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Plane wave ground state expectation

Problem [1] 2.18 is, for a 1D SHO, show that
(0] €™ 10) = exp (—k* (0] 2 |0) /2) . (1.1)

Despite the simple appearance of this problem, I found this quite involved to show. To do so, start
with a series expansion of the expectation
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Consider the first few values of (0| X" |0)
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Whenever the power n in X" is even, the braket can be split into a bra that has only contributions
from odd eigenstates and a ket with even eigenstates. We conclude that (0| X" |0) = 0 when n is odd.
Noting that (0| x? |0) = x3/2, this leaves
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This problem is now reduced to showing that
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where n!!=n(n —2)(n —4) - --
It looks like (0] X?™ |0) can be expanded by inserting an identity operator and proceeding recut-
sively, like

(0] X?™ |0) = (0] X? (2]11 >X2m2|0>

= (0] X2(]0) (0] + [2) (2)) X2™2|0)
= (0] X2 J0) + (0] X2 |2) (2| X*"2 |0)..

(1.11)

This has made use of the observation that (0| X? [n) = 0 for all n # 0,2. The remaining term
includes the factor
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Since v22) = (a') 2 |0), the expectation of interest can be written
(0] X*™ |0) = (0] X*™~2{0) + (0] a>X>"~2|0) .
How do we expand the second term. Let’s look at how 2 and X commute
aX =[a, X]+ Xa
= [a,a+a+} + Xa
= [a, aq + Xa
=1+ Xa,

a’X = a (aX)
=a(l+ Xa)
=a+aXa
=a+(l1+Xa)a
=20 + Xa°.

Proceeding to expand a2X" we find
a*X3 = 6X + 6X?%a + X3a?
a?X* = 12X? + 8X%a + X*a?
2> X° = 20X3 + 10X*a + X°a?
a?X® = 30X* + 12X°a + X®a?.
It appears that we have
[*X", X"a?] = Bu X" % +2nX" g,

where

,Bn = ﬁn—l +2(n — 1)/
and B, = 2. Some goofing around shows that §,, = n(n — 1), so the induction hypothesis is

(X", X"a?] = n(n — 1)X" 2 +2n X" a.

Let’s check the induction
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which concludes the induction, giving

(0] a®X™|0) = n(n — 1) (0| X"~210), (1.21)

and
(0] X>™|0) = (0] X*"=210) + (2m — 2)(2m — 3) (0] X*"~410) . (1.22)

Let
o = (0] X" |0), (1.23)

so that the recurrence relation, for 2n > 4 is

Oon = Oap—2 + (2n — 2)(2n — 3)02, 4 (1.24)

We want to show that this simplifies to

O = (20 — 1! (1.25)
The first values are

op = (0] X°|0) =1 (1.26a)

o = (0] X?]0) =1 (1.26b)

which gives us the right result for the first term in the induction
op=0m+2x1Xo0y
142 (1.27)
= 3!!

For the general induction term, consider

Oons2 = O + 2121 — 1)02, 2

=(2n —D!'+2n(2n — 1)(2n — 3)!! (1.28)
=(2n+1)(2n — 1! .
=2n+ !,

which completes the final induction. That was also the last thing required to complete the proof,
so we are done!
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