ẑ cos θ + ŷ sin θ)× (ŷ cos θ − sin θẑ)

= −x̂ cos2 θ − x̂ sin2 θ

= −x̂.

The far field magnetic field is seen to be

(3.33)H = jω
I0l

4πr
e−jkr cos θx̂,

so a reflection coefficient of 1 is required to calculate the power loss after a single
ground reflection signal bounce for this relative orientation of antenna to the target.

I fail to see how the horizontal dipole treatment in §4.7.5 can use a single reflection
coefficient without taking into account the azimuthal dependency of that reflection
coefficient.

Reflecting on this (no pun intended), made me realize that the no transmission
case has some interesting aspects. One of these is that radiation momentum must be
transferred to the reflecting surface in some fashion since the direction of the incident
radiation changes. Perhaps this is why the use of Image theory seems to be careful to
state that the reflecting plane is a perfect electrical conductor. Study of reflection off
of conducting surfaces is clearly in order to understand how this differs from normal
reflection in transmitting media.

3.10 resolving fields into components parallel to the reflecting

plane

In order to apply the Fresnel equations, the field components have to be resolved into
components where either the electric field or the magnetic field is parallel to the plane
of reflection. The geometry of this, with the wave vector direction k̂ and the electric
and magnetic field phasors perpendicular to that direction is sketched in fig. 3.6.

If the incident wave is a plane wave, or equivalently a far field spherical wave, it
will have the form

H =
1
µ0

k̂× E, (3.34)
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Figure 3.6: Field components relative to reflecting plane.

with the field directions and wave vector directions satisfying

Ê× Ĥ = k̂ (3.35a)

Ê · k̂ = 0 (3.35b)

Ĥ · k̂ = 0. (3.35c)

The key to resolving the fields into components parallel to the plane of reflection
lies in the observation that the cross product of the plane normal n̂ and the incident
wave vector direction k̂ lies in that plane. With

p̂ =
k̂× n̂∣∣∣k̂× n̂

∣∣∣ (3.36a)

q̂ = k̂× p̂, (3.36b)

the field directions can be resolved into components

E = (E · p̂) p̂ + (E · q̂) q̂ = E‖p̂ + E⊥q̂ (3.37a)
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H = (H · p̂) p̂ + (H · q̂) q̂ = H‖p̂ + H⊥q̂. (3.37b)

This subdivides the fields into two pairs, one with the electric field parallel to the
reflection plane

E1 = (E · p̂) p̂ = E‖p̂

H1 = (H · q̂) q̂ = H⊥q̂,
(3.38)

and one with the magnetic field parallel to the reflection plane

H2 = (H · p̂) p̂ = H‖p̂

E2 = (E · q̂) q̂ = E⊥q̂.
(3.39)

This is most of what we need to proceed with the reflection and transmission anal-
ysis. The only task remaining is to determine the reflection angle.

Using a pencil with the tip on the table I was able to convince myself by observation
that there is always a normal plane of incidence regardless of any oblique angle that
the ray hits the reflecting surface. This was, for some reason, not intuitively obvious to
me. Having done that, the geometry must be reduced to what is sketched in fig. 3.7.

Figure 3.7: Angle of incidence determination.

Once a p̂′ = p̂× n̂ has been determined, regardless of it’s orientation in the reflection
plane, the component of k̂ that is normal, directed towards, the plane of reflection is

k̂−
(

k̂ · p̂′
)

p̂′, (3.40)
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with (squared) length

(3.41)

(
k̂−

(
k̂ · p̂′

)
p̂′
)2

= 1 +
(

k̂ · p̂′
)2
− 2

(
k̂ · p̂′

)2

= 1−
(

k̂ · p̂′
)2

.

The angle of incidence, relative to the normal to the reflection plane, follows from

(3.42)
cos θ = k̂ ·

k̂−
(

k̂ · p̂′
)

p̂′√
1−

(
k̂ · p̂′

)2

=

√
1−

(
k̂ · p̂′

)2
.

Expanding the dot product above gives

(3.43)
k̂ · p̂′ = k̂ · (p̂× n̂)

=
1∣∣∣k̂× n̂
∣∣∣ k̂ ·

((
k̂× n̂

)
× n̂

)
,

where

(3.44)

k̂ ·
((

k̂× n̂
)
× n̂

)
= krεrst

(
k̂× n̂

)
s

nt

= krεrstεsabkanbnt

= −krδ[ab]
rt kanbnt

= −krnt (krnt − ktnr)

= −1 +
(

k̂ · n̂
)2

.

That gives

(3.45)
k̂ · p̂′ =

−1 +
(

k̂ · n̂
)2

√
1−

(
k̂ · n̂

)2

= −
√

1−
(

k̂ · n̂
)2

,

or
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(3.46)
cos θ =

√√√√1−
(
−
√

1−
(

k̂ · n̂
)2
)2

=

√(
k̂ · n̂

)2

= k̂ · n̂.

This surprisingly simple result makes so much sense, it is an awful admission of
stupidity that I went through all the vector algebra to get it instead of just writing it
down directly.

The end result is the reflection angle is given by

θ = cos−1 k̂ · n̂, (3.47)

where the reflection plane normal should off the back surface to get the sign right.
The only detail left is the vector direction of the reflected ray (as well as the direction
for the transmitted ray if that is of interest). The reflected ray direction flips the sign
of the normal component of the ray

(3.48)

k̂′ = −
(

k̂ · n̂
)

n̂ +
(

k̂ ∧ n̂
)

n̂

= −
(

k̂ · n̂
)

n̂ + k̂−
(

n̂k̂
)
· n̂

= k̂− 2
(

k̂ · n̂
)

n̂.

Here the sign of the normal doesn’t matter since it only occurs quadratically.
This now supplies everything needed for the application of the Fresnel equations

to determine the reflected ray characteristics of an arbitrarily polarized incident field.

3.11 image theorem

In the last problem set we examined the array factor for a corner cube configuration,
shown in fig. 4.6.

Motivation This is a horizontal dipole antenna placed next to a metallic corner. The
radiation at points in the interior of the cube have contributions due to the line of sight
field from the antenna as well as reflections. We looked at an approximation of ground
reflections using the Image Theorem, modeling the ground as a perfectly conducting
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Figure 3.8: A corner-cube antenna.

surface. I completely misunderstood that theorem and how it should be applied. As
presented it seemed like a simple way to figure out the reflection characteristics. This
confused me since it did not seem consistent with Fresnel reflection theory. I did try to
reconcile to the two, but that reconciliation only appeared to work for certain dipole
orientations, and that orientation dependence remained an open question.

It turns out that the idea of the Image Theorem is to find a source configuration that
contains the specified source, but contains enough other sources that the tangential
component of the electric field superposition is zero on the conducting surface, as
required by Maxwell’s equations. This allows the boundary to be completely removed
from the problem.

Thinking of the corner cube configuration as a reflection problem, I positioned
sources as in fig. 3.9.

Figure 3.9: Incorrect Image Theorem source placement for corner cube.

Because of the horizontal orientation of the dipole, I argued that the reflection coef-
ficient should be -1. The reflection point is a bit messy to calculate, and it turns out
to zeroth order in h/r the sin θ magnitude scaling of the reflected (far-field) field is
present for both reflected rays. I though that this was probably because the observa-
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tion point lays at the same altitude for both the line of sight ray and the reflected
ray.

Attempting this problem as a reflection problem makes it much more difficult than
it needs to be. It turns out that the correct image source placement for this problem is
that of fig. 3.10.

Figure 3.10: Correct image source placement for the corner cube.

This wasn’t at all obvious to me. The key is understanding that the goal of the image
source placement isn’t to figure out how the reflection will occur, but to manufacture
a source configuration for which the tangential component of the electric field is zero
on the conducting surface.

Image placement for infinite conducting plane. Before thinking about the corner cube
configuration, consider a horizontal dipole next to an infinite conducting plane. This,
and the correct image source placement is illustrated in fig. 3.11.

Figure 3.11: Image source placement for horizontal dipole.

I’ll now verify that this is the correct image source. This is basically a calculation
that the tangential components of the electric fields from both sources sum to zero.
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Let,

r = |s− r0|, (3.49)

so that the magnetic vector potential for the first quadrant dipole has the form

A =
A0

4πr
e−jkrẑ. (3.50)

With

k̂ =
s− r0

s
Ẽ = ẑ−

(
ẑ · k̂

)
k̂,

(3.51)

the far-field electric field at the point s on the plane is

E = −jω
A0

4πr
e−jkrẼ. (3.52)

If the normal to the plane is n̂ the tangential component of this field is the projection
of E on the direction

p̂ =
k̂× n̂∣∣∣k̂× n̂

∣∣∣ . (3.53)

That tangential component is directed along

(
Ẽ · p̂

)
p̂ =

((
ẑ−

(
ẑ · k̂

)
k̂
)
·
(

k̂× n̂
)) k̂× n̂∣∣∣k̂× n̂

∣∣∣2 . (3.54)

Because the triple product k̂ ·
(

k̂× n̂
)

= 0, the tangential component of the electric

field, provided k̂ · n̂ 6= 0, is

E‖ = −jω
A0

4πr
e−jkrẑ ·

(
k̂× n̂

) k̂× n̂

1−
(

n̂ · k̂
)2 . (3.55)
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Now the wave vector direction for the second quadrant ray on the plane is required.
Both k̂′ and s′ are reflections across the plane. Any such reflection has the value

(3.56)
x′ = (x ∧ n̂) n̂− (x · n̂) n̂

= − (n̂ ∧ x + n̂ · x) n̂
= −n̂xn̂.

This multivector product nicely encapsulates the reflection operation. Consider a
reflection against the y-z plane with normal e1 to verify that this works

(3.57)

−e1xe1 = −e1
(

xe1 + ye2 + ze3
)

e1

= −
(

x − ye2e1 + ze3e1
)

e1

= −
(

xe1 − ye2 + ze3
)

= −xe1 + ye2 + ze3.

This has the x component flipped in sign and the rest left untouched as desired for
a reflection in the y-z plane.

The second quadrant field will have k̂′ × n̂ terms in place of all the k̂× n̂ terms of
eq. (3.55). We want to know how the two compare. This calculation is simply done
using the dual form of the cross product temporarily

(3.58)

k̂′ × n̂ = −I
(

k̂′ ∧ n̂
)

= −I
〈

k̂′n̂
〉

2

= −I
〈
−n̂k̂n̂n̂

〉
2

= I
〈

n̂k̂
〉

2

= In̂ ∧ k̂
= −n̂× k̂
= k̂× n̂.

So, provided the image source in the second quadrant is oppositely oriented (sign
inversion), the tangential components of the two will sum to zero on that surface.

Thinking back to the corner cube, it is clear that an image source opposite to the
source across from one of the walls will result in a zero tangential electric field along
this boundary as is the case here (say the y-z plane). A second pair of sources opposite
from each other anywhere else also about the y-z plane will not change that zero
tangential electric field on this surface, but if the signs of the sources is alternated as
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in fig. 3.10 it will also result in zero tangential electric field on the z-x plane, which
has the desired boundary value effects for both surfaces of the corner cube.

Once the image sources are placed, the problem can be tackled with the boundary
removed.

3.12 problems

Exercise 3.1 Infinitesimal electric dipole. (2015 problem set 2, p4)

Show that in the near field kr → 0, the electric field of an infinitesimal electrical
dipole of length l and current I = Iẑ can be derived from the field of an electric dipole
moment p = qlẑ. The electrostatic field of a dipole moment is given by,

(3.59)E =
3 (p · r̂) r̂− p

4πε0r3 .

Answer for Exercise 3.1

To write the electrostatic field in spherical coordinates, first note that

(3.60)p · r̂ = qlẑ ·
(
cos φ sin θ, sin φ sin θ, cos θ

)
= ql cos θ,

so the electrostatic dipole field is

(3.61)E = ql
3 cos θr̂− ẑ

4πε0r3 .

To calculate the radial component of this field, note that

(3.62)(3 cos θr̂− ẑ) · r̂ = 3 cos θ − ẑ · r̂
= 2 cos θ,

so

(3.63)Er = ql
cos θ

2πε0r3 .

For the θ component, noting that θ̂ = (cos θ cos φ, cos θ sin φ,− sin θ),

(3.64)(3 cos θr̂− ẑ) · θ̂ = −ẑ · θ̂
= sin θ,
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so

(3.65)Eθ = ql
sin θ

4πε0r3 .

Finally the Eφ component of this electrostatic field is zero since

(3.66)(3 cos θr̂− ẑ) · φ̂ = 0,

because r̂ and φ̂ are orthonormal, and φ̂ lies in the x-y plane, always perpendicular
to ẑ.

Current for the dipole configuration A set of equal magnitude oscillating charges ±q(t)
separated by distance l, have the phasor representation

(3.67)q(t) = qejωt.

The dipole moment associated with such a charge distribution is

(3.68)p(t) =
(

+q
l
2

+ (−q)
(
−l
2

))
ejωtẑ

= qlejωtẑ.

This has the desired dipole moment magnitude p = qlẑ. The current for this dipole
configuration is

(3.69)I(t) =
dq(t)

dt
= jωqejωt,

allowing a phasor identification for the current magnitude

(3.70)I0 = jωq.

Near field equivalence The near field electric field equations derived from the mag-
netic vector potential are expressed in terms of I0, not q. Since the ratio of charge to
permittivity is

(3.71)

q
ε0

=
I0

jωε0

= −jI0
1

kcε0

= −jI0

√
µ0ε0

kε0

= −jI0
η

k
,
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the electric field components eq. (3.63) and eq. (3.65) calculated from the dipole
moment take the form

(3.72a)Er = −jη I0l
cos θ

2πkr3

(3.72b)Eθ = −jη I0l
sin θ

4πkr3

(3.72c)Eφ = 0.

This reproduces the near field electric field equations for a vertical infinitesimal
dipole (4.20a,b) from the text [5] in the limit kr → 0.

Exercise 3.2 Mobile power reception. (2015 problem set 2, p5)
A mobile is located 5 km from a base station and uses a vertical wire antenna of

gain 2.55 dB to receive cellular radio signals. The carrier frequency used is 900 MHz
and the EIRP of the base station is 30 mW. If the base station and mobile are located
50 m and 1.5 m above ground respectively, calculate the power level received at the
mobile.
Answer for Exercise 3.2

The mobile in a transmitting geometry is sketched in fig. 3.12.

Figure 3.12: Vertical dipole reflection geometry.

For a vertical dipole the magnetic vector potential has the form

(3.73)A = ẑ
A0

r
e−jkr,

where A0 = µ0 I0l/4π. The far field electric field is

(3.74)
E = −jωAT

= −jω
A0

r
e−jkr

(
ẑ−

(
ẑ · k̂

)
k̂
)

,

where all the radial (non-transverse) components of the magnetic vector potential
have been subtracted out.
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Reflection coefficient To determine the sign of the reflection coefficient for a vertical
dipole configuration, consider a wave vector directed in the z-y plane at an angle θ

from the pole

k̂ = ẑeẑŷθ = ẑ cos θ + ŷ sin θ. (3.75)

The far field electric field that propagates along this direction, has direction

(3.76)

ẑ−
(

ẑ · k̂
)

k̂ = ẑ− (ẑ · (ẑ cos θ + ŷ sin θ)) k̂

= ẑ− cos θk̂
= ẑ− cos θ (ẑ cos θ + ŷ sin θ)
= ẑ sin2 θ − sin θ cos θŷ
= − sin θ (cos θŷ− sin θẑ) .

When there is reflection, the electric (far) field is directed entirely in the plane of
incidence (with the magnetic field entirely parallel to the reflecting interface). The
Fresnel reflection coefficient ([12] eq. 4.40) for such a polarization is

(3.77)R =
nt cos θi − ni cos θt

ni cos θi + nt cos θt
.

For no transmission the transmitted speed of the radiation vt → 0, and the the index
of refraction of the ground approaches nt = c/vt → ∞. This shows that the reflection
coefficient for the vertical dipole configuration is +1. Because of the symmetry of this
dipole’s orientation the sign of the reflection coefficient has no azimuthal dependency.

Effects of ground reflection Let

(3.78a)αref = arctan 55/5000

(3.78b)αlos = arctan 45/5000

(3.78c)rref =
√

552 + 50002

(3.78d)rlos =
√

452 + 50002

(3.78e)k̂ref = ŷ cos αref + ẑ sin αref
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(3.78f)k̂los = ŷ cos αlos + ẑ sin αlos,

Summing the line of sight and reflected (image source contribution) gives

(3.79)

E = jωA0 ∑
i∈{los,ref}

1
ri

e−jkri cos αi (sin αiŷ− cos αiẑ)

≈ jωA0 cos θA (sin θAŷ− cos θAẑ)
1
r ∑

i∈{los,ref}
e−jkri ,

where an average distance r =
√

h2
t + d2 =

√
502 + 50002, the distance from the origin

to the base station has been factored out in the denominator.
The sum of the phase terms is

(3.80)

e−jk
√

r2+2hthr+h2
r + e−jk

√
r2−2hthr+h2

r ≈ e−jk
√

r2+2hthr + e−jk
√

r2−2hthr

= e−jkr
√

1+2hthr/r2
+ e−jkr

√
1−2hthr/r2

≈ e−jkr
(

e−jkhthr/r + ejkhthr/r
)

= 2e−jkr cos
(

khthr

r

)
,

so after reflection the far field electric field has the form

(3.81)E = jωA0 cos θA (sin θAŷ− cos θAẑ)
1
r

2e−jkr cos
(

khthr

r

)
.

