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Energy momentum conservation with magnetic sources

1.1 Energy momentum conservation

Maxwell’s equations with magnetic sources In this section, the form of Maxwell’s equations to be used
are expressed in terms of E and H, assume linear media, and do not assume a phasor representation

(1.1a)∇ × E = −M − µ0
∂H
∂t

(1.1b)∇ ×H = J + ε0
∂E
∂t

(1.1c)∇ · E = ρ/ε0

(1.1d)∇ ·H = ρm/µ0.

Energy momentum conservation With magnetic sources the Poynting and energy conservation re-
lationship has to be adjusted slightly. Let’s derive that result, starting with the divergence of the
Poynting vector

(1.2)
∇ · (E ×H) = H · (∇ × E)− E · (∇ ×H)

= −H ·
(
µ0∂tH + M

)
− E · (J + ε0∂tE)

= −µ0H · ∂tH −H ·M − ε0E · ∂tE − E · J ,

or

1
2

∂

∂t

(
ε0E2 + µ0H2

)
+ ∇ · (E ×H) = −H ·M− E ·J . (1.3)
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Momentum conservation The usual relationship is only modified by one additional term. Recall from
electrodynamics [2] that eq. (1.3) (when the magnetic current density M is omitted) is just one of four
components of the energy momentum conservation equation

∂µTµν = −1
c

Fνλ jλ. (1.4)

Note that eq. (1.4) was likely not in SI units. The next task is to generalize this classical relationship
to incorporate the magnetic sources used in antenna theory. With an eye towards the relativistic
nature of the energy momentum tensor, it is natural to assume that the remainder of the energy
momentum tensor conservation relation can be found by taking the time derivatives of the Poynting
vector.

(1.5)

∂

∂t
(E ×H) =

∂E
∂t
×H + E × ∂H

∂t

=
1
ε0

(∇ ×H − J )×H +
1
µ0

E × (−∇ × E −M) ,

or

(1.6)

1
c2

∂

∂t
(E ×H) + µ0J ×H + ε0E ×M

= −µ0H × (∇ ×H)

− ε0E × (∇ × E) .

The µ0J ×H = J × B is a portion of the Lorentz force equation in its density form. To put
eq. (1.6) into the desired form, the remainder of the Lorentz force force equation ρE = ε0E∇ · E must
be added to both sides. To extend the magnetic current term to its full dual (magnetic) Lorentz force
structure, the quantity to add to both sides is ρmH = µ0H∇ ·H. Performing these manipulations
gives

(1.7)
1
c2

∂

∂t
(E ×H) + ρE + µ0J ×H + ρmH + ε0E ×M

= µ0 (H∇ ·H −H × (∇ ×H)) + ε0 (E∇ · E − E × (∇ × E)) .

It seems slightly surprising the sign of the magnetic equivalent of the Lorentz force terms have an
alternation of sign. This is, however, consistent with the duality transformations outlined in ([1] table
3.2)

(1.8a)ρ→ ρm

(1.8b)J →M

(1.8c)µ0 → ε0

(1.8d)E →H

2



(1.8e)H→ −E ,

for

ρE + µ0J ×H→ ρmH + ε0M× (−E) = ρmH + ε0E ×M. (1.9)

Comfortable that the LHS has the desired structure, the RHS can expressed as a divergence. Just
expanding one of the differences of vector products on the RHS does not obviously show that this is
possible, for example

(1.10)

ea · (E∇ · E − E × (∇ × E)) = Ea∂bEb − εabcEbεcrs∂rEs

= Ea∂bEb − δ[rs]
ab Eb∂rEs

= Ea∂bEb − Eb (∂aEb − ∂bEa)
= Ea∂bEb − Eb∂aEb + Eb∂bEa.

This happens to equal

(1.11)

∇ ·
((

EaEb −
1
2

δabE2
)

eb

)
= ∂b

(
EaEb −

1
2

δabE2
)

= Eb∂bEa + Ea∂bEb −
1
2

δab2Ec∂bEc

= Eb∂bEa + Ea∂bEb − Eb∂aEb.

This allows a final formulation of the remaining energy momentum conservation equation in its
divergence form. Let

(1.12)Tab = ε0

(
EaEb −

1
2

δabE2
)

+ µ0

(
HaHb −

1
2

δabH2
)

,

so that the remaining energy momentum conservation equation, extended to both electric and
magnetic sources, is

1
c2

∂

∂t
(E ×H) + (ρE + µ0J ×H) + (ρmH + ε0E ×M) = ea∇ ·

(
Tabeb

)
. (1.13)

On the LHS we have the rate of change of momentum density, the electric Lorentz force density
terms, the dual (magnetic) Lorentz force density terms, and on the RHS the the momentum flux
terms.

