# Peeter Joot <br> peeterjoot@protonmail.com 

## Ensembles for spin one half

Mixed ensemble averages In [1], Sakurai leaves it to the reader to verify that knowledge of the three ensemble averages [S_x], [S_y],[S_z] is sufficient to reconstruct the density operator for a spin one half system.

I'll do this in two parts, the first using a spin-up/down ensemble to see what form this has, then the general case. The general case is a bit messy algebraically. After first attempting it the hard way, I did the grunt work portion of that calculation in Mathematica, but then realized it's not so bad to do it manually.

Consider first an ensemble with density operator

$$
\begin{equation*}
\rho=w_{+}|+\rangle\langle+|+w_{-}|-\rangle\langle-|, \tag{1.1}
\end{equation*}
$$

where these are the $\mathbf{S} \cdot( \pm \hat{\mathbf{z}})$ eigenstates. The traces are

$$
\begin{aligned}
\operatorname{Tr}\left(\rho \sigma_{x}\right) & =\langle+| \rho \sigma_{x}|+\rangle+\langle-| \rho \sigma_{x}|-\rangle \\
& =\langle+| \rho\left[\begin{array}{cc}
0 & 1 \\
1 & 0
\end{array}\right]|+\rangle+\langle-| \rho\left[\begin{array}{cc}
0 & 1 \\
1 & 0
\end{array}\right]|-\rangle \\
& =\langle+|\left(w_{+}|+\rangle\langle+|+w_{-}|-\rangle\langle-|\right)|-\rangle+\langle-|\left(w_{+}|+\rangle\langle+|+w_{-}|-\rangle\langle-|\right)|+\rangle \\
& =\langle+| w_{-}|-\rangle+\langle-| w_{+}|+\rangle \\
& =0, \\
\operatorname{Tr}\left(\rho \sigma_{y}\right) & =\langle+| \rho \sigma_{y}|+\rangle+\langle-| \rho \sigma_{y}|-\rangle \\
& =\langle+| \rho\left[\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right]|+\rangle+\langle-| \rho\left[\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right]|-\rangle \\
& =i\langle+|\left(w_{+}|+\rangle\langle+|+w_{-}|-\rangle\langle-|\right)|-\rangle-i\langle-|\left(w_{+}|+\rangle\langle+|+w_{-}|-\rangle\langle-|\right)|+\rangle \\
& =i\langle+| w_{-}|-\rangle-i\langle-| w_{+}|+\rangle \\
& =0,
\end{aligned}
$$

and

$$
\begin{align*}
\operatorname{Tr}\left(\rho \sigma_{z}\right) & =\langle+| \rho \sigma_{z}|+\rangle+\langle-| \rho \sigma_{z}|-\rangle \\
& =\langle+| \rho|+\rangle-\langle-| \rho|-\rangle \\
& =\langle+|\left(w_{+}|+\rangle\langle+|+w_{-}|-\rangle\langle-|\right)|+\rangle-\langle-|\left(w_{+}|+\rangle\langle+|+w_{-}|-\rangle\langle-|\right)|-\rangle  \tag{1.4}\\
& =\langle+| w_{+}|+\rangle-\langle-| w_{-}|-\rangle \\
& =w_{+}-w_{-} .
\end{align*}
$$

Since $w_{+}+w_{-}=1$, this gives

$$
\begin{align*}
& w_{+}=\frac{1+\operatorname{Tr}\left(\rho \sigma_{z}\right)}{2} \\
& w_{-}=\frac{1-\operatorname{Tr}\left(\rho \sigma_{z}\right)}{2} \tag{1.5}
\end{align*}
$$

Attempting to do a similar set of trace expansions this way for a more general spin basis turns out to be a really bad idea and horribly messy. So much so that I resorted to Mathematica to do this symbolic work. However, it's not so bad if the trace is done completely in matrix form.

Using the basis

$$
\begin{align*}
& |\mathbf{S} \cdot \hat{\mathbf{n}} ;+\rangle=\left[\begin{array}{c}
\cos (\theta / 2) \\
\sin (\theta / 2) e^{i \phi}
\end{array}\right]  \tag{1.6}\\
& |\mathbf{S} \cdot \hat{\mathbf{n}} ;-\rangle=\left[\begin{array}{c}
\sin (\theta / 2) e^{-i \phi} \\
-\cos (\theta / 2)
\end{array}\right],
\end{align*}
$$