This differs from the line of sight field by a factor of 2 cos (khthr/r).

Numerical results The wavelength is

λ = c/ν =
3× 108m/s

900× 106s−1 = 0.33m, (3.82)

so the cosine argument is

(3.83)khthr/r =
2π × 50× 1.5
0.33× 5000.25

= 0.28,

and the cosine adjustment to the field strength is

(3.84)2 cos 0.28 = 1.92.
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The mobile gain is

G = 102.55dB/10 = 1.8, (3.85)

Noting that EIRP = PtGt, the Friis transmission equation, after adjusting for the
reflection effects, provides the power at the mobile

(3.86)

Pr =
(

λ

4πr

)2

(PtGt) Gr(1.92)2

=
(

0.33
4π 5000.25

)2 (
30× 10−3) × 1.8× (1.92)2W

= 5.6× 10−12 W.

The total power received is just 5.6 pW, assuming no polarization losses (we know
the polarization at the mobile, but not for the base station.)

In an attempt to avoid calculator errors for this problem I scripted the numerical
calculations in ps2p5.jl. That wasn’t entirely successful on submission, since I used 5

m instead of 1.5 m!

Exercise 3.3 Superposition of electric and magnetic dipoles. (2015 problem set 3, p1)

An infinitesimal electric dipole of electric current strength Ieo is oriented along the
x-axis. With this there is also an infinitesimal magnetic dipole of magnetic current
strength Imo but oriented along the y-axis.

a. Write down an expression for the total electric field radiated in the far zone.

b. Assume now that Ieo/Imo = ηo = 120πΩ. Simplify the electric field expression
found part a.

c. Plot in polar co-ordinates the normalized magnitude of the electric field in the
zy plane and for 0 < θ ≤ 2π (far zone).

Answer for Exercise 3.3

Part a. The far field electric field induced by the electric current can be calculated
with the transverse projection

(3.87)
Ee = −jω ProjT A

= −jω
(

A− (A · k̂)k̂
)

,

where
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(3.88)A = x̂
µ0 Ieol
4πr

e−jkr.

To simplify this, note that the Cartesian to spherical coordinates mapping is

(3.89a)x̂ = sin θ cos φk̂ + cos θ cos φθ̂− sin φφ̂

(3.89b)ŷ = sin θ sin φk̂ + cos θ sin φθ̂ + cos φφ̂

(3.89c)ẑ = cos θk̂− sin θθ̂,

so

(3.90)Ee = −jω
(
cos θ cos φθ̂− sin φφ̂

) µ0 Ieol
4πr

e−jkr.

For the magnetic current, first note that the far field magnetic field for an electric
current can also be expressed in terms of the magnetic vector potential

(3.91)

H =
1
η

k̂× E

= −j
ω

η
k̂×

(
A− (A · k̂)k̂

)
= −j

ω

η
k̂× A.

Duality provides the far field electric field given an electric vector potential

(3.92)Em = jωηk̂× F.

For the y-axis oriented magnetic current, the vector potential is

(3.93)F = ŷ
ε0 Imol

4πr
e−jkr.

The electric field will be directed along

(3.94)k̂× ŷ = k̂×
(

sin θ sin φk̂ + cos θ sin φθ̂ + cos φφ̂
)

= cos θ sin φφ̂ − cos φθ̂,

so

(3.95)Em = jωη
(
cos θ sin φφ̂ − cos φθ̂

) ε0 Imol
4πr

e−jkr.

Summing eq. (3.90), and eq. (3.95) gives

E = jω
l

4πr
e−jkrηε0

((
− cos θ cos φθ̂ + sin φφ̂

)
η Ieo +

(
cos θ sin φφ̂− cos φθ̂

)
Imo
)

(3.96)
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Part b. When η Ieo = Imo, this reduces to

(3.97)E = jω
µ0 Ieol
4πr

e−jkr (1 + cos θ)
(
− cos φθ̂ + sin φφ̂

)
.

Two views of this vector function are plotted in fig. 3.13 showing the electric and
magnetic far field vector directions on the surface of the electric field magnitude.
See http://goo.gl/Sb1Uso for an interactive view of these plots, with θ, φ controls
available for the wave vector position.

(a) (b)

Figure 3.13: Electric and magnetic infinitesimal dipole superposition, view from above and
below.

Part c. In the zy plane, φ = π/2, and the electric field has only a φ̂ component

(3.98)E = jω
µ0 Ieol
4πr

e−jkr (1 + cos θ) φ̂

The magnitude of the θ variation in the [0, 2π] interval is plotted in fig. 3.14.

http://goo.gl/Sb1Uso
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Figure 3.14: Electric and magnetic infinitesimal dipole superposition, polar plot in ZY plane.

Exercise 3.4 Long thin wire dipoles. (2015 problem set 3, p2)

a. On a single diagram, plot the polar patterns for l = 0.5λ, l = 1.0λ, l = 1.25λ and
l = 2.0λ long thin wire dipole antennas.

b. Use numerical integration to calculate the maximum directivity for each dipole.
Make a table with your results. Which length corresponds to the highest direc-
tivity?

c. Use numerical integration to calculate the radiation resisistance of the l = 1.25λ

dipole. Do you expect this dipole to be capacitive or inductive?

Answer for Exercise 3.4

Part a. Assuming a ẑ oriented dipole, in the far field, the electric field is

(3.99)Eθ ≈ jη
I0e−jkr

2πr

cos
(

kl
2 cos θ

)
− cos

(
kl
2

)
sin θ

 .

Writing l = αλ, and noting that the magnetic field is Hφ ≈ Eθ/η, the radiation
intensity U = r2Wav is

(3.100)U = η
|I0|2

8π2

(
cos (πα cos θ)− cos (πα)

sin θ

)2

.

In fig. 3.15 F(θ) = 8π2U/η|I0|2 is plotted for α ∈ {0.5, 1, 1.25, 2.0}. For α = 1.25
some very small side lobes are just barely visible. For α = 2 the single lobe di-
rectivity is lost, and a significant split of the radiation field along two different di-
rections can be observed. These individual features can be explored more easily in
http://goo.gl/OjK4oc which provides an interactive control for varying the l/λ ratio.

http://goo.gl/OjK4oc
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Figure 3.15: Polar plot of radiation intensities for some electric z-axis oriented dipoles.

It is much more satisfactory to view these in a three dimensional plot as in ps3:longDipoleInteractiveLength.nb,
and fig. 3.16, but such a visualization does not work well for overlaid intensity pat-
terns.

Figure 3.16: Double wavelength radiation intensity.

The side lobes for the α = 1.25 case do not show up very well in the plot above. The
log polar plot of fig. 3.17 shows this detail better.
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Figure 3.17: Log polar plot of radiation intensities for some electric z-axis oriented dipoles.

Part b. The directivity is given by

(3.101)D0 =
4π F(θ)|max

2π
´ π

0 F(θ) sin θdθ
.

These values, calculated in ps3:directivityLongDipole.nb using the Mathematica
functions NMaximize and NIntegrate, are

Table 3.1: Directivities.

α 0.5 1 1.25 2

D0 1.64092 2.411 3.28248 2.52856

The largest directivity for these specific values of l is found at l = 1.25λ.

Part c. The radiation resistance is implicitly defined by

Prad =
ˆ

UdΩ =
1
2
|I0|2Rr, (3.102)

or, with η = 120πΩ,
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(3.103)

Rr =
2

|I0|2
ˆ

UdΩ

= 120π
1

4π2

ˆ 2π

0
dφ

ˆ π

0

(
cos (πα cos θ)− cos (πα)

sin θ

)2

sin θdθ

= 60
ˆ π

0

(cos (πα cos θ)− cos (πα))2

sin θ
dθ.

This numerical integration was computed in ps3:longDipolesSelectedLengths.nb
and for the lengths in this problem are

Table 3.2: Radiation resistances.

α 0.5 1 1.25 2

Rr 73.1296 199.088 106.537 259.634

The half-wavelength number calculated matches the value quoted in [5] eq. 4-93.
For the reactance, without calculating, I don’t know an intuitive way to determine

whether it would be positive or negative for any given length. The graph of [5] fig. 8.17

appears to show that the reactance is roughly positive (inductive) in the [0.5, 1]λ in-
terval and negative (capacitive) in the [1, 1.5]λ interval.



4
A N T E N N A A R R AY S

4.1 chebyscheff polynomials

In ancient times (i.e. 2nd year undergrad) I recall being very impressed with Chebyscheff
polynomials for designing lowpass filters. I’d used Chebyscheff filters for the hard-
ware we used for a speech recognition system our group built in the design lab. One
of the benefits of these polynomials is that the oscillation in the |x| < 1 interval is
strictly bounded. This same property, as well as the unbounded nature outside of the
[−1, 1] interval turns out to have applications to antenna array design.

The Chebyscheff polynomials are defined by

Tm(x) = cos
(

m cos−1 x
)

, |x| < 1 (4.1a)

Tm(x) = cosh
(

m cosh−1 x
)

, |x| > 1. (4.1b)

Range restrictions and hyperbolic form. Prof. Eleftheriades’s notes made a point to
point out the definition in the |x| > 1 interval, but that can also be viewed as a
consequence instead of a definition if the range restriction is removed. For example,
suppose x = 7, and let

cos−1 7 = θ, (4.2)

so

(4.3)

7 = cos θ

=
ejθ + e−jθ

2
= cosh(±jθ),

or

∓j cosh−1 7 = θ. (4.4)

79
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(4.5)Tm(7) = cos(∓mj cosh−1 7)
= cosh(m cosh−1 7).

The same argument clearly applies to any other value outside of the |x| < 1 range,
so without any restrictions, these polynomials can be defined as just

Tm(x) = cos
(

m cos−1 x
)

. (4.6)

Polynomial nature. Equation (4.6) does not obviously look like a polynomial. Let’s
proceed to verify the polynomial nature for the first couple values of m.

• m = 0.

(4.7)T0(x) = cos(0 cos−1 x)
= cos(0)
= 1.

• m = 1.

(4.8)T1(x) = cos(1 cos−1 x)
= x.

• m = 2.

(4.9)T2(x) = cos(2 cos−1 x)
= 2 cos2 cos−1(x)− 1
= 2x2 − 1.

To examine the general case
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Tm(x) = cos(m cos−1 x)

= Re ejm cos−1 x

= Re
(

ej cos−1 x
)m

= Re
(

cos cos−1 x + j sin cos−1 x
)m

= Re
(

x + j
√

1− x2
)m

= Re
(

xm +
(

m
1

)
jxm−1 (1− x2)1/2

−
(

m
2

)
xm−2 (1− x2)2/2−

(
m
3

)
jxm−3 (1− x2)3/2

+
(

m
4

)
xm−4 (1− x2)4/2

+ · · ·
)

= xm −
(

m
2

)
xm−2 (1− x2) +

(
m
4

)
xm−4 (1− x2)2 − · · ·

(4.10)

This expansion was a bit cavalier with the signs of the sin cos−1 x =
√

1− x2 terms,
since the negative sign should be picked for the root when x ∈ [−1, 0]. However, that
doesn’t matter in the end since the real part operation selects only powers of two of
this root.

The final result of the expansion above can be written

Tm(x) =
bm/2c

∑
k=0

(
m
2k

)
(−1)kxm−2k (1− x2)k

. (4.11)

This clearly shows the polynomial nature of these functions, and is also perfectly
well defined for any value of x. The even and odd alternation with m is also clear in
this explicit expansion.

Some plots The first couple polynomials are plotted in fig. 4.1.

Properties In [1] a few properties can be found for these polynomials

Tm(x) = 2xTm−1 − Tm−2 (4.12a)

(4.12b)0 =
(
1− x2) dTm(x)

dx
+ mxTm(x)− mTm−1(x)

(4.12c)0 =
(
1− x2) d2Tm(x)

dx2 − x
dTm(x)

dx
+ m2Tm(x)
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Figure 4.1: A couple Cheybshev plots.

(4.12d)
ˆ 1

−1

1√
1− x2

Tm(x)Tn(x)dx =


0 if m 6= n

π if m = n = 0

π/2 if m = n, m 6= 0

Example 4.1: Cheybshev antenna design.

In our text [5] is a design procedure that applies Cheybshev polynomials to the
selection of current magnitudes for an evenly spaced array of identical antennas
placed along the z-axis.

For an even number 2M of identical antennas placed at positions rm = (d/2) (2m− 1) e3,
the array factor is

(4.13)AF =
N

∑
m=−N

Imejkr̂·rm .

Assuming the currents are symmetric I−m = Im, with r̂ = (sin θ cos φ, sin θ sin φ, cos θ),
and u = πd

λ cos θ, this is
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(4.14)

AF =
N

∑
m=−N

Imejk(d/2)(2m−1) cos θ

= 2
N

∑
m=1

Im cos
(
k(d/2)(2m − 1) cos θ

)
= 2

N

∑
m=1

Im cos ((2m − 1)u) .

This is a sum of only odd cosines, and can be expanded as a sum that includes
all the odd powers of cos u. Suppose for example that this is a four element array
with N = 2. In this case the array factor has the form

(4.15)AF = 2
(

I1 cos u + I2
(
4 cos3 u − 3 cos u

))
= 2
(
(I1 − 3I2) cos u + 4I2 cos3 u

)
.

The design procedure in the text sets cos u = z/z0, and then equates this to
T3(z) = 4z3 − 3z to determine the current amplitudes Im. That is

(4.16)
2I1 − 6I2

z0
z +

8I2

z3
0

z3 = −3z + 4z3,

or

(4.17)

[
I1

I2

]
=

[
2/z0 −6/z0

0 8/z3
0

]−1 [
−3

4

]

=
z0

2

[
3(z2

0 − 1)

z2
0

]
.

The currents in the array factor are fully determined up to a scale factor, reduc-
ing the array factor to

(4.18)AF = 4z3
0 cos3 u − 3z0 cos u.

The zeros of this array factor are located at the zeros of

(4.19)T3(z0 cos u) = cos(3 cos−1 (z0 cos u)),

which are at 3 cos−1 (z0 cos u) = π/2 + mπ = π
(
m + 1

2

)
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(4.20)
cos u =

1
z0

cos
(

π

3

(
m +

1
2

))
=

{
0,±
√

3
2z0

}
.

showing that the scaling factor z0 effects the locations of the zeros. It also allows
the values at the extremes cos u = ±1, to increase past the ±1 non-scaled limit
values. These effects can be explored in http://goo.gl/KPqcjX, but can also be
seen in fig. 4.2.

Figure 4.2: T3(z0x) for a few different scale factors z0.

The scale factor can be fixed for a desired maximum power gain. For RdB, that
will be when

(4.21)20 log10 cosh(3 cosh−1 z0) = RdB,

or

(4.22)z0 = cosh
(

1
3

cosh−1
(

10
R
20

))
.

For R = 30 dB (say), we have z0 = 2.1, and

(4.23)AF = 40 cos3
(

πd
λ

cos θ

)
− 6.4 cos

(
πd
λ

cos θ

)
.

These are plotted in fig. 4.3 for a couple values of d/λ.

http://goo.gl/KPqcjX


4.1 chebyscheff polynomials 85

0°

30°

60°

90°

120°

150°

180°

210°

240°

270°

300°

330°

0.2

0.4

0.6

0.8

1.0

d/λ=1/8

d/λ=1/4

d/λ=1/4

(a)

0°

30°

60°

90°

120°

150°

180°

210°

240°

270°

300°

330°

-30dB

-20dB

-10dB

0dB

d/λ=1/8

d/λ=1/4

d/λ=1/4

(b)

Figure 4.3: T3 fitting of N = 4 array in linear and dB scales.

A Manipulate for exploring the d/λ dependence is available in http://goo.gl/

8FhUwC.

Dolph-Cheybshev design procedure from class notes. Prof. Eleftheriades described a Cheyb-
shev antenna array design method that looks different than the one of the text [5].

Portions of that procedure are like that of the text. For example, if a side lobe level
of 20 log10 R is desired, a scaling factor

(4.24)x0 = cosh
(

1
m

cosh−1 R
)

,

is used. Given N elements in the array, a Cheybshev polynomial of degree m = N− 1
is used. That is

(4.25)Tm(x) = cos
(

m cos−1 x
)

.

Observe that the roots x′n of this polynomial lie where

(4.26)m cos−1 x′n =
π

2
± πn,

or

(4.27)x′n = cos
( π

2m
(2n ± 1)

)
,

The class notes use the negative sign, and number n = 1, 2, · · · , m. It is noted that
the roots are symmetric with x′1 = −x′m, which can be seen by direct expansion

http://goo.gl/8FhUwC
http://goo.gl/8FhUwC
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(4.28)

x′m−r = cos
( π

2m
(2(m − r)− 1)

)
= cos

(
π − π

2m
(2r + 1)

)
= − cos

( π

2m
(2r + 1)

)
= − cos

( π

2m
(2(r + 1)− 1)

)
= −x′r+1. �

The next step in the procedure is the identification

(4.29)
u′n = 2 cos−1

(
x′n
x0

)
zn = eju′n .