In the frequency domain In the frequency domain with E = Re Eejωt,H = Re Hejωt. Using the electric
field dot product as an example, note that we can write

(1.14)E =
1
2

(
Eejωt + E∗e−jωt

)
,

so

3



(1.15)

E2 =
1
2

(
Eejωt + E∗e−jωt

)
· 1

2

(
Eejωt + E∗e−jωt

)
=

1
4

(
E2e2jωt + E · E∗ + E∗ · E + (E∗)2 e−2jωt

)
=

1
2

Re
(

E · E∗ + E2e2jωt
)

.

Similarly, for the cross product

(1.16)

E ×H =
1
4

(
E×He2jωt + E×H∗ + E∗ ×H + (E∗ ×H∗) e−2jωt

)
=

1
2

Re
(

E×H∗ + E×He2jωt
)

.

Given phasor representations of the sources M = Mejωt,J = Jejωt, eq. (1.3) can be recast into (a
messy) phasor form

(1.17)

1
2

Re
1
2

∂

∂t

(
ε0E · E∗ + µ0H ·H∗ + ε0E2e2jωt + µ0H2e2jωt

)
+

1
2

Re∇ ·
(

E×H∗ + E×He2jωt
)

=
1
2

Re
(
−H ·M∗ − E · J∗ −H ·Me2jωt − E · Je2jωt

)
.

In particular, when averaged over one period, the oscillatory terms vanish. The time averaged
equivalent of the Poynting theorem is thus

0 =
[

Re
(

1
2

∂

∂t
(ε0E · E∗ + µ0H ·H∗) + ∇ · (E×H∗) + H ·M∗ + E · J∗

)]
av

. (1.18)

Comparison to the reciprocity theorem result The reciprocity theorem had a striking similarity to the
Poynting theorem above, which isn’t suprising since both were derived by calculating the divergence
of a Poynting like quantity. Here’s a repetition of the reciprocity divergence calculation without the
single frequency (phasor) assumption

(1.19)

∇·
(
E (a) ×H(b) − E (b) ×H(a)

)
= H(b) ·

(
∇ × E (a)

)
− E (a) ·

(
∇ ×H(b)

)
−H(a) ·

(
∇ × E (b)

)
+ E (b) ·

(
∇ ×H(a)

)
= −H(b) ·

(
µ0∂tH(a) + M(a)

)
− E (a) ·

(
J (b) + ε0∂tE (b)

)
+ H(a) ·

(
µ0∂tH(b) + M(b)

)
+ E (b) ·

(
J (a) + ε0∂tE (a)

)
= ε0

(
E (b) · ∂tE (a) − E (a) · ∂tE (b)

)
+ µ0

(
H(a) · ∂tH(b) −H(b) · ∂tH(a)

)
+ H(a) ·M(b) −H(b) ·M(a) + E (b) · J (a) − E (a) · J (b)
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What do these time derivative terms look like in the frequency domain?

(1.20)

E (b) · ∂tE (a) =
1
4

(
E(b)ejωt + E(b)∗e−jωt

)
· ∂t

(
E(a)ejωt + E(a)∗e−jωt

)
=

jω
4

(
E(b)ejωt + E(b)∗e−jωt

)
·
(

E(a)ejωt − E(a)∗e−jωt
)

=
ω

4

(
jE(a) · E(b)∗ − jE(b) · E(a)∗ + jE(a) · E(b)e2jωt − jE(a)∗ · E(b)∗e−2jωt

)
=

1
2

Re
(

jωE(a) · E(b)∗ + jωE(a) · E(b)e2jωt
)

Taking the difference,

E (b) · ∂tE (a) − E (a) · ∂tE (b) =
1
2

Re
(

jωE(a) · E(b)∗ − jωE(b) · E(a)∗ + jωE(a) · E(b)e2jωt − jωE(b) · E(a)e2jωt
)

= −ω Im
(

E(a) · E(b)∗ + E(a) · E(b)e2jωt
)

,

(1.21)

so we have

(1.22)
0 =

[
∇ · Re

(
E(a) ×H(b)∗ − E(b) ×H(a)∗

)
+ ω Im

(
ε0E(a)

· E(b)∗ + µ0H(a) ·H(b)∗
)

+ Re
(
−H(a) ·M(b)∗ + H(b) ·M(a)∗ − E(b) · J(a)∗ + E(a) · J(b)∗

)]
av

.

Observe that the perfect cancellation of the time derivative terms only occurs when the cross prod-
uct differences were those of the phasors. When those cross differences are those of the actual fields,
like those in the Poynting theorem, there is a frequency dependent term is that expansion.

Followup Questions FIXME: TODO.

1. What do the energy momentum conservation equations look like in geometric algebra form
with magnetic sources?

2. What do the energy momentum conservation equations look like in tensor form with magnetic
sources?
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