the projector matrices are

$$
\begin{align*}
|\mathbf{S} \cdot \hat{\mathbf{n}} ;+\rangle\langle\mathbf{S} \cdot \hat{\mathbf{n}} ;+| & =\left[\begin{array}{cc}
\cos (\theta / 2) \\
\sin (\theta / 2) e^{i \phi}
\end{array}\right]\left[\begin{array}{ll}
\cos (\theta / 2) & \left.\sin (\theta / 2) e^{-i \phi}\right]
\end{array}\right]  \tag{1.7}\\
& =\left[\begin{array}{cc}
\cos ^{2}(\theta / 2) & \cos (\theta / 2) \sin (\theta / 2) e^{-i \phi} \\
\sin (\theta / 2) \cos (\theta / 2) e^{i \phi} & \sin ^{2}(\theta / 2)
\end{array}\right], \\
|\mathbf{S} \cdot \hat{\mathbf{n}} ;-\rangle\langle\mathbf{S} \cdot \hat{\mathbf{n}} ;-| & =\left[\begin{array}{cc}
\sin (\theta / 2) e^{-i \phi} \\
-\cos (\theta / 2)
\end{array}\right]\left[\sin (\theta / 2) e^{i \phi}\right. \\
& -\cos (\theta / 2)]  \tag{1.8}\\
& =\left[\begin{array}{cc}
\sin ^{2}(\theta / 2) & -\cos (\theta / 2) \sin (\theta / 2) e^{-i \phi} \\
-\cos (\theta / 2) \sin (\theta / 2) e^{i \phi} & \cos ^{2}(\theta / 2)
\end{array}\right]
\end{align*}
$$

With $C=\cos (\theta / 2), S=\sin (\theta / 2)$, a general density operator in this basis has the form

$$
\begin{align*}
\rho & =w_{+}\left[\begin{array}{cc}
C^{2} & C S e^{-i \phi} \\
S C e^{i \phi} & S^{2}
\end{array}\right]+w_{-}\left[\begin{array}{cc}
S^{2} & -C S e^{-i \phi} \\
-C S e^{i \phi} & C^{2}
\end{array}\right]  \tag{1.9}\\
& =\left[\begin{array}{cc}
w_{+} C^{2}+w_{-} S^{2} & \left(w_{+}-w_{-}\right) C S e^{-i \phi} \\
\left(w_{+}-w_{-}\right) S C e^{i \phi} & w_{+} S^{2}+w_{-} C^{2}
\end{array}\right] .
\end{align*}
$$

The products with the Pauli matrices are

$$
\begin{align*}
\rho \sigma_{x} & =\left[\begin{array}{cc}
w_{+} C^{2}+w_{-} S^{2} & \left(w_{+}-w_{-}\right) C S e^{-i \phi} \\
\left(w_{+}-w_{-}\right) S C e^{i \phi} & w_{+} S^{2}+w_{-} C^{2}
\end{array}\right]\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]  \tag{1.10}\\
& =\left[\begin{array}{cc}
\left(w_{+}-w_{-}\right) C S e^{-i \phi} & w_{+} C^{2}+w_{-} S^{2} \\
w_{+} S^{2}+w_{-} C^{2} & \left(w_{+}-w_{-}\right) S C e^{i \phi}
\end{array}\right]
\end{align*}
$$

$$
\begin{align*}
\rho \sigma_{y} & =\left[\begin{array}{cc}
w_{+} C^{2}+w_{-} S^{2} & \left(w_{+}-w_{-}\right) C S e^{-i \phi} \\
\left(w_{+}-w_{-}\right) S C e^{i \phi} & w_{+} S^{2}+w_{-} C^{2}
\end{array}\right]\left[\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right]  \tag{1.11}\\
& =i\left[\begin{array}{cc}
\left(w_{+}-w w_{-}\right) C S e^{-i \phi} & -w_{+} C^{2}-w_{-} S^{2} \\
w_{+} S^{2}+w_{-} C^{2} & -\left(w_{+}-w_{-}\right) S C e^{i \phi}
\end{array}\right] \\
\rho \sigma_{z} & =\left[\begin{array}{cc}
w_{+} C^{2}+w_{-} S^{2} & \left(w_{+}-w_{-}\right) C S e^{-i \phi} \\
\left(w_{+}-w w_{-}\right) S C e^{i \phi} & w_{+} S^{2}+w_{-} C^{2}
\end{array}\right]\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right]  \tag{1.12}\\
& =\left[\begin{array}{cc}
w_{+} C^{2}+w_{-} S^{2} & -\left(w_{+}-w_{-}\right) C S e^{-i \phi} \\
\left(w_{+}-w_{-}\right) S C e^{i \phi} & -\left(w_{+} S^{2}+w_{-} C^{2}\right)
\end{array}\right]
\end{align*}
$$