This has a factor of two that does not appear in the Balanis design method. It seems
plausible that this factor of two was introduced so that the roots of the array factor zn

are conjugate pairs. Since cos−1(−z) = π− cos−1 z, this choice leads to such conjugate
pairs

(4.30)

exp
(

ju′m−r
)

= exp
(

j2 cos−1
(

x′m−r

x0

))
= exp

(
j2 cos−1

(
− x′r+1

x0

))
= exp

(
j2
(

π − cos−1
(

x′r+1
x0

)))
= exp

(
−jur+1

)
.

Because of this, the array factor can be written

AF = (z − z1)(z − z2) · · · (z − zm−1)(z − zm)
= (z − z1)(z − z∗1)(z − z2)(z − z∗2) · · ·
=
(
z2 − z(z1 + z∗1) + 1

) (
z2 − z(z2 + z∗2) + 1

)
· · ·

=
(

z2 − 2z cos
(

2 cos−1
(

x′1
x0

))
+ 1
)(

z2 − 2z cos
(

2 cos−1
(

x′2
x0

))
+ 1
)
· · ·

=

(
z2 − 2z

(
2
(

x′1
x0

)2

− 1

)
+ 1

)(
z2 − 2z

(
2
(

x′2
x0

)2

− 1

)
+ 1

)
· · ·

(4.31)
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When m is even, there will only be such conjugate pairs of roots. When m is odd,
the remaining factor will be

(4.32)z − e2j cos−1(0/x0) = z − e2jπ/2 = z − ejπ = z + 1.

However, with this factor of two included, the connection between the final array
factor polynomial eq. (4.31), and the Cheybshev polynomial Tm is not clear to me.
How does this scaling impact the roots?

Example 4.2: Expand AF for N = 4.

The roots of T3(x) are

(4.33)x′n ∈
{

0,±
√

3
2

}
,

so the array factor is

(4.34)
AF =

(
z2 + z

(
2− 3

x2
0

)
+ 1
)

(z + 1)

= z3 + 3z2
(

1− 1
x2

0

)
+ 3z

(
1− 1

x2
0

)
+ 1.

With 20 log10 R = 30dB, x0 = 2.1, so this is

(4.35)AF = z3 + 2.33089z2 + 2.33089z + 1.

With

(4.36)z = ej(u+u0)

= ejkd cos θ+jku0 ,

the array factor takes the form

(4.37)AF = ej3kd cos θ+j3ku0 + 2.33089ej2kd cos θ+j2ku0 + 2.33089ejkd cos θ+jku0 + 1.

This array function is highly phase dependent, plotted for u0 = 0 in fig. 4.4.
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(a) (b)

Figure 4.4: Plot with u0 = 0, d = λ/4.

This can be directed along a single direction (z-axis) with higher phase choices
as illustrated in fig. 4.5.
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(a)

(b)
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Figure 4.5: Plot with u0 = 3.5, d = 0.4λ.

These can be explored interactively in http://goo.gl/DRDIsr.

4.2 problems

Exercise 4.1 Corner cube antenna. (2015 problem set 3, p3)

Consider a symmetrically placed horizontal dipole antenna, next to a metallic corner
cube.

Figure 4.6: A corner-cube antenna.

a. Calculate the array factor of the antenna in fig. 4.6.

b. Estimate the directivity enhancement of the antenna in fig. 4.6 compared to the
isolated antenna.

c. Estimate the radiation resistance of the antenna in fig. 4.6 compared to the
isolated antenna.

d. Plot the array-factor directivity pattern in the x-y plane for 0 < φ ≤ 2π.

e. By using numerical integration calculate the directivity of the array factor for
h = (1/8)λ, h = (1/4)λ and h = (1/2)λ.

Answer for Exercise 4.1

Part a. This problem can be tackled with the image theorem, which requires place-
ment of sources as in fig. 3.10.

http://goo.gl/DRDIsr


92 antenna arrays

The sources are located one in each quadrant

s1 = h (1, 1, 0)

s2 = h (−1, 1, 0)

s3 = h (−1,−1, 0)

s4 = h (1,−1, 0)

(4.38)

and the point of measurement at r = rr̂ = r(sin θ cos φ, sin θ sin φ, cos θ). If rm = r− sm

is the distance from the mth source to the observation point, then the squared distance
is

(4.39)

rm = |r− sm|
=
(
r2 + s2

m − 2r · sm
)1/2

= r
(

1 +
s2

m
r2 − 2

r̂
r
· sm

)1/2

≈ r
(

1 +
1
2

s2
m

r2 −
r̂
r
· sm

)
= r +

1
2

s2
m
r
− r̂ · sm

≈ r − r̂ · sm.

Those distances are

r̂ · s1 = h sin θ (cos φ + sin φ) =
√

2h sin θ cos (φ− π/4) (4.40a)

r̂ · s2 = h sin θ (− cos φ + sin φ) = −
√

2h sin θ cos (φ + π/4) (4.40b)

r̂ · s3 = −h sin θ (cos φ + sin φ) = −
√

2h sin θ cos (φ− π/4) (4.40c)

r̂ · s4 = h sin θ (cos φ− sin φ) =
√

2h sin θ cos (φ + π/4) (4.40d)

Suppose the magnetic vector potential has the structure of an infinitesimal dipole

Am =
µ0 I0

4πrm
e−jkrm ẑ. (4.41)
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In the far field, the direction vectors for all the fields will be approximately

(4.42)ẑ− (ẑ · r̂) r̂ = cos θr̂− sin θθ̂− cos θr̂
= − sin θθ̂.

The far field electric field for each image source is approximately

(4.43)

Em = −jωAT

= jω
µ0 I0

4πr
e−jkrm sin θθ̂

= jηk
I0

4πr
e−jkrm sin θθ̂.

Writing s =
√

2h for the distance from the origin to each of the image sources, the
superposition of all the image sources is

(4.44)
E = jηk

I0

4πr
e−jkr sin θ

(
ejks sin θ cos(φ−π/4) − e−jks sin θ cos(φ+π/4) + e−jks sin θ cos(φ−π/4)

− ejks sin θ cos(φ+π/4)
)

θ̂,

or

E = 2jηk
I0

4πr
e−jkr sin θ (cos (ks sin θ cos (φ− π/4))− cos (ks sin θ cos (φ + π/4))) .

(4.45)

The array factor can be picked off by inspection

AF = 2I0 (cos (ks sin θ cos (φ− π/4))− cos (ks sin θ cos (φ + π/4))) . (4.46)

Part b. The radiation intensity is

U =
1
2

η

(
kI0

4π

)2

sin2 θ|AF|2 = B0 sin2 θ|AF|2. (4.47)

This holds for both isolated antenna with AF = 1, and the corner cube with |AF|2

given by eq. (4.46).
For the isolated antenna, the radiation intensity is maximized at θ = π/2, so
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(4.48)

D0,iso =
4π × 1

2π
´ π

0 sin3 θdθ

=
2

4/3

=
3
2

.

For the corner cube the maximization problem is trickier. As a first approximation,
if ks is assumed to be small, then all the cosines in eq. (4.46) are close to unity, and
the array factor is zero. The next order in ks expansion of the cosines is required

(4.49)

AF = 2I0

(
1− (ks sin θ)2

2
cos2(φ − π/4)− 1 +

(ks sin θ)2

2
cos2(φ + π/4)

)
= 2I0

(ks sin θ)2

2
(
− cos2(φ − π/4) + cos2(φ + π/4)

)
= −I0(ks sin θ)2 sin(2φ),

so for small ks

(4.50)U = B0(ks)4 sin6 θ sin2(2φ).

The radiation intensity is clearly maximized at φ = π/4, θ = π/2, so

(4.51)U0 = B0(ks)4

The radiated power, again for small ks, is

(4.52)

Prad = B0

ˆ π/2

0
dφ

ˆ π

0
dθ sin θU(θ, φ)

≈ B0(ks)4
ˆ π/2

0
dφ sin2(2φ)

ˆ π

0
dθ sin7 θ

= B0(ks)4
(π

4

)
×
(

32
35

)
= B0(ks)44π

2
35

.

The approximate directivity of the corner cube is

D0,ccube ≈
4π × B0(ks)4

B0(ks)44π 2
35

=
35
2
≈ 17.5. (4.53)
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almost 12 times greater than the directivity of the isolated radiator.
The posted solution omits the sin2 θ contribution from the element factor. That

results in

(4.54)

Prad ≈ B0(ks)4
ˆ π/2

0
dφ sin2(2φ)

ˆ π

0
dθ sin5 θ

= B0(ks)4
(π

4

)
×
(

16
15

)
= B0(ks)44π

1
15

,

and

D0,ccube ≈
4π × B0(ks)4

B0(ks)44π 1
15

= 15. (4.55)

Note that the baseline directivity without the sin2 θ element factor is unity, since

4π/2π

ˆ π

0
sin θdθ = 1, (4.56)

so such a relative approximation is still correct for the dipole up to an order of
magnitude.

Part c. The radiation resistance was defined implicitly by the relation

Prad =
1
2
|I0|2Rr, (4.57)

so the ratio of radiation resistance will just be the ratio of the radiated powers

Rr,ccube

Rr,iso
=

Prad,ccube

Prad,iso
=

8π(ks)4/35
8π/3

=
3(ks)4

35
. (4.58)

Part d. The x-y plane is found at θ = π/2 where the array factor is

(4.59)AF = 2
(

cos
(

2π
s
λ

cos
(
φ − π/4

))
− cos

(
2π

s
λ

cos
(
φ + π/4

)))
.

This is plotted against both α = s/λ =
√

2h/λ, and φ in fig. 4.7, which shows that
there are generally four lobes for any value of s, except for the smallest values where
the pattern is near zero.



96 antenna arrays

Figure 4.7: Plot of |AF|2 in XY plane with α = h/λ.

This is also plotted in fig. 4.8 for a few selected values of α.
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Figure 4.8: Polar plot of AF in XY plane for various values of α = s/λ.

To plot the squared array factor, the physically significant range φ ∈ [0, π/2] can be
used, because all of the negative sign contributions from quadrant III will be flipped
into quadrant I.
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Figure 4.9: Polar plot of |AF|2 for θ = 0.

It’s more fun to visualize this in 3D as in, and a manipulate control for visualizing
|AF|2 is available at http://goo.gl/IVaiw2. This is plotted in fig. 4.10 for α = 0.69.

Figure 4.10: Spherical plot of |AF|2 for α = 0.69.

Part e. The code for the numerical calculations can be found in ps3:ps3Q3plotsCorrected.nb.
The results are

D0[h = λ/8] = 17.1

D0[h = λ/4] = 15.9

D0[h = λ/2] = 14.3.

(4.60)

http://goo.gl/IVaiw2
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If the sin2 θ contribution of the element factor is omitted (as the posted solution
does in the directivity approximation), the directivities are all slightly less

D0[h = λ/8] = 14.6

D0[h = λ/4] = 13.2

D0[h = λ/2] = 15.1.

(4.61)

Exercise 4.2 Chebyscheff Recurrence relation.

Prove eq. (4.12a).
Answer for Exercise 4.2

To show this, let

x = cos θ. (4.62)

(4.63)2xTm−1 − Tm−2 = 2 cos θ cos((m − 1)θ)− cos((m − 2)θ).

Recall the cosine addition formulas

(4.64)

cos(a + b) = Re ej(a+b)

= Re ejaejb

= Re
(
cos a + j sin a

) (
cos b + j sin b

)
= cos a cos b − sin a sin b.

Applying this gives

2xTm−1 − Tm−2 = 2 cos θ

(
cos(mθ) cos θ + sin(mθ) sin θ

)

−
(

cos(mθ) cos(2θ) + sin(mθ) sin(2θ)

)

= 2 cos θ

(
cos(mθ) cos θ + sin(mθ) sin θ)

)

−
(

cos(mθ)(cos2 θ − sin2 θ) + 2 sin(mθ) sin θ cos θ

)
= cos(mθ)

(
cos2 θ + sin2 θ

)
= Tm(x). �

(4.65)
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Exercise 4.3 Chebyscheff first order LDE relation.

Prove eq. (4.12b).
Answer for Exercise 4.3

To show this, again, let

x = cos θ. (4.66)

Observe that

1 = − sin θ
dθ

dx
, (4.67)

so

(4.68)

d
dx

=
dθ

dx
d
dθ

= − 1
sin θ

d
dθ

.

Plugging this in gives

(4.69)

(
1− x2) d

dx
Tm(x) + mxTm(x)− mTm−1(x)

= sin2 θ

(
− 1

sin θ

d
dθ

)
cos(mθ) + m cos θ cos(mθ)− m cos((m − 1)θ)

= − sin θ(−m sin(mθ)) + m cos θ cos(mθ)− m cos((m − 1)θ).

Applying the cosine addition formula eq. (4.64) gives

(4.70)m (sin θ sin(mθ) + cos θ cos(mθ))− m (cos(mθ) cos θ + sin(mθ) sin θ) = 0. �

Exercise 4.4 Chebyscheff second order LDE relation.

Prove eq. (4.12c).
Answer for Exercise 4.4

This follows the same way. The first derivative was

(4.71)

dTm(x)
dx

= − 1
sin θ

d
dθ

cos(mθ)

= − 1
sin θ

(−m) sin(mθ)

= m
1

sin θ
sin(mθ),
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so the second derivative is

(4.72)

d2Tm(x)
dx2 = −m

1
sin θ

d
dθ

1
sin θ

sin(mθ)

= −m
1

sin θ

(
− cos θ

sin2 θ
sin(mθ) +

1
sin θ

m cos(mθ)
)

.

Putting all the pieces together gives

(4.73)

(
1− x2)d2Tm(x)

dx2 − x
dTm(x)

dx
+ m2Tm(x)

= m
(

cos θ

sin θ
sin(mθ)− m cos(mθ)

)
− cos θm

1
sin θ

sin(mθ) + m2 cos(mθ)

= 0. �

Exercise 4.5 Chebyscheff orthogonality relation.

Prove eq. (4.12d).

Answer for Exercise 4.5

First consider the 0,0 inner product, making an x = cos θ, so that dx = − sin θdθ

(4.74)

〈T0, T0〉 =
ˆ 1

−1

1(
1− x2

)1/2
dx

=
ˆ 0

−π

(
− 1

sin θ

)
− sin θdθ

= 0− (−π)
= π.

Note that since the [−π, 0] interval was chosen, the negative root of sin2 θ = 1− x2

was chosen, since sin θ is negative in that interval.
The m,m inner product with m 6= 0 is
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(4.75)

〈Tm, Tm〉 =
ˆ 1

−1

1(
1− x2

)1/2
(Tm(x))2 dx

=
ˆ 0

−π

(
− 1

sin θ

)
cos2(mθ)− sin θdθ

=
ˆ 0

−π
cos2(mθ)dθ

=
1
2

ˆ 0

−π
(cos(2mθ) + 1) dθ

=
π

2
.

So far so good. For m 6= n the inner product is

(4.76)

〈Tm, Tm〉 =
ˆ 0

−π
cos(mθ) cos(nθ)dθ

=
1
4

ˆ 0

−π

(
ejmθ + e−jmθ

) (
ejnθ + e−jnθ

)
dθ

=
1
4

ˆ 0

−π

(
ej(m+n)θ + e−j(m+n)θ + ej(m−n)θ + ej(−m+n)θ

)
dθ

=
1
2

ˆ 0

−π
(cos((m + n)θ) + cos((m − n)θ)) dθ

=
1
2

(
sin((m + n)θ)

m + n
+

sin((m − n)θ)
m − n

)∣∣∣∣0
−π

= 0. �

Exercise 4.6 Schelkunoff z-axis array, binary array. (2015 problem set 4, p1)

A three-element array is placed along the z-axis. Assume that the spacing between
the elements is d = λ/2 and the relative amplitude excitations are I1 = I3 = 1 and
I2 = 2

Use the Schelkunoff method to

a. Determine the angles of the nulls when the corresponding progressive phase
shifts ad are 0, π/2, π, 3π/2. Do this for each case.

b. For each case plot the corresponding array factor

Answer for Exercise 4.6
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Part a. With the array elements placed at rm = mdẑ, m ∈ [0, 2], the array factor is

(4.77)AF = 1×
(

ej(kd cos θ+ad)
)0

+ 2×
(

ej(kd cos θ+ad)
)1

+ 1×
(

ej(kd cos θ+ad)
)2

.

With z = ej(kd cos θ+ad), this is

AF = 1 + 2z + z2 = (1 + z)2 . (4.78)

This is a binary array with nulls located at z = −1. The angles where that is the case
are

kd cos θ + ad = (2N + 1)π, (4.79)

which is, for the separation of this problem,

2π

λ

λ

2
cos θ + ad = (2N + 1)π, (4.80)

or

θ = cos−1
(

2N + 1− ad
π

)
. (4.81)

1. Case I: ad = 0.

Here

θ = cos−1 (2N + 1) , (4.82)

which has solutions at N = 0,−1 of

θ = cos−1 1 = 0

θ = cos−1(−1) = π = 180◦.
(4.83)
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2. Case II: ad = π/2. Here

θ = cos−1
(

2N + 1− 1
2

)
, (4.84)

which has solutions at N = 0 of

θ = cos−1(1/2) = π/3 = 60◦. (4.85)

3. Case III: ad = π. Here

θ = cos−1 (2N) , (4.86)

which has solutions at N = 0 of

θ = cos−1 0 = π/2 = 90◦. (4.87)

4. Case IV: ad = 3π/2. Here

θ = cos−1
(

2N − 1
2

)
, (4.88)

which has solutions at N = 0 of

θ = cos−1(−1/2) = 2π/3 = 120◦. (4.89)

Part b. These are plotted in fig. 4.11.
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Figure 4.11: Plot |AF| for ad = 0, π/2, π, 3π/2.

