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Maxwell’s equations in tensor form with magnetic sources

Following the principle of relating new formalism to things previously learned, I’d like to know what
Maxwell’s equations look like in tensor form when magnetic sources are included. As a verification
that the previous Geometric Algebra form of Maxwell’s equation that includes magnetic sources is
correct, I’ll start with the GA form of Maxwell’s equation, find the tensor form, and then verify that
the vector form of Maxwell’s equations can be recovered from the tensor form.

Tensor form With four-vector potential A, and bivector electromagnetic field F = ∇ ∧ A, the GA
form of Maxwell’s equation is

(1.1)∇F =
J

ε0c
+ MI.

The left hand side can be unpacked into vector and trivector terms ∇F = ∇ · F +∇ ∧ F, which
happens to also separate the sources nicely as a side effect

(1.2a)∇ · F =
J

ε0c

(1.2b)∇ ∧ F = MI.

The electric source equation can be unpacked into tensor form by dotting with the four vector basic
vectors. With the usual definition Fαβ = ∂α Aβ − ∂β Aα, that is

(1.3)

γµ · (∇ · F) = γµ · (∇ · (∇ ∧ A))

= γµ ·
(

γν∂ν ·
(

γα∂α ∧ γβ Aβ
))

= γµ ·
(
γν ·

(
γα ∧ γβ

))
∂ν∂α Aβ

=
1
2

γµ ·
(
γν ·

(
γα ∧ γβ

))
∂νFαβ

=
1
2

δ
νµ
[αβ]∂νFαβ

=
1
2

∂νFνµ − 1
2

∂νFµν

= ∂νFνµ.
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So the first tensor equation is

∂νFνµ =
1

cε0
Jµ. (1.4)

To unpack the magnetic source portion of Maxwell’s equation, put it first into dual form, so that it
has four vectors on each side

(1.5)

M = − (∇ ∧ F) I

= −1
2

(∇F + F∇) I

= −1
2

(∇FI − FI∇)

= −∇ · (FI) .

Dotting with γµ gives

(1.6)

Mµ = γµ · (∇ · (−FI))

= γµ ·
(

γν∂ν ·
(
−1

2
γα ∧ γβ IFαβ

))
= −1

2

〈
γµ ·

(
γν ·

(
γα ∧ γβ I

))〉
∂νFαβ.

This scalar grade selection is a complete antisymmetrization of the indexes

(1.7)

〈
γµ ·

(
γν ·

(
γα ∧ γβ I

))〉
=
〈

γµ ·
(

γν ·
(

γαγβγ0γ1γ2γ3

))〉
=
〈

γ0γ1γ2γ3γµγνγαγβ
〉

= δ
µναβ
3210

= εµναβ,

so the magnetic source portion of Maxwell’s equation, in tensor form, is

1
2

εναβµ∂νFαβ = Mµ. (1.8)

Relating the tensor to the fields The electromagnetic field has been identified with the electric and
magnetic fields by

(1.9)F = E + cµ0HI,

or in coordinates

(1.10)
1
2

γµ ∧ γνFµν = E(a)γaγ0 + cµ0H(a)γaγ0 I.
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By forming the dot product sequence Fαβ = γβ · (γα · F), the electric and magnetic field components
can be related to the tensor components. The electric field components follow by inspection and are

(1.11)E(b) = γ0 ·
(

γ(b) · F
)

= Fb0.

The magnetic field relation to the tensor components follow from

(1.12)

Frs = Frs

= γs ·
(

γr ·
(

cµ0H(a)γaγ0 I
))

= cµ0H(a)〈γsγrγaγ0 I〉
= cµ0H(a)

〈
−��γ

0γ1γ2γ3γsγrγa��γ0

〉
= −cµ0H(a)δ[321]

sra

= cµ0H(a)εsra.

Expanding this for each pair of spacelike coordinates gives

F12 = cµ0H3ε213 = −cµ0H3 (1.13a)

F23 = cµ0H1ε321 = −cµ0H1 (1.13b)

F31 = cµ0H2ε132 = −cµ0H2, (1.13c)

or

E1 = F10

E2 = F20

E3 = F30

H1 = − 1
cµ0

F23

H2 = − 1
cµ0

F31

H3 = − 1
cµ0

F12.

(1.14)

Recover the vector equations from the tensor equations Starting with the non-dual Maxwell tensor equa-
tion, expanding the timelike index gives

(1.15)

1
cε0

J0 =
1
ε0

ρ

= ∂νFν0

= ∂1F10 + ∂2F20 + ∂3F30
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This is Gauss’s law

∇ · E = ρ/ε0. (1.16)

For a spacelike index, any one is representative. Expanding index 1 gives

(1.17)

1
cε0

J1 = ∂νFν1

=
1
c

∂tF01 + ∂2F21 + ∂3F31

= −1
c

E1 + ∂2(cµ0H3) + ∂3(−cµ0H2)

=
(
−1

c
∂E
∂t

+ cµ0∇ ×H
)
· e1.

Extending this to the other indexes and multiplying through by ε0c recovers the Ampere-Maxwell
equation (assuming linear media)

∇×H = J +
∂D
∂t

. (1.18)

The expansion of the 0th free (timelike) index of the dual Maxwell tensor equation is

(1.19)

M0 =
1
2

εναβ0∂νFαβ

= −1
2

ε0ναβ∂νFαβ

= −1
2

(∂1(F23 − F32) + ∂2(F31 − F13) + ∂3(F12 − F21))

= − (∂1F23 + ∂2F31 + ∂3F12)

= −
(

∂1(−cµ0H1) + ∂2(−cµ0H2) + ∂3(−cµ0H3)
)

,

but M0 = cρm, giving us Gauss’s law for magnetism (with magnetic charge density included)

∇ ·H = ρm/µ0. (1.20)

For the spacelike indexes of the dual Maxwell equation, only one need be computed (say 1), and
cyclic permutation will provide the rest. That is

(1.21)

M1 =
1
2

εναβ1∂νFαβ

=
1
2

(∂2 (F30 − F03)) +
1
2

(∂3 (F02 − F02)) +
1
2

(∂0 (F23 − F32))

= −∂2F30 + ∂3F20 + ∂0F23

= −∂2E3 + ∂3E2 +
1
c

∂

∂t

(
−cµ0H1

)
= −

(
∇ × E + µ0

∂H
∂t

)
· e1.
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Extending this to the rest of the coordinates gives the Maxwell-Faraday equation (as extended to
include magnetic current density sources)

∇× E = −M− µ0
∂H
∂t

. (1.22)

This takes things full circle, going from the vector differential Maxwell’s equations, to the Geo-
metric Algebra form of Maxwell’s equation, to Maxwell’s equations in tensor form, and back to the
vector form. Not only is the tensor form of Maxwell’s equations with magnetic sources now known,
the translation from the tensor and vector formalism has also been verified, and miraculously no
signs or factors of 2 were lost or gained in the process.
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