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Parallel projection of electromagnetic fields with Geometric Algebra

When computing the components of a polarized reflecting ray that were parallel or not-parallel to
the reflecting surface, it was found that the electric and magnetic fields could be written as

E = (E · p̂) p̂ + (E · q̂) q̂ = E‖p̂ + E⊥q̂ (1.1a)

H = (H · p̂) p̂ + (H · q̂) q̂ = H‖p̂ + H⊥q̂. (1.1b)

where a unit vector p̂ that lies both in the reflecting plane and in the electromagnetic plane (tan-
gential to the wave vector direction) was

p̂ =
k̂× n̂∣∣∣k̂× n̂

∣∣∣ (1.2a)

q̂ = k̂× p̂. (1.2b)

Here q̂ is perpendicular to p̂ but lies in the electromagnetic plane. This logically subdivides the
fields into two pairs, one with the electric field parallel to the reflection plane

E1 = (E · p̂) p̂ = E‖p̂

H1 = (H · q̂) q̂ = H⊥q̂,
(1.3)

and one with the magnetic field parallel to the reflection plane

H2 = (H · p̂) p̂ = H‖p̂

E2 = (E · q̂) q̂ = E⊥q̂.
(1.4)

Expressed in Geometric Algebra form, each of these pairs of fields should be thought of as compo-
nents of a single multivector field. That is

F1 = E1 + cµ0H1 I (1.5a)

F2 = E2 + cµ0H2 I (1.5b)

where the original total field is

F = E + cµ0HI. (1.6)
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In eq. (1.5a) we have a composite projection operation, finding the portion of the electric field
that lies in the reflection plane, and simultaneously finding the component of the magnetic field that
lies perpendicular to that (while still lying in the tangential plane of the electromagnetic field). In
eq. (1.5b) the magnetic field is projected onto the reflection plane and a component of the electric
field that lies in the tangential (to the wave vector direction) plane is computed.

If we operate only on the complete multivector field, can we find these composite projection field
components in a single operation, instead of working with the individual electric and magnetic
fields?

Working towards this goal, it is worthwhile to point out consequences of the assumption that the
fields are plane wave (or equivalently far field spherical waves). For such a wave we have

(1.7)

H =
1
µ0

k̂ × E

=
1
µ0

(−I)
(

k̂ ∧ E
)

=
1
µ0

(−I)
(

k̂E − k̂ · E
)

,

= − I
µ0

k̂E,

or

(1.8)µ0HI = −k̂E.

This made us of the identity a∧ b = I (a× b), and the fact that the electric field is perpendicular to
the wave vector direction. The total multivector field is

(1.9)
F = E + cµ0HI

=
(

1 + ck̂
)

E.

Expansion of magnetic field component that is perpendicular to the reflection plane gives

(1.10)

µ0H ⊥ = µ0H · q̂
=
〈(
−k̂EI

)
q̂
〉

= −
〈

k̂EI
(

k̂ × p̂
)〉

=
〈

k̂EI I
(

k̂ ∧ p̂
)〉

= −
〈

k̂Ek̂p̂
〉

=
〈

k̂k̂Ep̂
〉

= E · p̂,

so
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(1.11)F1 = (p̂ + cIq̂)E · p̂.

Since q̂k̂p̂ = I, the component of the complete multivector field in the p̂ direction is

(1.12)
F1 = (p̂ − cp̂k̂)E · p̂

= p̂(1− ck̂)E · p̂
= (1 + ck̂)p̂E · p̂.

It is reasonable to expect that F2 has a similar form, but with p̂→ q̂. This is verified by expansion

(1.13)

F2 = E⊥q̂ + c
(
µ0H‖

)
p̂I

= (E · q̂) q̂ + c
〈
−k̂EIk̂q̂I

〉 (
k̂q̂I

)
I

= (E · q̂) q̂ + c
〈

k̂Ek̂q̂
〉

k̂q̂(−1)

= (E · q̂) q̂ + c
〈

k̂E(−q̂k̂)
〉

k̂q̂(−1)

= (E · q̂) q̂ + c
〈

k̂k̂Eq̂
〉

k̂q̂

=
(

1 + ck̂
)

q̂ (E · q̂)

This and eq. (1.12) before that makes a lot of sense. The original field can be written

(1.14)F =
(

Ê + c
(

k̂ × Ê
)

I
)

E · Ê,

where the leading multivector term contains all the directional dependence of the electric and
magnetic field components, and the trailing scalar has the magnitude of the field with respect to the
reference direction Ê.

We have the same structure after projecting E onto either the p̂, or q̂ directions respectively

(1.15a)F1 =
(

p̂ + c
(

k̂ × p̂
)

I
)

E · p̂

(1.15b)F2 =
(

q̂ + c
(

k̂ × q̂
)

I
)

E · q̂.

The next question is how to achieve this projection operation directly in terms of F and p̂, q̂, with-
out resorting to expression of F in terms of E, and B. I’ve not yet been able to determine the structure
of that operation.
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