Exercise 4.7 Schelkunoff z-axis, zero phase shifts. (2015 problem set 4, p2)

Use the Schelkunoff method to design a linear array of isotropic elements placed
along the z-axis such that the zeros of the array factor are located at θ = 0◦, 60◦, 120◦.
The inter-element spacing is d = λ/2 and the progressive phase shift is zero degrees.

a. What is the required number of the elements?

b. Determine the corresponding current excitation coefficients

c. Find the array factor
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d. Plot the corresponding array factor

Answer for Exercise 4.7

Part a. With d = λ/2, we write z = ejπ cos θ . The zeros of the array factor occur at

π cos 0 = π

π cos(π/3) = π/2

π cos(2π/3) = −π/2,

(4.90)

so the array factor is

(4.91)

AF =
(

z − ejπ
) (

z − ejπ/2
) (

z − e−jπ/2
)

= (z + 1)
(
z − j

) (
z + j

)
= (z + 1)

(
z2 − j2

)
= z2 + 1 + z3 + z.

Normalized this is

AF(z) =
1
4
(
1 + z + z2 + z3) . (4.92)

Four elements are required.

Part b. The currents at positions rm = mdẑ, m ∈ {0, 1, 2, 3} are

I0 =
1
4

I1 =
1
4

I2 =
1
4

I3 =
1
4

.

(4.93)

Part c. A phase term may be factored out of the array factor to put it in real form

(4.94)AF =
z3/2

4

(
z−3/2 + z−1/2 + z1/2 + z3/2

)
.
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Substituting z = ejπ cos θ , and discarding the leading z3/2 term, the array factor is

AF =
1
2

(
cos

(π

2
cos θ

)
+ cos

(
3π

2
cos θ

))
=

1
4

sin (2π cos θ)

sin
(

π
2 cos θ

) . (4.95)

Part d. This is plotted in fig. 4.12, which also clearly shows the zeros at θ = 0, 60◦, 120◦

as desired.
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Figure 4.12: Array factor for specified zeros.

Exercise 4.8 Binomial array. (2015 problem set 4, p3)

Five antenna elements are placed symmetrically along the z-axis. The distance be-
tween the elements is kd = 5π/4. For a binomial array, find

a. the excitation coefficients (currents)

b. an expression for the array factor

c. the normalized power pattern (for the array factor)

d. the angles in degrees where the nulls (if any) occur.
Plot the power array factor with a tool like Matlab to verify your predictions.

Answer for Exercise 4.8

Part a. The array geometry assuming is illustrated in fig. 4.13.
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Figure 4.13: Five element array on z-axis.

With rm = mdẑ, m ∈ [−2, 2], the array factor is

(4.96)
AF =

2

∑
m=−2

Imejkrm·r̂

=
2

∑
m=−2

Imejkdm cos θ .

Recall that the binomial expansion for N = 4 is

(4.97)(z + 1)4 = 1 + 4z + 6z2 + 4z3 + z4,

so the currents are

(4.98)

I−2 = 1

I−1 = 4

I0 = 6

I1 = 4

I2 = 1.

Part b. With z = ejkd cos θ , we can assume a binomial representation of the form

(4.99)

AF =
2

∑
m=−2

(
4

m + 2

)
ejkdm cos θ

=
(

4
2

)
+ 2

2

∑
m=1

(
4

m + 2

)
cos (kdm cos θ)

= 6 + 2 (4 cos (kd cos θ) + cos (2kd cos θ)) .
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Part c. Normalizing so that AF = 1 at Ω = kd cos θ → 0, gives

AF =
1
8
(3 + 4 cos u + cos 2u) = cos4(u/2), (4.100)

where u = 5π cos θ/4. The substitution u = −j ln z, puts the array factor in explicit
polynomial form

(4.101)AF(z) =
1

16z2 (1 + z)4 .

The leading 1/z2 factor, which introduces negative power polynomial terms but
does not change the roots, is because the expansion eq. (4.99) effectively factored
out a pure phase term. This does not impact the power array factor |AF|2. Had the
array elements not been placed symmetrically about the origin, instead being located
at rm = mdẑ, m ∈ {0, 1, 2, 3, 5}, this factor would have been eliminated. A leading zN

factor in AF(z) is seen to be associated with the location of the origin of the coordinate
system.

Part d. Solutions for the nulls are found for integer N solutions of

(4.102)
5π

4
cos θ = π(1 + 2N),

Two solutions in the visible range can be found

(4.103)θ = cos−1 (±4/5
)

,

or
(4.104)θ ∈ {143.1◦, 36.9◦} .

The power array factor is plotted in fig. 4.14, and fig. 4.15.
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Figure 4.14: Polar plot of 5 element binomial power array factor.

Figure 4.15: Spherical polar plot of 5 element binomial power array factor.

Exercise 4.9 Dolph-Chebyshev. (2015 problem set 4, p4)

Design a five-element, −40dB sidelobe level Dolph-Chebyshev array of isotropic
elements. The elements are placed along the x-axis with an inter-element spacing
d = λ/2. Determine,

a. the normalized amplitude coefficients

b. the array factor

c. Use numerical integration to calculate the directivity

d. and the null-to-null beamwidth

e. Repeat part a-c for a uniform broadside array of the same spacing

f. Plot the power array-factor patterns for the two arrays on the same plot.

Answer for Exercise 4.9

Part a. The 40dB level is equivalent to

(4.105)20 log10 R = 40,

or

R = 102 = 100. (4.106)
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The Chebyshev scaling factor for a five element array is

x0 = cosh
(

1
4

cosh−1 R
)

= 2.01. (4.107)

With x = x0 cos(u/2), the unnormalized array factor is

(4.108)
AF(u) = T4(x)

= T4(x0 cos(u/2))
= 8x4

0 cos4(u/2)− 8x2
0 cos2(u/2) + 1.

Since

cos2(u/2) =
1
2
(cos(u) + 1)

cos4(u/2) =
1
8
(cos(2u) + 4 cos(u) + 3) ,

(4.109)

the array factor can be expanded in cos(mu), as

(4.110)
AF(u) = x4

0 (cos(2u) + 4 cos(u) + 3)− 4x2
0 (cos(u) + 1) + 1

= x4
0 cos(2u) +

(
4x4

0 − 4x2
0

)
cos(u) + 3x4

0 − 4x2
0 + 1.

After normalization this is

AF(u) = α cos(2u) + β cos(u) + γ

α =
x4

0

8x4
0 − 8x2

0 + 1

β =
4x4

0 − 4x2
0

8x4
0 − 8x2

0 + 1

γ =
3x4

0 − 4x2
0 + 1

8x4
0 − 8x2

0 + 1

(4.111)
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The array coefficients are found to have the values

I−2 =
α

2
= 0.082

I−1 =
β

2
= 0.25

I0 = γ = 0.34

I1 =
β

2
= 0.25

I2 =
α

2
= 0.082.

(4.112)

Part b. The array factor is defined by eq. (4.111), eq. (4.112), where u = π sin θ cos φ.

Part c. The directivity is found to be 3.97 (5.98 dB ).

Part d. The zeros of the array factor occur where the argument of

(4.113)Tm(x0 cos(u/2)) = cos(m cos−1 (x0 cos(u/2)
)
),

equals −π/2 + nπ, or

(4.114)u = 2 cos−1
(

1
x0

cos
( π

2m
(2n − 1)

))
.

Compare this to the zeros of the uniform array factor, which was

AF(z) =
N−1

∑
n=0

zn =
1− zN

1− z
= z(N−1)/2 zN/2 − z−N/2

z1/2 − z−1/2
(4.115)

so with z = eju, the absolute array factor is

(4.116)|AF(u)| =
1
N

∣∣sin
(

Nu/2
)∣∣∣∣sin

(
u/2

)∣∣ .

This has zeros where

u =
2nπ

N
, n 6= 0 ∈ Z. (4.117)

These two sets of zeros are plotted on the unit circle in the z-domain in fig. 4.16.
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Figure 4.16: Zeros of five element Chebyshev and uniform array elements on z-domain unit
circle.

The Chebyshev and uniform array factors are plotted the z-x plane for u = kd sin θ cos(0)
in dB in fig. 4.17.

(a) (b)

Figure 4.17: Chebyshev and uniform power array factor in z-x plane (dB).

For the Chebyshev array the zeros are found to be at {44◦, 61◦, 119◦, 136◦}, so the
null to null beamwidth is 88◦. The 3 dB beamwidth for the main lobe is found to be
28◦.

For the uniform array the zeros are found at {24◦, 53◦, 127◦, 156◦} so that arrays’
null to null beamwidth is 48◦.

Part e. The normalized uniform array amplitude coefficients are 1/5.
The array factor is given by eq. (4.116).
The directivity for the linear array is found numerically to be 5.0 (6.99 dB ).
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Part f. This array configuration has a donut shaped power pattern, as shown in
fig. 4.18.

Figure 4.18: 5 element Chebyshev array power pattern in 3D.

The two array factor power patterns (normalized) are plotted in fig. 4.19.
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Figure 4.19: Plots of 5 element Chebyshev and uniform array power patterns for u =
kd sin θ cos 0.
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A P E R AT U R E A N T E N N A S

5.1 problems

Exercise 5.1 Aperture antenna. (2015 problem set 5, p1)

A rectangular aperture lies along the x-y plane and has dimensions a × b. Let the
electric field aperture distribution be given by,

(5.1)Eap = ŷ cos
(π

a
x
)

.

The aperture is cut out of an infinite perfectly electric conductor. The origin of the
coordinate system is at the center of the aperture.

Using the theory of radiation from apertures based on the equivalence principle,
calculate:

1. An expression for Eθ(θ, φ)

2. An expression for Eφ(θ, φ)

3. Consider an aperture of dimensions a = b = 10cm at f = 9.8GHz.

a. Plot the E-plane and H-plane patterns (power).

b. Calculate the positions of the first nulls in the E and H planes.

c. From the plot determine the levels of the first sidelobe in the E and H planes.

d. From the plot determine the 3dB beamwidth of the main lobe in the E and H
planes.

Answer for Exercise 5.1

Following the transformation procedure of [5] fig. 12.5, the equivalent source for
this electric field is a magnetic current

Ms = −2ẑ× ŷ cos
(π

a
x
)

= 2x̂ cos
(π

a
x
)

. (5.2)

producing an electric vector potential that is approximately
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F =
ε

4πr

ˆ a/2

−a/2
dx′
ˆ b/2

−b/2
dy′Mse−jk(r−r̂·r′)

=
ε

2πr
e−jkrx̂

ˆ a/2

−a/2
dx′
ˆ b/2

−b/2
dy′ cos

(π

a
x′
)

ejkr̂·r′

=
ε

2πr
e−jkrx̂

ˆ a/2

−a/2
dx′
ˆ b/2

−b/2
dy′ cos

(π

a
x′
)

ejk sin θ(cos φx′+sin φy′)

=
ε

4πr
e−jkrx̂

ˆ a/2

−a/2
dx′
(

ejk sin θ cos φx′+jπx′/a + ejk sin θ cos φx′−jπx′/a
) ˆ b/2

−b/2
dy′ejk sin θ sin φy′ .

(5.3)

A symmetric interval around the origin has been chosen to avoid the introduction
of complex phases.

Each of these integrals is of the form

(5.4)
ˆ c/2

−c/2
dz′ejαz′ =

ejαz′

jα

∣∣∣∣∣
c/2

−c/2

=
ejαc/2 − e−jαc/2

jα
=

sin
(
αc/2

)
α/2

.

With

(5.5a)X = k sin θ cos φ

(5.5b)Y = k sin θ sin φ,

the electric vector potential is

F =
ε

4πr
e−jkrx̂

(
sin
(
(X + π/a)a/2

)
(X + π/a)/2

+
sin
(
(X − π/a)a/2

)
(X − π/a)/2

)
sin
(
Yb/2

)
Y/2

=
ε

2πr
e−jkrx̂

(X − π/a) sin
(
Xa/2 + π/2

)
+ (X + π/a) sin

(
Xa/2− π/2

)
X2 − (π/a)2

sin
(
Yb/2

)
Y/2

.

(5.6)

Since

(5.7a)sin(z + π/2) + sin(z − π/2) = 0

(5.7b)sin(z + π/2)− sin(z − π/2) = 2 cos z,

this reduces to

(5.8)F = −εab
4r

e−jkrx̂
cos

(
Xa/2

)
(Xa/2)2 − (π/2)2

sin
(
Yb/2

)
Yb/2

.
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The far field magnetic field is

(5.9)

H = −jωFT

= jkc
εab
4r

e−jkr (x̂− (x̂ · r̂) r̂)
cos

(
Xa/2

)
a2X2/4− (π/2)2

sin
(
Yb/2

)
Yb/2

=
jkab
4rη

e−jkr (x̂− (x̂ · r̂) r̂)
cos

(
Xa/2

)
(Xa/2)2 − (π/2)2

sin
(
Yb/2

)
Yb/2

.

Since

(5.10)x̂ = sin θ cos φr̂ + cos θ cos φθ̂− sin φφ̂,

the far field magnetic field is

H =
jkab
4rη

e−jkr (cos θ cos φθ̂− sin φφ̂
) cos (Xa/2)

(Xa/2)2 − (π/2)2
sin (Yb/2)

Yb/2
. (5.11)

This can be related to the electric field noting that that the dual of the far field
relationship

(5.12)HA =
1
η

r̂× EA,

is
(5.13)−EF = ηr̂×HF,

so the far field electric field is

(5.14)
E = −ηr̂×H

= − jkab
4r

e−jkr r̂× x̂
cos

(
Xa/2

)
(Xa/2)2 − (π/2)2

sin
(
Yb/2

)
Yb/2

.

That electric field direction is

(5.15)r̂× x̂ = cos θ cos φr̂× θ̂− sin φr̂× φ̂

= cos θ cos φφ̂ + sin φθ̂,

so the electric field is

E = − jkab
4r

e−jkr (cos θ cos φφ̂ + sin φθ̂
) cos (Xa/2)

(Xa/2)2 − (π/2)2
sin (Yb/2)

Yb/2
. (5.16)

Note that the electric and magnetic fields are perpendicular, as expected.
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1. The polar coordinate of the electric field is

(5.17)Eθ = − jkab
4r

e−jkr sin φ
cos

(
Xa/2

)
(Xa/2)2 − (π/2)2

sin
(
Yb/2

)
Yb/2

.

2. The azimuthal coordinate of the electric field is

(5.18)Eφ = − jkab
4r

e−jkr cos θ cos φ
cos

(
Xa/2

)
(Xa/2)2 − (π/2)2

sin
(
Yb/2

)
Yb/2

.

3. Now for the plots and numeric values requested for the given aperture size and
source frequency.

The electric field power pattern for an aperture of dimensions a = b = 10cm at
f = 9.8GHz is plotted in dB scale from 0 dB down to 40 dB in fig. 5.1.

Figure 5.1: Electric field power pattern, 0 dB to -40 dB.

Part a. The maximum field is found at θ = 0. The value of φ is inconsequential, so
we have an infinite number of E-plane surfaces, and can pick the θ = φ = 0 wave
vector direction for simplicity. For such a wave vector direction Ê = ŷ, Ĥ = x̂, and the
corresponding E-plane and H-plane power fields are plotted in ??.
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Figure 5.2: E-H-plane (power) for φ = 0.

These fields are also plotted on a log scale in fig. 5.3 , from 0 dB down to -50 dB.
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Figure 5.3: E,H-plane (power) for φ = 0, dB scale.

Part b. For the E-plane the zeros are found at 27◦, 50◦, 90◦, 130◦, and 153◦.
For the H-plane the zeros are found at 18◦, 38◦, 67◦, 113◦, 142◦, 162◦.
These were determined numerically, but these can also be visually verified against

the dB power plots above, which are marked in degrees.

Part c. For the E-plane the sidelobe peaks are found at 35◦, 60◦, 120◦, 145◦, with
respective levels (dB) of -25, -37, -37, -25.

For the H-plane the sidelobe peaks are found at 26◦, 49◦, 90◦, 131◦, 154◦, with
respective levels (dB) of -13.2666, -17.8436, -22.8361, -17.8436, -13.2666.

These were also calculated numerically, but can also be visually verified against the
dB power plots above.



120 aperature antennas

Part d. The -3 dB point of the main lobe is found where |E| = 10−3/20. For the
E-plane this is at 10◦, and for the H-plane this is found at 8◦.
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M I C R O S T R I P A N T E N N A S

6.1 problems

Exercise 6.1 Patch antenna. (2015 problem set 5, p2)

A microstrip patch antenna is printed on a substrate with h = 0.1588cm, εr = 2.2 at
f0 = 10GHz. Give your length answers in cm.