The respective traces can be read right off the matrices

$$
\begin{align*}
& \operatorname{Tr}\left(\rho \sigma_{x}\right)=\left(w_{+}-w_{-}\right) \sin \theta \cos \phi \\
& \operatorname{Tr}\left(\rho \sigma_{y}\right)=\left(w_{+}-w_{-}\right) \sin \theta \sin \phi .  \tag{1.13}\\
& \operatorname{Tr}\left(\rho \sigma_{z}\right)=\left(w_{+}-w_{-}\right) \cos \theta
\end{align*}
$$

This gives

$$
\begin{equation*}
\left(w_{+}-w_{-}\right) \hat{\mathbf{n}}=\left(\operatorname{Tr}\left(\rho \sigma_{x}\right), \operatorname{Tr}\left(\rho \sigma_{y}\right), \operatorname{Tr}\left(\rho \sigma_{z}\right)\right), \tag{1.14}
\end{equation*}
$$

or

$$
\begin{equation*}
w_{ \pm}=\frac{1 \pm \sqrt{\operatorname{Tr}^{2}\left(\rho \sigma_{x}\right)+\operatorname{Tr}^{2}\left(\rho \sigma_{y}\right)+\operatorname{Tr}^{2}\left(\rho \sigma_{z}\right)}}{2} \tag{1.15}
\end{equation*}
$$

So, as claimed, it's possible to completely describe the ensemble weight factors using the ensemble averages of $\left[S_{x}\right],\left[S_{y}\right],\left[S_{z}\right]$. I used the Pauli matrices instead, but the difference is just an $\hbar / 2$ scaling adjustment.

Pure ensemble It turns out that doing the above is also pr. 3.10(b). Part (a) of that problem is to show how the expectation values $\left\langle S_{x}\right\rangle,\left\langle S_{y}\right\rangle,\left\langle S_{x}\right\rangle$ fully determine the spin orientation for a pure ensemble.

Suppose that the system is in the state $|\mathbf{S} \cdot \hat{\mathbf{n}} ;+\rangle$ as defined in eq. (1.6), then the expectation values of $\sigma_{x}, \sigma_{y}, \sigma_{z}$ with respect to this state are

$$
\begin{align*}
\left\langle\sigma_{x}\right\rangle & =\left[\begin{array}{ll}
\cos (\theta / 2) & \sin (\theta / 2) e^{-i \phi}
\end{array}\right]\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]\left[\begin{array}{c}
\cos (\theta / 2) \\
\sin (\theta / 2) e^{i \phi}
\end{array}\right] \\
& =\left[\begin{array}{ll}
\cos (\theta / 2) & \sin (\theta / 2) e^{-i \phi}
\end{array}\right]\left[\begin{array}{c}
\sin (\theta / 2) e^{i \phi} \\
\cos (\theta / 2)
\end{array}\right]  \tag{1.16}\\
& =\sin \theta \cos \phi,
\end{align*}
$$

$$
\begin{align*}
\left\langle\sigma_{y}\right\rangle & =\left[\begin{array}{ll}
\cos (\theta / 2) & \sin (\theta / 2) e^{-i \phi}
\end{array}\right]\left[\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right]\left[\begin{array}{c}
\cos (\theta / 2) \\
\sin (\theta / 2) e^{i \phi}
\end{array}\right] \\
& =i\left[\begin{array}{ll}
\cos (\theta / 2) & \sin (\theta / 2) e^{-i \phi}
\end{array}\right]\left[\begin{array}{c}
-\sin (\theta / 2) e^{i \phi} \\
\cos (\theta / 2)
\end{array}\right]  \tag{1.17}\\
& =\sin \theta \sin \phi, \\
\left\langle\sigma_{z}\right\rangle & =\left[\begin{array}{ll}
\cos (\theta / 2) & \sin (\theta / 2) e^{-i \phi}
\end{array}\right]\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right]\left[\begin{array}{c}
\cos (\theta / 2) \\
\sin (\theta / 2) e^{i \phi}
\end{array}\right] \\
& =\left[\begin{array}{ll}
\cos (\theta / 2) & \sin (\theta / 2) e^{-i \phi}
\end{array}\right]\left[\begin{array}{c}
\cos (\theta / 2) \\
-\sin (\theta / 2) e^{i \phi}
\end{array}\right]  \tag{1.18}\\
& =\cos \theta .
\end{align*}
$$

So we have

$$
\begin{equation*}
\hat{\mathbf{n}}=\left(\left\langle\sigma_{x}\right\rangle,\left\langle\sigma_{y}\right\rangle,\left\langle\sigma_{z}\right\rangle\right) . \tag{1.19}
\end{equation*}
$$

The spin direction is completely determined by this vector of expectation values (or equivalently, the expectation values of $S_{x}, S_{y}, S_{z}$ ).

## Bibliography

[1] Jun John Sakurai and Jim J Napolitano. Modern quantum mechanics. Pearson Higher Ed, 2014. 1