Using the transmission-line model :

a. Calculate the width W.

b. Calculate the effective relative permittivity εeff.

c. Calculate the length of the patch L0 if no fringing-field effects are accounted
for.

d. Calculate the corrected length L = L0 −m∆L where m = 2 and ∆L is the correc-
tion due to the fringing fields.

e. Estimate the admittance of each radiating slot Ys = G + jB.

f. Now transform Ys of the second slot (right) to the plane of the first slot (left)
using the impedance transformation,

(6.1)Zin2 = Z0
Zs + jZ0 tan(βL)
Z0 + jZs tan(βL)

where β = k0
√

εeff is the effective propagation constant, and use Z0 = 26Ω as
the characteristic impedance of the microstrip line. What is the value of Zin2

and Yin2 = 1/Zin2.

g. Based on the above, calculate the total input impedance of the patch antenna
Zin at the terminals of the first slot.

h. If the imaginary part of Zin is not zero, adjust the length parameter m (in part
d) between 0 < 3 < m to make the patch resonant (i.e. make the imaginary
part of Zin vanish). What is the new input impedance in this case?

Answer for Exercise 6.1

121
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Part a.

(6.2)

W =
1

2 f0
√

µ0ε0

√
2

εr + 1

=
c

2 f0

√
2

2.2 + 1

=
3× 108m/s× 100cm/m

(2)10× 109s−1

√
2

2.2 + 1
= 1.186cm.

Part b.

(6.3)εeff =
εr + 1

2
+

εr − 1
2

(
1 +

12h
W

)−1/2

= 1.9716.

Part c.

(6.4)
L0 =

λ0

2
=

c
2 f0
√

εeff

= 1.068cm.

Part d.

(6.5)
∆L
h

= 0.412
εeff + 0.3

εeff − 0.258

W
h + 0.264
W
h + 0.8

= 0.5108.

(6.6)∆L = 0.5108h
= 0.081cm.

(6.7)L = L0 − 2∆L
= 0.9061cm
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Part e.

(6.8)λ0 = c/ f0

= 3cm.

(6.9)k0 =
2π

λ0

= 2.0944cm−1

The constraint for the calculation of G requires

(6.10)

h
λ0

= 0.053

<
1
10

,

which is satisfied, so

(6.11)G =
W

120λ0

(
1− 1

24
(k0h)2

)
= 0.0033f.

(6.12)B =
W

120λ0
(1− 0.636 ln (k0h))

= 0.0056f.

(6.13)
Ys = G + jB

=
(
0.0033 + 0.0056j

)
f

= 0.00649 60◦f.

(6.14)Zs =
(
78− 133j

)
Ω

= 154 −59◦Ω.

Part f.

(6.15)Zin2 =
(
19 + 71j

)
Ω

= 73 75◦Ω.

(6.16)Yin2 =
(
0.0036− 0.0131j

)
f

= 0.0136 −75◦f.
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Part g.

(6.17)
Zin =

1
Ys + Yin2

=
(
66 + 73j

)
Ω

= 98 48◦Ω.

Part h. The imaginary part of Zin is plotted in fig. 6.1.
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Figure 6.1: Im Zin variation with m.

The zero is found at

(6.18)m = 1.22097,

at which point the new impedance is

(6.19)Zin = 152.3Ω.
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The point of this Geometric Algebra section is to explore how Maxwell’s equations
with magnetic sources to the Geometric algebra formalism. Notation and conventions
have been borrowed from [8], with modifications for SI units.
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E L E C T R I C S O U R C E S

In [5] §3.2 is a demonstration of the required (curl) form for the magnetic field, and
potential form for the electric field.

I was wondering how this derivation would proceed using the Geometric Algebra
(GA) formalism.

7.1 maxwell’s equation in ga phasor form

Maxwell’s equations, omitting magnetic charges and currents, are

(7.1a)∇ × E = −∂B
∂t

(7.1b)∇ ×H = J +
∂D
∂t

(7.1c)∇ ·D = ρ

(7.1d)∇ · B = 0.

Assuming linear media B = µ0H, D = ε0E , and phasor relationships of the form
E = Re

(
E(r)ejωt) for the fields and the currents, these reduce to

(7.2a)∇ × E = −jωB

(7.2b)∇ × B = µ0J + jωε0µ0E

(7.2c)∇ · E = ρ/ε0

(7.2d)∇ · B = 0.

These four equations can be assembled into a single equation form using the GA
identities

fg = f · g + f∧ g = f · g + If× g. (7.3a)

129
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(7.3b)I = x̂ŷẑ.

The electric and magnetic field equations, respectively, are

∇E = ρ/ε0 − jkcBI (7.4a)

∇cB =
I

ε0c
J + jkEI (7.4b)

where ω = kc, and 1 = c2ε0µ0 have also been used to eliminate some of the mess of
constants.

Summing these (first scaling eq. (7.4b) by I), gives Maxwell’s equation in its GA
phasor form

(∇ + jk) (E + cBI) =
1

ε0c
(cρ− J) . (7.5)

7.2 preliminaries . dual magnetic form of maxwell’s equations

The arguments of the text showing that a potential representation for the electric and
magnetic fields is possible easily translates into GA. To perform this translation, some
duality lemmas are required

First consider the cross product of two vectors x, y and the right handed dual −yI
of y, a bivector, of one of these vectors. Noting that the Euclidean pseudoscalar I
commutes with all grade multivectors in a Euclidean geometric algebra space, the
cross product can be written

(7.6)

(x× y) = −I (x ∧ y)

= −I
1
2

(xy− yx)

=
1
2

(x(−yI)− (−yI)x)

= x · (−yI) .

The last step makes use of the fact that the wedge product of a vector and vector is
antisymmetric, whereas the dot product (vector grade selection) of a vector and bivec-
tor is antisymmetric. Details on grade selection operators and how to characterize
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symmetric and antisymmetric products of vectors with blades as either dot or wedge
products can be found in [13], [8].

Similarly, the dual of the dot product can be written as

(7.7)
−I (x · y) = −I

1
2

(xy + yx)

=
1
2

(x(−yI) + (−yI)x)

= x ∧ (−yI) .

These duality transformations are motivated by the observation that in the GA form
of Maxwell’s equation the magnetic field shows up in its dual form, a bivector. Spelled
out in terms of the dual magnetic field, those equations are

(7.8a)∇ ∧ E = −jωBI

(7.8b)∇ · (−BI) = µ0J + jωε0µ0E

(7.8c)∇ · E = ρ/ε0

(7.8d)∇ ∧ (−BI) = 0.

7.3 constructing a potential representation

The starting point of the argument in the text was the observation that the triple
product ∇ · (∇× x) = 0 for any (sufficiently continuous) vector x. This triple product
is a completely antisymmetric sum, and the equivalent statement in GA is ∇∧∇∧ x =
0 for any vector x. This follows from a ∧ a = 0, true for any vector a, including the
gradient operator ∇, provided those gradients are acting on a sufficiently continuous
blade.

In the absence of magnetic charges, eq. (7.8d) shows that the divergence of the dual
magnetic field is zero. It it therefore possible to find a potential A such that

(7.9)BI = ∇ ∧ A.

Substituting this into Maxwell-Faraday eq. (7.8a) gives

(7.10)∇ ∧
(
E + jωA

)
= 0.

This relation is a bivector identity with zero, so will be satisfied if
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(7.11)E + jωA = −∇φ,

for some scalar φ. Unlike the BI = ∇ ∧A solution to eq. (7.8d), the grade of φ is
fixed by the requirement that E + jωA is unity (a vector), so a E + jωA = ∇ ∧ ψ, for a
higher grade blade ψ would not work, despite satisfying the condition ∇∧∇∧ψ = 0.

Substitution of eq. (7.11) and eq. (7.9) into Ampere’s law eq. (7.8b) gives

−∇ · (∇ ∧A) = µ0J + jωε0µ0 (−∇φ− jωA)

−∇2A−∇ (∇ ·A) =
(7.12)

Rearranging gives

(7.13)∇2A + k2A = −µ0J−∇
(
∇ · A + j

k
c

φ

)
.

The fields A and φ are assumed to be phasors, say A = Re Aejkct and ϕ = Re φejkct.
Grouping the scalar and vector potentials into the standard four vector form Aµ =
(φ/c, A), and expanding the Lorentz gauge condition

(7.14)

0 = ∂µ

(
Aµejkct

)
= ∂a

(
Aaejkct

)
+

1
c

∂

∂t

(
φ

c
ejkct

)
= ∇ · Aejkct +

1
c

jkφejkct

=
(
∇ · A + jkφ/c

)
ejkct,

shows that in eq. (7.13) the quantity in braces is in fact the Lorentz gauge condition,
so in the Lorentz gauge, the vector potential satisfies a non-homogeneous Helmholtz
equation.

∇2A + k2A = −µ0J. (7.15)

7.4 maxwell’s equation in four vector form

The four vector form of Maxwell’s equation follows from eq. (7.5) after pre-multiplying
by γ0.

With

A = Aµγµ = (φ/c, A) (7.16a)
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F = ∇∧ A =
1
c
(E + cBI) (7.16b)

∇ = γµ∂µ = γ0 (∇ + jk) (7.16c)

J = Jµγµ = (cρ, J) , (7.16d)

Maxwell’s equation is

∇F = µ0 J. (7.17)

Here
{

γµ

}
is used as the basis of the four vector Minkowski space, with γ2

0 = −γ2
k =

1 (i.e. γµ · γν = δµ
ν), and γaγ0 = σa where {σa} is the Pauli basic (i.e. standard basis

vectors for R3).
Let’s demonstrate this, one piece at a time. Observe that the action of the spacetime

gradient on a phasor, assuming that all time dependence is in the exponential, is

(7.18)

γµ∂µ

(
ψejkct

)
= (γa∂a + γ0∂ct)

(
ψejkct

)
= γ0

(
γ0γa∂a + jk

) (
ψejkct

)
= γ0

(
σa∂a + jk

)
ψejkct

= γ0
(
∇ + jk

)
ψejkct

This allows the operator identification of eq. (7.16c). The four current portion of the
equation comes from

(7.19)

cρ − J = γ0
(
γ0cρ − γ0γaγ0 Ja)

= γ0
(
γ0cρ + γa Ja)

= γ0
(
γµ Jµ

)
= γ0 J.

Taking the curl of the four potential gives
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(7.20)

∇ ∧ A =
(
γa∂a + γ0 jk

)
∧
(

γ0φ/c + γb Ab
)

= −σa∂aφ/c + γa ∧ γb∂a Ab − jkσb Ab

= −σa∂aφ/c + σa ∧ σb∂a Ab − jkσb Ab

=
1
c
(
−∇φ − jωA + c∇ ∧ A

)
=

1
c

(E + cBI) .

Substituting all of these into Maxwell’s eq. (7.5) gives

(7.21)γ0∇cF =
1

ε0c
γ0 J,

which recovers eq. (7.17) as desired.

7.5 helmholtz equation directly from the ga form

It is easier to find eq. (7.15) from the GA form of Maxwell’s eq. (7.17) than the tradi-
tional curl and divergence equations. Note that

(7.22)
∇F = ∇ (∇ ∧ A)

= ∇ · (∇ ∧ A) +(((((
((∇ ∧ (∇ ∧ A)

= ∇2A −∇ (∇ · A) ,

however, the Lorentz gauge condition ∂µ Aµ = ∇ · A = 0 kills the latter term above.
This leaves

(7.23)

∇F = ∇2A
= γ0

(
∇ + jk

)
γ0
(
∇ + jk

)
A

= γ2
0
(
−∇ + jk

) (
∇ + jk

)
A

= −
(
∇2 + k2) A

= µ0 J.

The timelike component of this gives

(7.24)
(
∇2 + k2) φ = −ρ/ε0,

and the spacelike components give

(7.25)
(
∇2 + k2)A = −µ0J,

recovering eq. (7.15) as desired.
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M A G N E T I C S O U R C E S

In [5] §3.3, treating magnetic charges and currents, and no electric charges and cur-
rents, is a demonstration of the required (curl) form for the electric field, and potential
form for the electric field. Not knowing what to name this, I’ll call the associated equa-
tions the dual-Maxwell’s equations.

I was wondering how this derivation would proceed using the Geometric Algebra
(GA) formalism.

8.1 dual-maxwell’s equation in ga phasor form

The dual-Maxwell’s equations, omitting electric charges and currents, are

(8.1a)∇ × E = −∂B
∂t
−M

(8.1b)∇ ×H =
∂D
∂t

(8.1c)∇ ·D = 0

(8.1d)∇ · B = ρm.

Assuming linear media B = µ0H, D = ε0E , and phasor relationships of the form
E = Re

(
E(r)ejωt) for the fields and the currents, these reduce to

(8.2a)∇ × E = −jωB−M

(8.2b)∇ × B = jωε0µ0E

(8.2c)∇ · E = 0

(8.2d)∇ · B = ρm.
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These four equations can be assembled into a single equation form using the GA
identities

fg = f · g + f∧ g = f · g + If× g. (8.3a)

(8.3b)I = x̂ŷẑ.

The electric and magnetic field equations, respectively, are

∇E = − (M + jkcB) I (8.4a)

∇cB = cρm + jkEI (8.4b)

where ω = kc, and 1 = c2ε0µ0 have also been used to eliminate some of the mess of
constants.

Summing these (first scaling eq. (8.4b) by I), gives Maxwell’s equation in its GA
phasor form

(∇ + jk) (E + cBI) = (cρm −M) I. (8.5)

8.2 preliminaries . dual magnetic form of maxwell’s equations

The arguments of the text showing that a potential representation for the electric and
magnetic fields is possible easily translates into GA. To perform this translation, some
duality lemmas are required

First consider the cross product of two vectors x, y and the right handed dual −yI
of y, a bivector, of one of these vectors. Noting that the Euclidean pseudoscalar I
commutes with all grade multivectors in a Euclidean geometric algebra space, the
cross product can be written

(8.6)

(x× y) = −I (x ∧ y)

= −I
1
2

(xy− yx)

=
1
2

(x(−yI)− (−yI)x)

= x · (−yI) .
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The last step makes use of the fact that the wedge product of a vector and vector is
antisymmetric, whereas the dot product (vector grade selection) of a vector and bivec-
tor is antisymmetric. Details on grade selection operators and how to characterize
symmetric and antisymmetric products of vectors with blades as either dot or wedge
products can be found in [13], [8].

Similarly, the dual of the dot product can be written as

(8.7)
−I (x · y) = −I

1
2

(xy + yx)

=
1
2

(x(−yI) + (−yI)x)

= x ∧ (−yI) .

These duality transformations are motivated by the observation that in the GA form
of Maxwell’s equation the magnetic field shows up in its dual form, a bivector. Spelled
out in terms of the dual magnetic field, those equations are

(8.8a)∇ · (−EI) = −jωB−M

(8.8b)∇ ∧H = jωε0EI

(8.8c)∇ ∧ (−EI) = 0

(8.8d)∇ · B = ρm.

8.3 constructing a potential representation

The starting point of the argument in the text was the observation that the triple
product ∇ · (∇× x) = 0 for any (sufficiently continuous) vector x. This triple product
is a completely antisymmetric sum, and the equivalent statement in GA is ∇∧∇∧ x =
0 for any vector x. This follows from a ∧ a = 0, true for any vector a, including the
gradient operator ∇, provided those gradients are acting on a sufficiently continuous
blade.

In the absence of electric charges, eq. (8.8c) shows that the divergence of the dual
electric field is zero. It it therefore possible to find a potential F such that

(8.9)−ε0EI = ∇ ∧ F.

Substituting this eq. (8.8b) gives

(8.10)∇ ∧
(
H + jωF

)
= 0.
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This relation is a bivector identity with zero, so will be satisfied if

(8.11)H + jωF = −∇φm,

for some scalar φm. Unlike the −ε0EI = ∇ ∧ F solution to eq. (8.8c), the grade of φm

is fixed by the requirement that E + jωF is unity (a vector), so a E + jωF = ∇∧ ψ, for a
higher grade blade ψ would not work, despite satisfying the condition ∇∧∇∧ψ = 0.

Substitution of eq. (8.11) and eq. (8.9) into eq. (8.8b) gives

∇ · (∇ ∧ F) = −ε0M− jωε0µ0 (−∇φm − jωF)

∇2F−∇ (∇ · F) =
(8.12)

Rearranging gives

(8.13)∇2F + k2F = −ε0M + ∇
(
∇ · F + j

k
c

φm

)
.

The fields F and φm are assumed to be phasors, say A = Re Fejkct and ϕ = Re φmejkct.
Grouping the scalar and vector potentials into the standard four vector form Fµ =
(φm/c, F), and expanding the Lorentz gauge condition

(8.14)

0 = ∂µ

(
Fµejkct

)
= ∂a

(
Faejkct

)
+

1
c

∂

∂t

(
φm

c
ejkct

)
= ∇ · Fejkct +

1
c

jkφmejkct

=
(
∇ · F + jkφm/c

)
ejkct,

shows that in eq. (8.13) the quantity in braces is in fact the Lorentz gauge condition,
so in the Lorentz gauge, the vector potential satisfies a non-homogeneous Helmholtz
equation.

∇2F + k2F = −ε0M. (8.15)

8.4 maxwell’s equation in four vector form

The four vector form of Maxwell’s equation follows from eq. (8.5) after pre-multiplying
by γ0.
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With

F = Fµγµ = (φm/c, F) (8.16a)

G = ∇∧ F = −ε0 (E + cBI) I (8.16b)

∇ = γµ∂µ = γ0 (∇ + jk) (8.16c)

M = Mµγµ = (cρm, M) , (8.16d)

Maxwell’s equation is

∇G = −ε0M. (8.17)

Here
{

γµ

}
is used as the basis of the four vector Minkowski space, with γ2

0 = −γ2
k =

1 (i.e. γµ · γν = δµ
ν), and γaγ0 = σa where {σa} is the Pauli basic (i.e. standard basis

vectors for R3).
Let’s demonstrate this, one piece at a time. Observe that the action of the spacetime

gradient on a phasor, assuming that all time dependence is in the exponential, is

(8.18)

γµ∂µ

(
ψejkct

)
= (γa∂a + γ0∂ct)

(
ψejkct

)
= γ0

(
γ0γa∂a + jk

) (
ψejkct

)
= γ0

(
σa∂a + jk

)
ψejkct

= γ0
(
∇ + jk

)
ψejkct

This allows the operator identification of eq. (8.16c). The four current portion of the
equation comes from

(8.19)

cρm −M = γ0
(
γ0cρm − γ0γaγ0Ma)

= γ0
(
γ0cρm + γa Ma)

= γ0
(
γµ Mµ

)
= γ0M.
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Taking the curl of the four potential gives

(8.20)

∇ ∧ F =
(
γa∂a + γ0 jk

)
∧
(

γ0φm/c + γbFb
)

= −σa∂aφm/c + γa ∧ γb∂aFb − jkσbFb

= −σa∂aφm/c + σa ∧ σb∂aFb − jkσbFb

=
1
c
(
−∇φm − jωF + c∇ ∧ F

)
= ε0 (cB− EI)
= −ε0 (E + cBI) I.

Substituting all of these into Maxwell’s eq. (8.5) gives

(8.21)−γ0

ε0
∇G = γ0M,

which recovers eq. (8.17) as desired.

8.5 helmholtz equation directly from the ga form

It is easier to find eq. (8.15) from the GA form of Maxwell’s eq. (8.17) than the tradi-
tional curl and divergence equations. Note that

(8.22)
∇G = ∇ (∇ ∧ F)

= ∇ · (∇ ∧ F) +(((((
((∇ ∧ (∇ ∧ F)

= ∇2F −∇ (∇ · F) ,

however, the Lorentz gauge condition ∂µFµ = ∇ · F = 0 kills the latter term above.
This leaves

(8.23)

∇G = ∇2F
= γ0

(
∇ + jk

)
γ0
(
∇ + jk

)
F

= γ2
0
(
−∇ + jk

) (
∇ + jk

)
F

= −
(
∇2 + k2) F

= −ε0M.

The timelike component of this gives

(8.24)
(
∇2 + k2) φm = −ε0cρm,

and the spacelike components give

(8.25)
(
∇2 + k2) F = −ε0M,

recovering eq. (8.15) as desired.
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E L E C T R I C A N D M A G N E T I C S O U R C E S

Separate examinations of the phasor form of Maxwell’s equation (with electric charges
and current densities), and the Dual Maxwell’s equation (i.e. allowing magnetic charges
and currents) were just performed. Here the structure of these equations with both
electric and magnetic charges and currents will be examined.

9.1 space time split

The vector curl and divergence form of Maxwell’s equations are

(9.1a)∇ × E = −∂B
∂t
−M

(9.1b)∇ ×H = J +
∂D
∂t

(9.1c)∇ ·D = ρ

(9.1d)∇ · B = ρm.

In phasor form these are

(9.2a)∇ × E = −jkcB−M

(9.2b)∇ ×H = J + jkcD

(9.2c)∇ ·D = ρ

(9.2d)∇ · B = ρm.

Switching to E = D/ε0, B = µ0H fields (even though these aren’t the primary fields
in engineering), gives

(9.3a)∇ × E = −jk(cB)−M

141
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(9.3b)∇ × (cB) =
J

ε0c
+ jkE

(9.3c)∇ · E = ρ/ε0

(9.3d)∇ · (cB) = cρm.

Finally, using

(9.4)fg = f · g + If× g,

the divergence and curl contributions of each of the fields can be grouped

(9.5a)∇E = ρ/ε0 −
(

jk(cB) + M
)

I

(9.5b)∇(cBI) = cρm I −
(

J
ε0c

+ jkE
)

,

or

(9.6)∇ (E + cBI) = ρ/ε0 −
(

jk(cB) + M
)

I + cρm I −
(

J
ε0c

+ jkE
)

.

Regrouping gives Maxwell’s equation including both electric and magnetic sources

(∇ + jk) (E + cBI) =
1

ε0c
(cρ− J) + (cρm −M) I. (9.7)

9.2 covariant form

It was observed that these can be put into a tidy four vector form by premultiplying
by γ0, where

J = γµ Jµ = (cρ, J) (9.8a)

M = γµ Mµ = (cρm, M) (9.8b)

∇ = γ0 (∇ + jk) = γk∂k + jkγ0, (9.8c)

That gives

∇ (E + cBI) =
J

ε0c
+ MI. (9.9)
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9.3 trial potential solution

When there were only electric sources, it was observed that potential solutions were
of the form E + cBI ∝ ∇∧ A, whereas when there was only magnetic sources it was
observed that potential solutions were of the form E + cBI ∝ (∇ ∧ F)I. It seems rea-
sonable to attempt a trial solution that contains both such contributions, say

E + cBI = ∇∧ Ae + (∇∧ Am) I. (9.10)

Without any loss of generality Lorentz gauge conditions can be imposed on the
four-vector fields Ae, Am. Those conditions are

∇ · Ae = ∇ · Am = 0. (9.11)

Since ∇X = ∇ · X +∇ ∧ X, for any four vector X, the trial solution eq. (9.10) is
reduced to

E + cBI = ∇Ae +∇Am I. (9.12)

Maxwell’s equation is now

(9.13)

J
ε0c

+ MI = ∇2 (Ae + Am I)

= γ0
(
∇ + jk

)
γ0
(
∇ + jk

)
(Ae + Am I)

=
(
−∇ + jk

) (
∇ + jk

)
(Ae + Am I)

= −
(
∇2 + k2) (Ae + Am I) .

Notice how tidily this separates into vector and trivector components. Those are

(9.14a)−
(
∇2 + k2) Ae =

J
ε0c

(9.14b)−
(
∇2 + k2) Am = M.

The result is a single Helmholtz equation for each of the electric and magnetic four-
potentials, and both can be solved completely independently. This was claimed in
class, but now the underlying reason is clear.
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9.4 lorentz gauge application to helmholtz

Because a single frequency phasor relationship was implied the scalar components
of each of these four potentials is determined by the Lorentz gauge condition. For
example

(9.15)

0 = ∇ ·
(

Aeejkct
)

=
(

γ0 1
c

∂

∂t
+ γk ∂

∂xk

)
·
(

γ0A0
eejkct + γm Am

e ejkct
)

=
(

γ0 jk + γr ∂

∂xr

)
·
(
γ0A0

e + γs As
e
)

ejkct

=
(

jkA0
e + ∇ · Ae

)
ejkct,

so

(9.16)A0
e =

j
k
∇ · Ae.

The same sort of relationship will apply to the magnetic potential too. This means
that the Helmholtz equations can be solved in the three vector space as

(9.17a)
(
∇2 + k2)Ae = − J

ε0c

(9.17b)
(
∇2 + k2)Am = −M.

9.5 recovering the fields

Relative to the observer frame implicitly specified by γ0, here’s an expansion of the
curl of the electric four potential

(9.18)

∇ ∧ Ae =
1
2

(∇Ae − Ae∇)

=
1
2
(
γ0
(
∇ + jk

)
γ0
(

A0
e − Ae

)
− γ0

(
A0

e − Ae
)

γ0
(
∇ + jk

))
=

1
2
((
−∇ + jk

) (
A0

e − Ae
)
−
(

A0
e + Ae

) (
∇ + jk

))
=

1
2
(
−2∇A0

e +��
�jkA0

e −���jkA0
e + ∇Ae − Ae∇ − 2jkAe

)
= −

(
∇A0

e + jkAe
)

+ ∇ ∧ Ae
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In the above expansion when the gradients appeared on the right of the field com-
ponents, they are acting from the right (i.e. implicitly using the Hestenes dot conven-
tion.)

The electric and magnetic fields can be picked off directly from above, and in the
units implied by this choice of four-potential are

Ee = −
(
∇A0

e + jkAe
)

= −j
(

1
k
∇∇ ·Ae + kAe

)
(9.19a)

cBe = ∇×Ae. (9.19b)

For the fields due to the magnetic potentials

(9.20)(∇ ∧ Ae) I = −
(
∇A0

e + jkAe
)

I −∇ × Ae,

so the fields are

cBm = −
(
∇A0

m + jkAm
)

= −j
(

1
k
∇∇ ·Am + kAm

)
(9.21a)

Em = −∇×Am. (9.21b)

Including both electric and magnetic sources the fields are

E = −∇×Am − j
(

1
k
∇∇ ·Ae + kAe

)
(9.22a)

cB = ∇×Ae − j
(

1
k
∇∇ ·Am + kAm

)
(9.22b)

Observe that the alternation of signs is exactly that of a superposition of electric
dipole and magnetic dipole fields. This is consistent with the fact that the dual form
of Maxwell’s equations has been designed explicitly to model infinitesimal current
loops as sources.
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R E C I P R O C I T Y T H E O R E M

The reciprocity theorem involves a Poynting like antisymmetric difference of the fol-
lowing form

E(a) ×H(b) − E(b) ×H(a). (10.1)

This smells like something that can probably be related to a combined electromag-
netic field multivectors in some sort of structured fashion. Guessing that this is related
to the antisymmetric sum of two electromagnetic field multivectors turns out to be
correct. Let

(10.2a)F(a) = E(a) + cB(a) I

(10.2b)F(b) = E(b) + cB(b) I.

Now form the antisymmetric sum

1
2

(
F(a)F(b)− F(b)F(a)

)
=

1
2

(
E(a) + cB(a) I

) (
E(b) + cB(b) I

)
− 1

2

(
E(b) + cB(b) I

) (
E(a) + cB(a) I

)
=

1
2

(
E(a)E(b) − E(b)E(a)

)
+

Ic
2

(
E(a)B(b) − B(b)E(a)

)
+

Ic
2

(
B(a)E(b) − E(b)B(a)

)
+

c2

2

(
B(b)B(a) − B(a)B(b)

)
= E(a) ∧ E(b) + c2

(
B(b) ∧ B(a)

)
+ Ic

(
E(a) ∧ B(b) + B(a) ∧ E(b)

)
= IE(a) × E(b) + c2 I

(
B(b) × B(a)

)
− c

(
E(a) × B(b) + B(a) × E(b)

)
(10.3)

This has two components, the first is a bivector (pseudoscalar times vector) that
includes all the non-mixed products, and the second is a vector that includes all the
mixed terms. We can therefore write the antisymmetric difference of the reciprocity
theorem by extracting just the grade one terms of the antisymmetric sum of the com-
bined electromagnetic field

(10.4)E(a) ×H(b) − E(b) ×H(a) = − 1
2cµ0

〈(
F(a)F(b) − F(b)F(a)

)〉
1
.
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Observing that the antisymmetrization used in the reciprocity theorem is only one
portion of the larger electromagnetic field antisymmetrization, introduces two new
questions

1. How would the reciprocity theorem be derived directly in terms of F(a)F(b) −
F(b)F(a)?

2. What is the significance of the other portion of this antisymmetrization E(a) ×
E(b) − c2µ2

0
(
H(a) ×H(b)) ?



11
R E L AT I O N T O T E N S O R F O R M

Following the principle that one should always relate new formalisms to things pre-
viously learned, I’d like to know what Maxwell’s equations look like in tensor form
when magnetic sources are included. As a verification that the previous Geometric Al-
gebra form of Maxwell’s equation that includes magnetic sources is correct, I’ll start
with the GA form of Maxwell’s equation, find the tensor form, and then verify that
the vector form of Maxwell’s equations can be recovered from the tensor form.

Tensor form With four-vector potential A, and bivector electromagnetic field F =
∇∧ A, the GA form of Maxwell’s equation is

(11.1)∇F =
J

ε0c
+ MI.

The left hand side can be unpacked into vector and trivector terms ∇F = ∇ · F +
∇∧ F , which happens to also separate the sources nicely as a side effect

(11.2a)∇ · F =
J

ε0c

(11.2b)∇ ∧ F = MI.

The electric source equation can be unpacked into tensor form by dotting with the
four vector basis vectors. With the usual definition Fαβ = ∂α Aβ − ∂β Aα, that is

(11.3)

γµ · (∇ · F) = γµ · (∇ · (∇ ∧ A))

= γµ ·
(

γν∂ν ·
(

γα∂α ∧ γβ Aβ
))

= γµ ·
(
γν ·

(
γα ∧ γβ

))
∂ν∂α Aβ

=
1
2

γµ ·
(
γν ·

(
γα ∧ γβ

))
∂νFαβ

=
1
2

δ
νµ
[αβ]∂νFαβ

=
1
2

∂νFνµ − 1
2

∂νFµν

= ∂νFνµ.
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So the first tensor equation is

∂νFνµ =
1

cε0
Jµ. (11.4)

To unpack the magnetic source portion of Maxwell’s equation, put it first into dual
form, so that it has four vectors on each side

(11.5)

M = − (∇ ∧ F) I

= −1
2

(∇F + F∇) I

= −1
2

(∇FI − FI∇)

= −∇ · (FI) .

Dotting with γµ gives

(11.6)

Mµ = γµ · (∇ · (−FI))

= γµ ·
(

γν∂ν ·
(
−1

2
γα ∧ γβ IFαβ

))
= −1

2

〈
γµ ·

(
γν ·

(
γα ∧ γβ I

))〉
∂νFαβ.

This scalar grade selection is a complete antisymmetrization of the indexes

(11.7)

〈
γµ ·

(
γν ·

(
γα ∧ γβ I

))〉
=
〈

γµ ·
(

γν ·
(

γαγβγ0γ1γ2γ3

))〉
=
〈

γ0γ1γ2γ3γµγνγαγβ
〉

= δ
µναβ
3210

= εµναβ,

so the magnetic source portion of Maxwell’s equation, in tensor form, is

1
2

εναβµ∂νFαβ = Mµ. (11.8)
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Relating the tensor to the fields The electromagnetic field has been identified with the
electric and magnetic fields by

(11.9)F = E + cµ0HI,

or in coordinates

(11.10)
1
2

γµ ∧ γνFµν = Eaγaγ0 + cµ0Haγaγ0 I.

By forming the dot product sequence Fαβ = γβ · (γα · F), the electric and magnetic
field components can be related to the tensor components. The electric field compo-
nents follow by inspection and are

(11.11)Eb = γ0 ·
(

γb · F
)

= Fb0.

The magnetic field relation to the tensor components follow from

(11.12)

Frs = Frs
= γs ·

(
γr ·

(
cµ0Haγaγ0 I

))
= cµ0Ha〈γsγrγaγ0 I〉
= cµ0Ha

〈
−��γ

0γ1γ2γ3γsγrγa��γ0

〉
= −cµ0Haδ[321]

sra
= cµ0Haεsra.

Expanding this for each pair of spacelike coordinates gives

F12 = cµ0H3ε213 = −cµ0H3 (11.13a)

F23 = cµ0H1ε321 = −cµ0H1 (11.13b)

F31 = cµ0H2ε132 = −cµ0H2, (11.13c)

or
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E1 = F10

E2 = F20

E3 = F30

H1 = − 1
cµ0

F23

H2 = − 1
cµ0

F31

H3 = − 1
cµ0

F12.

(11.14)

Recover the vector equations from the tensor equations Starting with the non-dual Maxwell
tensor equation, expanding the timelike index gives

(11.15)

1
cε0

J0 =
1
ε0

ρ

= ∂νFν0

= ∂1F10 + ∂2F20 + ∂3F30

This is Gauss’s law

∇ · E = ρ/ε0. (11.16)

For a spacelike index, any one is representative. Expanding index 1 gives

(11.17)

1
cε0

J1 = ∂νFν1

=
1
c

∂tF01 + ∂2F21 + ∂3F31

= −1
c

E1 + ∂2(cµ0H3) + ∂3(−cµ0H2)

=
(
−1

c
∂E
∂t

+ cµ0∇ ×H
)
· e1.

Extending this to the other indexes and multiplying through by ε0c recovers the
Ampere-Maxwell equation (assuming linear media)

∇×H = J +
∂D
∂t

. (11.18)
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The expansion of the 0th free (timelike) index of the dual Maxwell tensor equation
is

(11.19)

M0 =
1
2

εναβ0∂νFαβ

= −1
2

ε0ναβ∂νFαβ

= −1
2

(∂1(F23 − F32) + ∂2(F31 − F13) + ∂3(F12 − F21))

= − (∂1F23 + ∂2F31 + ∂3F12)

= −
(

∂1(−cµ0H1) + ∂2(−cµ0H2) + ∂3(−cµ0H3)
)

,

but M0 = cρm, giving us Gauss’s law for magnetism (with magnetic charge density
included)

∇ ·H = ρm/µ0. (11.20)

For the spacelike indexes of the dual Maxwell equation, only one need be computed
(say 1), and cyclic permutation will provide the rest. That is

(11.21)

M1 =
1
2

εναβ1∂νFαβ

=
1
2

(∂2 (F30 − F03)) +
1
2

(∂3 (F02 − F02)) +
1
2

(∂0 (F23 − F32))

= −∂2F30 + ∂3F20 + ∂0F23

= −∂2E3 + ∂3E2 +
1
c

∂

∂t

(
−cµ0H1

)
= −

(
∇ × E + µ0

∂H
∂t

)
· e1.

Extending this to the rest of the coordinates gives the Maxwell-Faraday equation
(as extended to include magnetic current density sources)

∇× E = −M− µ0
∂H
∂t

. (11.22)

This takes things full circle, going from the vector differential Maxwell’s equations,
to the Geometric Algebra form of Maxwell’s equation, to Maxwell’s equations in ten-
sor form, and back to the vector form. Not only is the tensor form of Maxwell’s
equations with magnetic sources now known, the translation from the tensor and vec-
tor formalism has also been verified, and miraculously no signs or factors of 2 were
lost or gained in the process.





12
PA R A L L E L P R O J E C T I O N O F E L E C T R O M A G N E T I C F I E L D S

When computing the components of a polarized reflecting ray that were parallel or
not-parallel to the reflecting surface, it was found that the electric and magnetic fields
could be written as

E = (E · p̂) p̂ + (E · q̂) q̂ = E‖p̂ + E⊥q̂ (12.1a)

H = (H · p̂) p̂ + (H · q̂) q̂ = H‖p̂ + H⊥q̂. (12.1b)

where a unit vector p̂ that lies both in the reflecting plane and in the electromagnetic
plane (tangential to the wave vector direction) was

p̂ =
k̂× n̂∣∣∣k̂× n̂

∣∣∣ (12.2a)

q̂ = k̂× p̂. (12.2b)

Here q̂ is perpendicular to p̂ but lies in the electromagnetic plane. This logically
subdivides the fields into two pairs, one with the electric field parallel to the reflection
plane

E1 = (E · p̂) p̂ = E‖p̂

H1 = (H · q̂) q̂ = H⊥q̂,
(12.3)

and one with the magnetic field parallel to the reflection plane

H2 = (H · p̂) p̂ = H‖p̂

E2 = (E · q̂) q̂ = E⊥q̂.
(12.4)
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Expressed in Geometric Algebra form, each of these pairs of fields should be thought
of as components of a single multivector field. That is

F1 = E1 + cµ0H1 I (12.5a)

F2 = E2 + cµ0H2 I (12.5b)

where the original total field is

F = E + cµ0HI. (12.6)

In eq. (12.5a) we have a composite projection operation, finding the portion of the
electric field that lies in the reflection plane, and simultaneously finding the com-
ponent of the magnetic field that lies perpendicular to that (while still lying in the
tangential plane of the electromagnetic field). In eq. (12.5b) the magnetic field is pro-
jected onto the reflection plane and a component of the electric field that lies in the
tangential (to the wave vector direction) plane is computed.

If we operate only on the complete multivector field, can we find these composite
projection field components in a single operation, instead of working with the indi-
vidual electric and magnetic fields?

Working towards this goal, it is worthwhile to point out consequences of the as-
sumption that the fields are plane wave (or equivalently far field spherical waves).
For such a wave we have

(12.7)

H =
1
µ0

k̂× E

=
1
µ0

(−I)
(

k̂ ∧ E
)

=
1
µ0

(−I)
(

k̂E− k̂ · E
)

= − I
µ0

k̂E,

or

(12.8)µ0HI = k̂E.

This made use of the identity a ∧ b = I (a× b), and the fact that the electric field is
perpendicular to the wave vector direction. The total multivector field is
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(12.9)
F = E + cµ0HI

=
(

1 + ck̂
)

E.

Expansion of magnetic field component that is perpendicular to the reflection plane
gives

(12.10)

µ0H ⊥ = µ0H · q̂
=
〈(
−k̂EI

)
q̂
〉

= −
〈

k̂EI
(

k̂× p̂
)〉

=
〈

k̂EI I
(

k̂ ∧ p̂
)〉

= −
〈

k̂Ek̂p̂
〉

=
〈

k̂k̂Ep̂
〉

= E · p̂,

so

(12.11)F1 = (p̂ + cIq̂)E · p̂.

Since q̂k̂p̂ = I, the component of the complete multivector field in the p̂ direction is

(12.12)
F1 = (p̂− cp̂k̂)E · p̂

= p̂(1− ck̂)E · p̂
= (1 + ck̂)p̂E · p̂.

It is reasonable to expect that F2 has a similar form, but with p̂→ q̂. This is verified
by expansion

(12.13)

F2 = E⊥q̂ + c
(
µ0H‖

)
p̂I

= (E · q̂) q̂ + c
〈
−k̂EIk̂q̂I

〉 (
k̂q̂I

)
I

= (E · q̂) q̂ + c
〈

k̂Ek̂q̂
〉

k̂q̂(−1)

= (E · q̂) q̂ + c
〈

k̂E(−q̂k̂)
〉

k̂q̂(−1)

= (E · q̂) q̂ + c
〈

k̂k̂Eq̂
〉

k̂q̂

=
(

1 + ck̂
)

q̂ (E · q̂)
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This and eq. (12.12) before that makes a lot of sense. The original field can be written

(12.14)F =
(

Ê + c
(

k̂× Ê
)

I
)

E · Ê,

where the leading multivector term contains all the directional dependence of the
electric and magnetic field components, and the trailing scalar has the magnitude of
the field with respect to the reference direction Ê.

We have the same structure after projecting E onto either the p̂, or q̂ directions
respectively

(12.15a)F1 =
(

p̂ + c
(

k̂× p̂
)

I
)

E · p̂

(12.15b)F2 =
(

q̂ + c
(

k̂× q̂
)

I
)

E · q̂.

The next question is how to achieve this projection operation directly in terms of F
and p̂, q̂, without resorting to expression of F in terms of E, and B. I’ve not yet been
able to determine the structure of that operation.
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F I E L D S A N D WAV E S

13.1 coupled wave equation in cylindrical coordinates

In [2], for a sourceless configuration, it is noted that the electric field equations ∇2E =
−β2E have the form

(13.1a)∇2Eρ −
Eρ

ρ2 −
2
ρ2

∂Eφ

∂φ
= −β2Eρ

(13.1b)∇2Eφ −
Eφ

ρ2 +
2
ρ2

∂Eρ

∂φ
= −β2Eφ

(13.1c)∇2Ez = −β2Ez,

where

(13.2)∇2ψ =
1
ρ

∂

∂ρ

(
ρ

∂ψ

∂ρ

)
+

1
ρ2

∂2ψ

∂φ2 +
∂2ψ

∂z2 .

He applies separation of variables to the last equation, ending up with the usual
Bessel function solution, but the first two coupled equations are dismissed as coupled
and difficult. It looks like separation of variables works for this too, but we have to
prep the system slightly by writing ψ = Eρ + jEφ, which gives

(13.3)∇2ψ − ψ

ρ2 +
2j
ρ2

∂ψ

∂φ
= −β2ψ,

or

(13.4)
1
ρ

∂

∂ρ

(
ρ

∂ψ

∂ρ

)
+

1
ρ2

∂2ψ

∂φ2 +
∂2ψ

∂z2 −
ψ

ρ2 +
2j
ρ2

∂ψ

∂φ
= −β2ψ.

With a separation of variables substitution ψ = f (ρ)g(φ)h(z) this gives

(13.5)
1

ρ f
∂

∂ρ

(
ρ

∂ f
∂ρ

)
+

1
ρ2g

∂2g
∂φ2 +

1
z

∂2h
∂z2 −

1
ρ2 +

2j
ρ2g

∂g
∂φ

= −β2.

Assuming a solution for the function h of

161
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(13.6)
1
z

∂2h
∂z2 = −α2,

the PDE is reduced to an equation in two functions

(13.7)
1

ρ f
∂

∂ρ

(
ρ

∂ f
∂ρ

)
+

1
ρ2g

∂

∂φ

(
g + 2jg

)
+ β2 − α2 − 1

ρ2 = 0,

or

(13.8)
ρ

f
∂

∂ρ

(
ρ

∂ f
∂ρ

)
+

1
g

∂

∂φ

(
g + 2jg

)
+
(

β2 − α2) ρ2 = 1.

With the term in g having only φ dependence, we can assume

(13.9)
1
g

∂

∂φ

(
g + 2jg

)
= 1− γ2,

for

(13.10)
ρ

f
∂

∂ρ

(
ρ

∂ f
∂ρ

)
− γ2 +

(
β2 − α2) ρ2 = 0.

I’m not sure off hand if these can be solved in known special functions, especially
since the constants in the mix are complex.

13.2 impedance transformation

In our final problem set we used the impedance transformation for calculations re-
lated to a microslot antenna. This transformation wasn’t familiar to me, and is appar-
ently covered in the third year ECE fields class. I found a derivation of this in [4], but
the idea is really simple and follows from the reflection coefficient calculation for a
normal reflection configuration.

Consider a normal field reflection between two interfaces, as sketched in fig. 13.1.
The fields are

(13.11a)Ei = x̂E0e−jk1z

(13.11b)Hi = ŷ
E0

η1
e−jk1z

(13.11c)Er = x̂ΓE0ejk1z
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Figure 13.1: Normal reflection and transmission between two media.

(13.11d)Hr = −ŷΓ
E0

η1
ejk1z

(13.11e)Et = x̂E0Te−jk2z

(13.11f)Ht = ŷ
E0

η1
Te−jk2z.

The field orientations have been picked so that the tangential component of the
electric field is x̂ oriented for all of the incident, reflected, and transmitted components.
Requiring equality of the tangential field components at the interface gives

(13.12a)1 + Γ = T

(13.12b)
1
η1
− Γ

η1
=

T
η2

.

Solving for the transmission coefficient gives

(13.13)
T =

2
1 + η1

η2

=
2η2

η2 + η1
,

and for the reflection coefficient



164 fields and waves

(13.14)

Γ = T − 1

=
2η2 − η1 − η2

η2 + η1

=
η2 − η1

η2 + η1
.

The total fields in medium 1 at the point z = −l are

(13.15a)Ei + Er = x̂E0

(
e−jk1(−l) + Γejk1(−l)

)

(13.15b)Hi + Hr = ŷ
E0

η1

(
e−jk1(−l) − Γejk1(−l)

)
.

The ratio of the electric field strength to the magnetic field strength is defined as
the input impedance

Zin ≡
Ei + Er

Hi + Hr

∣∣∣∣
z=−l

. (13.16)

That is

(13.17)

Zin = η1
ejk1l + Γe−jk1l

ejk1l − Γe−jk1l

= η1

(
η1 + η2

)
ejk1l +

(
η2 − η1

)
e−jk1l(

η1 + η2
)

ejk1l −
(
η2 − η1

)
e−jk1l

= η1
η2 cos(k1l) + η1 j sin(k1l)
η2 j sin(k1l) + η1 cos(k1l)

,

or

Zin = η1
η2 + jη1 tan(k1l)
η1 + jη2 tan(k1l)

. (13.18)

13.3 problems
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Exercise 13.1 x̂ oriented plane wave electric field ([2] ex. 4.1)

A uniform plane wave having only an x component of the electric field is traveling in
the +z direction in an unbounded lossless, source-0free region. Using Maxwell’s equa-
tions write expressions for the electric and corresponding magnetic field intensities.
Answer for Exercise 13.1

The phasor form of Maxwell’s equations for a source free region are

∇× E = −jωB (13.19a)

∇×H = jωD (13.19b)

∇ ·D = 0 (13.19c)

∇ · B = 0. (13.19d)

Since E = x̂E(z), the magnetic field follows from eq. (13.19a)

(13.20)

−jωB = ∇ × E

=

∣∣∣∣∣∣∣∣
x̂ ŷ ẑ

∂x ∂y ∂z

E 0 0

∣∣∣∣∣∣∣∣
= ŷ∂zE(z)− ẑ����∂yE(z),

or

(13.21)B = − 1
jω

∂zE.

This is constrained by eq. (13.19b)

(13.22)

jωεx̂E =
1
µ
∇ × B

= − 1
µjω

∣∣∣∣∣∣∣∣
x̂ ŷ ẑ

∂x ∂y ∂z

0 ∂zE 0

∣∣∣∣∣∣∣∣
= − 1

µjω
(−x̂∂zzE + ẑ∂x∂zE)
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Since ∂x∂zE = ∂z (∂xE) = ∂z
1
ε∇ ·D = ∂z0, this means

∂zzE = −ω2εµE = −k2E. (13.23)

This is the usual starting place that we use to show that the plane wave has an
exponential form

E(z) = x̂
(

E+e−jkz + E−ejkz
)

. (13.24)

The magnetic field from eq. (13.21) is

(13.25)
B =

j
ω

(
−jkE+e−jkz + jkE−ejkz

)
=

1
c

(
E+e−jkz − E−ejkz

)
,

or

(13.26)
H =

1
µc

(
E+e−jkz − E−ejkz

)
=

1
η

(
E+e−jkz − E−ejkz

)
.

A solution requires zero divergence for the magnetic field, but that can be seen to
be the case by inspection.
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A P P E N D I C E S





A
P R O F. E L E F T H E R I A D E S ’ H A N D W R I T I N G D E C O D E R R I N G

I found Prof. Eleftheriades’ handwriting tricky to decode in a number of cases. Here’s
a handy dandy codex should anybody else have the same troubles

(a) Greek letter Ω is written as a circle floating above a face up square bracket.

(b) Greek letter σ is written like a number 6, slightly tipped.

(c) J looks like pi with a tail.

(d) Greek letter λ looks like a mirror image of his ’h’.

(e) Greek letter µ can look like an M.

(a) (b) (c) (d) (e)

Figure A.1: Prof. Eleftheriades’ handwriting decoder ring.
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B
M AT H E M AT I C A N O T E B O O K S

These Mathematica notebooks, some just trivial ones used to generate figures, others
more elaborate, and perhaps some even polished, can be found in

https://github.com/peeterjoot/mathematica/tree/master/.
The free Wolfram CDF player, is capable of read-only viewing these notebooks to

some extent.
Files saved explicitly as CDF have interactive content that can be explored with the

CDF player.

• Jan 18, 2015 ece1229/tableOfTrigIntegrals.nb

Integrals of some powers of sine and cosine products

• Jan 19, 2015 ece1229/sphericalPlot3d.nb

Antenna intensity plots for sine and cosine powers 1,2.

• Jan 28, 2015 ece1229/sphericalManipulate.cdf

An interactive graphical visualization of a couple of radiation intensity func-
tions.

• Feb 8, 2015 ece1229/visualizeDipoleFields.cdf

In chapter 4 of Balanis’ "Antenna Theory: Analysis and Design", are some dis-
cussions of the kr < 1, kr = 1, and kr > 1 radial dependence of the fields and
power of a solution to an infinitesimal dipole system. This discussion severely
lacks some plots. Here’s a Mathematica Manipulate that allows for inspection
of the real and imaginary parts of these functions, plotted against both k and
r, with a kr == constant contour overlaid on it. The value of that constant can
be altered using one of the sliders, as can the maximum range of k and r, and
upper and lower bounds of the value of the functions being plotted.

• Feb 8, 2015 ece1229/selectedInfinitesimalDipolePlots.nb

think this was plots to generate figures for ps2

• Feb 28, 2015 ece1229/ps3/electricAndMagneticDipoleSuperposition.nb

ps3 p1 3d plot Manipulator and figures generation for a superposition of electric
and magnetic dipoles.
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https://github.com/peeterjoot/mathematica/tree/master/
http://www.wolfram.com/cdf-player/
https://raw.github.com/peeterjoot/mathematica/master/ece1229/tableOfTrigIntegrals.nb
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• Feb 28, 2015 ece1229/electricAndMagneticDipoleSuperpositionStandalone.cdf

This is a Manipulator to show the far fields of a superposition of electric and
magnetic infinestismal dipoles on the x and y axes respectively. The fields at one
point on the surface can be controlled using the theta and phi sliders.

• Feb 28, 2015 ece1229/ps3/longDipolesSelectedLengths.nb

Polar plots of the radiation intensity for long z-axis electric current dipoles. This
also does the radiation resistance numerical integrals.

• Feb 28, 2015 ece1229/ps3/longDipolesSelectedLengthsSavedLabeledPlot.nb

Saved labeled plot for ps3 p2a.

• Feb 28, 2015 ece1229/ps3/longDipoleInteractiveLength.nb

A manipulate for visualizing the polar pattern for a long electric dipole, and
showing the directivity. A version without the 3D checkbox option and without
the directivity display is deployed as cdf in longDipolesWithLengthControl.cdf

• Feb 28, 2015 ece1229/longDipolesWithLengthControl.cdf

A manipulate for visualizing the polar pattern for a long electric dipole.

• Mar 1, 2015 ece1229/ps3/directivityLongDipole.nb

Numerical directivity calculations for ps3 p2 b, long dipole.

• Mar 10, 2015 ece1229/ps3/ps3Q3plotsAndMiscIntegrals.nb

Trig integrals and plots for ps3, p3. Numerical calculations of the directivity for
part e.

• Mar 13, 2015 ece1229/chebychevPlots.nb

A couple Cheybshev T plots.

• Mar 15, 2015 ece1229/cornerCubeArrayFactorSq.cdf

A manipulate to show the radiation intensity of the array factor in 3D for the
corner cube configuration. This doesn’t include any contribution from the field
itself (i.e. no sine squared term.)

• Mar 15, 2015 ece1229/ps3/ps3Q3plotsCorrected.nb

Redo the plots and the numerical calculations for the corner cube configuration
problem, ps3, q3.

https://raw.github.com/peeterjoot/mathematica/master/ece1229/electricAndMagneticDipoleSuperpositionStandalone.cdf
https://raw.github.com/peeterjoot/mathematica/master/ece1229/ps3/longDipolesSelectedLengths.nb
https://raw.github.com/peeterjoot/mathematica/master/ece1229/ps3/longDipolesSelectedLengthsSavedLabeledPlot.nb
https://raw.github.com/peeterjoot/mathematica/master/ece1229/ps3/longDipoleInteractiveLength.nb
https://raw.github.com/peeterjoot/mathematica/master/ece1229/longDipolesWithLengthControl.cdf
https://raw.github.com/peeterjoot/mathematica/master/ece1229/ps3/directivityLongDipole.nb
https://raw.github.com/peeterjoot/mathematica/master/ece1229/ps3/ps3Q3plotsAndMiscIntegrals.nb
https://raw.github.com/peeterjoot/mathematica/master/ece1229/chebychevPlots.nb
https://raw.github.com/peeterjoot/mathematica/master/ece1229/cornerCubeArrayFactorSq.cdf
https://raw.github.com/peeterjoot/mathematica/master/ece1229/ps3/ps3Q3plotsCorrected.nb
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• Mar 16, 2015 ece1229/cornerCubeArrayFactorSqIn.cdf

Standalone generator for cornerCubeArrayFactorSq.cdf

• Mar 17, 2015 ece1229/simpleTrigIntegrals.nb

Some simple trig integrals

• Mar 21, 2015 ece1229/chebychevPlotsII.nb

A Manipulate for Cheybshev plot exploration. A plot of the first few, and a plot
with a scale factor.

• Mar 21, 2015 ece1229/chebychevPlotsManipulate.cdf

Deployed CDF manipulator for Cheybshev polynomial exploration.

• Mar 22, 2015 ece1229/chebychevN4ArrayFitManipulate.cdf

Manipulate to visualize the variation with d for an N = 4 Cheybshev fitting.

• Mar 22, 2015 ece1229/polarPlot.nb

This uses the Cheybshev design technique from the text to fit a 4 element array to
a T3 function, and visualize it with polar plots. This includes a Manipulate to vi-
sualize the variation with d, saved separately as chebychevN4ArrayFitManipulate.cdf.

• Mar 23, 2015 ece1229/ChebychevSecondMethod.nb

Exploring Dolph-Cheybshev method from the class notes. Plots and a Manipu-
lator

• Mar 23, 2015 ece1229/ChebychevSecondMethodManipulate.cdf

Just the manipulator from ChebychevSecondMethod.nb

• Mar 23, 2015 ece1229/ChebychevSecondMethodManipulate.nb

Deployed version of the manipulator from ChebychevSecondMethod.nb

• Mar 24, 2015 ece1229/ps4/problem3BinomialArray.nb

Verify the paper calculations for this problem, and generate the plots and the
numerical values of the angles for the nulls.

• Mar 25, 2015 ece1229/interactiveFiveElementBinomialArrayWithPhaseAndKDControls.cdf

Add interactive controls to 2D PolarPlot of problem3BinomialArray.nb, deployed
version.

https://raw.github.com/peeterjoot/mathematica/master/ece1229/cornerCubeArrayFactorSqIn.cdf
https://raw.github.com/peeterjoot/mathematica/master/ece1229/simpleTrigIntegrals.nb
https://raw.github.com/peeterjoot/mathematica/master/ece1229/chebychevPlotsII.nb
https://raw.github.com/peeterjoot/mathematica/master/ece1229/chebychevPlotsManipulate.cdf
https://raw.github.com/peeterjoot/mathematica/master/ece1229/chebychevN4ArrayFitManipulate.cdf
https://raw.github.com/peeterjoot/mathematica/master/ece1229/polarPlot.nb
https://raw.github.com/peeterjoot/mathematica/master/ece1229/ChebychevSecondMethod.nb
https://raw.github.com/peeterjoot/mathematica/master/ece1229/ChebychevSecondMethodManipulate.cdf
https://raw.github.com/peeterjoot/mathematica/master/ece1229/ChebychevSecondMethodManipulate.nb
https://raw.github.com/peeterjoot/mathematica/master/ece1229/ps4/problem3BinomialArray.nb
https://raw.github.com/peeterjoot/mathematica/master/ece1229/interactiveFiveElementBinomialArrayWithPhaseAndKDControls.cdf
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• Mar 25, 2015 ece1229/ps4/interactiveFiveElementBinomialArrayWithPhaseAndKDControls.nb

Add interactive controls to 2D PolarPlot of problem3BinomialArray.nb.

• Mar 28, 2015 ece1229/ps4/ps4p4Chebychev.nb

Plots and numerical integration results for p4.

• Mar 29, 2015 ece1229/sphericalCoordinatesForReflectedUnitVector.nb

Calculate spherical coordinates for a reflected unit vector. Doesn’t simplify nicely.

• Mar 31, 2015 ece1229/ps4/checkAlgebra.nb

Check some of the trig algebra done by hand.

• Apr 9, 2015 ece1229/ps5/problem1plot.nb

Plot the calculated electric field for the aperature problem. Here I did the 2D
polar plots using a dB scale plot, which I hadn’t done before, but makes a lot of
sense to see the details of the lobes. Also did a similar log scale plot for the 3D
view.

• Apr 11, 2015 ece1229/testPlaneIntersectionMethods.nb

Some experimentation on how to plot a 3D surface with an arbitrary plane cut
through it.

• Apr 21, 2015 ece1229/balanisProblem8_8.nb

balanisProblem8_8

https://raw.github.com/peeterjoot/mathematica/master/ece1229/ps4/interactiveFiveElementBinomialArrayWithPhaseAndKDControls.nb
https://raw.github.com/peeterjoot/mathematica/master/ece1229/ps4/ps4p4Chebychev.nb
https://raw.github.com/peeterjoot/mathematica/master/ece1229/sphericalCoordinatesForReflectedUnitVector.nb
https://raw.github.com/peeterjoot/mathematica/master/ece1229/ps4/checkAlgebra.nb
https://raw.github.com/peeterjoot/mathematica/master/ece1229/ps5/problem1plot.nb
https://raw.github.com/peeterjoot/mathematica/master/ece1229/testPlaneIntersectionMethods.nb
https://raw.github.com/peeterjoot/mathematica/master/ece1229/balanisProblem8_8.nb


C
J U L I A N O T E B O O K S

These Julia notebooks, can be found in
https://github.com/peeterjoot/julia.
These notebooks are text files. The julia program, available freely at www.julialang.org,

is required to execute them. Some Julia code can also be evaluated with Matlab.

• Feb 17, 2015 ece1229/ps2/ps2p5.jl

Numerical calculations for ps2 p5 (simple).

• Feb 22, 2015 ece1229/misc/eta.jl

Numerically compute the free space impedance to compare to 120 pi.

• Mar 25, 2015 ece1229/misc/mycrappypolar.jl

A brute force polar plot before figuring out how to do it in PyPlot directly.

• Mar 25, 2015 ece1229/ps4/p2.jl

A reimplementation of matlab/ece1229/ps4/p2.m in Julia. Figure out how to
do a polar plot and save it to a file.

• Mar 25, 2015 ece1229/misc/pyplotPolarExample.jl

A variation of https://github.com/gizmaa/Julia_Examples/blob/master/pyplot_windrose.jl
to try a Julia implementation of ps4/p2

• Mar 26, 2015 ece1229/ps4/p4.jl

Calculation of the numeric values of the Chebyshev array coeffients, directivites,
and plots.

• Apr 28, 2015 ece1229/ps3/p2.jl

Log polar plot of finite length dipole power, to zoom in on the side lobes for the
1.25 case.

• Apr 29, 2015 ece1229/ps3/p3.jl

Replot corner cube array factor in log scale. Original polar and 3D plots were
done in the ps3Q3plotsCorrected.nb Mathematica notebook.
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• Apr 30, 2015 ece1229/ps4/p2x.jl

Replot ps4 p2 function in linear and log scales, based on code from ps3/p3.jl

• May 1, 2015 ece1229/ps4/p3.jl

Call polarPlot() to generate plot in both linear and log scales

• May 1, 2015 ece1229/ps4/polarPlot.jl

Turn p2x.jl into a generic polar plotting function.

• May 1, 2015 ece1229/cheb/c.jl

Replot chebychevDesign.tex figures with linear and log scale plots, avoiding
infinities that I had in the Mathematica polarPlot.nb plots of the same.

https://raw.github.com/peeterjoot/julia/master/ece1229/ps4/p2x.jl
https://raw.github.com/peeterjoot/julia/master/ece1229/ps4/p3.jl
https://raw.github.com/peeterjoot/julia/master/ece1229/ps4/polarPlot.jl
https://raw.github.com/peeterjoot/julia/master/ece1229/cheb/c.jl


D
M AT L A B N O T E B O O K S

These Matlab notebooks, some just trivial ones used to generate figures, others more
elaborate, and perhaps some even polished, can be found in

https://github.com/peeterjoot/matlab.
These notebooks are text files, but a matlab product is required to execute them.

• Mar 25, 2015 ece1229/ps4/p1plot.m

Plot the ps4 p1 AF for one value of ad.

• Mar 25, 2015 ece1229/ps4/p1plots.m

Generate all the plots for p1 and save the plots to files for the report.

• Mar 25, 2015 ece1229/ps4/p2.m

Problem 2. Code to confirm the zeros numerically, and to plot the absolute array
factor.

• Apr 13, 2015 ece1229/ps5/phicap.m

spherical polar phicap function

• Apr 13, 2015 ece1229/ps5/rcap.m

spherical polar rcap function

• Apr 13, 2015 ece1229/ps5/thetacap.m

spherical polar thetacap function

• Apr 13, 2015 ece1229/ps5/vecE.m

ps5 p1 compuation and plots

• Apr 13, 2015 ece1229/ps5/logscale.m

db values for an input array rescaled to fit in the 0,1 interval.

• Apr 14, 2015 ece1229/ps5/pII.m

Display the numeric substitutions, and compute the value of m for part h that
has zero imaginary input impedance.
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• Apr 14, 2015 ece1229/ps5/calculateZinAndStuff.m

Calculate Zin given a single value of m. Returns all the intermediate calculations
in a structure for display purposes.

https://raw.github.com/peeterjoot/matlab/master/ece1229/ps5/calculateZinAndStuff.m
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Ampere’s law, 132

differential form, 34

integral form, 34

Ampere-Maxwell equation, 152

angle of incidence, 61

antenna array, 79

antenna gain, 27

antenna under test, 27

antisymmetric, 147

antisymmetrization, 150

aperture antenna, 115

aperture efficiency, 16

array antenna
Cheybshev, 85

array factor, 91

AUT, 27

average power density, 15

binary array, 101

binomial array, 106

bivector, 131, 149

boundary conditions, 31

captured power, 26

Chebyscheff
first order LDE, 99

orthogonality, 100

recurrence relation, 98

second order LDE, 99

Chebyscheff polynomial, 79

Cheybshev array, 82

Cheybshev polynomials
products, 81

circular polarization, 18

constitutive relations, 31

continuity equation, 30

corner cube, 91

corner cube antenna, 91

coupled PDE, 161

covariant form, 142

cross product, 136

duality, 130

curl, 44, 49

four vector, 133

current density, 45

dB, 5

dBi, 5

dipole
long, 75

near field, 68

superposition, 72

dipole moment, 67

directivity, 14, 16, 22

approximation, 16

E-plane, 24

H-plane, 24

divergence, 37, 44, 131

cross product, 46

spherical coordinates, 50

divergence theorem, 30, 34, 45

Dolph-Chebyshev, 109

Dolph-Cheybshev, 85

dot product, 151

dual, 131

dual-Maxwell’s equation
covariant, 139

Geometric Algebra, 135
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dual-Maxwell’s equations, 135

duality, 38

duality transformation, 42, 54

effective area, 16

Effective Isotropic Receiving Power, 13

EIRP, 13

electic field
in terms of potentials, 145

electric charge density, 29, 129

electric current density, 29, 129

electric dipole, 22

electric far field, 47

electric field, 151

tangential, 34

transverse projection, 54

vector wave equation, 161

electric four potential, 143

electric potential, 49

electric source, 39

electric surface current density, 34, 35

electric vector potential, 49

electrical dipole
horizontal, 22

electromagnetic field, 149

energy conservation, 37

energy momentum conservation, 37

energy momentum tensor, 38

far field, 3, 45, 50, 54

electric field, 47

magnetic, 52

four current, 133

four potential
electric, 143

magnetic, 143

four vector, 132, 138, 142

free space impedance, 13

free space loss, 16

free-space loss, 16

frequency domain, 40, 41

Fresnel equations, 57, 58

Friis equation, 19, 27, 72

Friis transmission equation, 17

gain, 17, 19

Gauss’s law, 152

differential form, 34

differential form, magnetic, 34

integral form, 34

integral form, magnetic, 34

magnetism, 153

Geometric Algebra, 129, 135, 141, 147,
153

geometric product, 130, 136

grade selection, 147

gradient
spherical coordinates, 50

Green’s function, 32

ground reflection, 58, 70, 71

half power beamwidth, 22

half-power beamwidth, 16

Helmholtz equation, 134, 140, 143

electric current density, 144

Green’s function, 32

magnetic current density, 144

non-homogeneous, 132

homogeneous media, 31

horizontal dipole, 57

IERP, 72

image theorem, 62

impedance, 10

impedance transformation, 162

impulse response, 32

incident plane, 60

index of refraction, 56

infinite conducting plane, 64

infinitesimal dipole, 49
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infinitesimal electric dipole, 67

intrinsic impedance, 3

isotropic radiator, 5

Julia, 72

Laplacian, 161

line of sight, 18, 71

linear antenna, 49

linear media, 3, 31, 37, 129, 135, 152

linear polarization, 18

linear time invariant, 32

Lorentz force
dual, 38

Lorentz force equation, 38

Lorentz gauge, 132, 134, 138, 140, 143,
144

magnetic charge, 135

magnetic charge density, 29, 153

magnetic current, 135

magnetic current density, 29, 153

magnetic current source, 46

magnetic field, 49, 151

in terms of potentials, 145

tangential, 35

magnetic four potential, 143

magnetic source, 37, 39, 45, 149

magnetic vector potential, 49

magnetization, 3

matched load, 17

Mathematica, 5, 171

Matlab, 72

max power density, 14

maximum directivity, 15

Maxwell equation, 129

phasor, 129

Maxwell’s equation, 129, 141, 153

covariant, 142

Geometric Algebra, 142

integral forms, 30

magnetic and electric potential sep-
aration, 143

non-covariant GA form, 130

Maxwell’s equations, 29, 141

differential, 32

tensor, 149

Maxwell-Faraday equation, 153

differential form, 34

integral form, 34

microstrip patch, 121

Mie scattering, 12

Minkowski space, 133

mobile reception, 69

momentum conservation, 37

momentum flux, 39

multivector, 147

normal reflection, 162

notation
bold vectors, 14

caligraphic vectors, 14

phasor sign, 46

time average, 14

optical limit, 11

parallel projection, 155

ParametricPlot, 5

ParametricPlot3D, 5

patch antenna, 121

permittivity, 31, 68

phasor, 7, 29, 37, 44, 132, 135, 141

dipole current, 68

plane of incidence, 56

plane of reflection, 56, 59

plane wave, 53, 58

PLF, 19

polarization, 7, 27

power loss, 17
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polarization loss factor, 19

polarization mismatch, 18

polarization power loss, 17

polarization vector, 7

potential
curl of curl, 47

potential representation, 137

power
average, 10

complex, 11

phasor, 10

power density, 14, 25

Poynting theorem, 40

Poynting vector, 3, 23, 37

time average, 4

pseudoscalar, 130

radar cross section, 11, 19, 25

radiated power density, 14

radiation intensity, 3, 5

RCS, 19, 25

corner reflector, 12

cylinder, 12

flat plate, 11

sphere, 11

reciprocity theorem, 40, 44, 147

rectangular aperture, 115

reflection coefficient, 55, 57, 70, 163

reflection plane, 60

scalar potential, 54

scattered power, 19

scattered power density, 26

scattering, 12

Schelkunoff
z-axis, 104

Schelkunoff array, 101

separation of variables, 161

signal to noise, 18

space time split, 141

spacetime gradient, 133, 143

spherical potential, 50

spherical scattering, 12

standard gain, 27

Stokes’ theorem, 30, 34

superposition, 4, 5

tangential field components, 163

tensor, 147

tensor form, 149, 153

transmission coefficient, 163

transmission power, 18

transmitted power, 18

transverse field, 45

transverse nature, 53

triple product, 131

trivector, 149

vector potential, 49

vertical dipole, 55

polarization, 72

wave equation, 161

wave vector, 55

wavelength, 17

wedge product, 130, 136, 149

relation to cross product, 130

X-band, 19

zero phase, 104
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