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P R E FAC E

This is an exploratory collection of notes containing worked examples of a number of introduc-
tory applications of Geometric Algebra (GA), also known as Clifford Algebra. This writing is
focused on undergraduate level physics concepts, with a target audience of somebody with an
undergraduate engineering background.

These notes are more journal than book. You’ll find lots of duplication, since I reworked
some topics from scratch a number of times. In many places I was attempting to learn both the
basic physics concepts as well as playing with how to express many of those concepts using GA
formalisms. The page count proves that I did a very poor job of weeding out all the duplication.

These notes are (dis)organized into the following chapters

• Basics and Geometry. This chapter covers a hodge-podge collection of topics, including
GA forms for traditional vector identities, Quaterions, Cauchy equations, Legendre poly-
nomials, wedge product representation of a plane, bivector and trivector geometry, torque
and more. A couple attempts at producing an introduction to GA concepts are included
(none of which I was ever happy with.)

• Projection. Here the concept of reciprocal frame vectors, using GA and traditional matrix
formalisms is developed. Projection, rejection and Moore-Penrose (generalized inverse)
operations are discussed.

• Rotation. GA Rotors, Euler angles, spherical coordinates, blade exponentials, rotation
generators, and infinitesimal rotations are all examined from a GA point of view.

• Calculus. Here GA equivalents for a number of vector calculus relations are developed,
spherical and hyperspherical volume parameterizations are derived, some questions about
the structure of divergence and curl are examined, and tangent planes and normals in 3
and 4 dimensions are examined. Wrapping up this chapter is a complete GA formulation
of the general Stokes theorem for curvilinear coordinates in Euclidean or non-Euclidean
spaces.

• General Physics. This chapter introduces a bivector form of angular momentum (instead
of a cross product), examines the components of radial velocity and acceleration, ki-
netic energy, symplectic structure, Newton’s method, and a center of mass problem for a
toroidal segment.
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I can not promise that I have explained things in a way that is good for anybody else. My
audience was essentially myself as I existed at the time of writing, so the prerequisites, both for
the mathematics and the physics, have evolved continually.

Peeter Joot peeterjoot@protonmail.com
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Part I

BA S I C S A N D G E O M E T RY





1
I N T RO D U C T O RY C O N C E P T S

Here is an attempt to provide a naturally sequenced introduction to Geometric Algebra.

1.1 the axioms

Two basic axioms are required, contraction and associative multiplication respectively

a2 = scalar

a(bc) = (ab)c = abc
(1.1)

Linearity and scalar multiplication should probably also be included for completeness, but
even with those this is a surprisingly small set of rules. The choice to impose these as the rules
for vector multiplication will be seen to have a rich set of consequences once explored. It will
take a fair amount of work to extract all the consequences of this decision, and some of that will
be done here.

1.2 contraction and the metric

Defining a2 itself requires introduction of a metric, the specification of the multiplication rules
for a particular basis for the vector space. For Euclidean spaces, a requirement that

a2 = |a|2 (1.2)

is sufficient to implicitly define this metric. However, for the Minkowski spaces of special
relativity one wants the squares of time and spatial basis vectors to be opposing in sign. Defer-
ring the discussion of metric temporarily one can work with the axioms above to discover their
implications, and in particular how these relate to the coordinate vector space constructions that
are so familiar.

3



4 introductory concepts

1.3 symmetric sum of vector products

Squaring a vector sum provides the first interesting feature of the general vector product

(a + b)2 = a2 + b2 + ab + ba (1.3)

Observe that the LHS is a scalar by the contraction identity, and on the RHS we have scalars
a2 and b2 by the same. This implies that the symmetric sum of products

ab + ba (1.4)

is also a scalar, independent of any choice of metric. Symmetric sums of this form have a
place in physics over the space of operators, often instantiated in matrix form. There one writes
this as the commutator and denotes it as

{a, b} ≡ ab + ba (1.5)

In an Euclidean space one can observe that equation 1.3 has the same structure as the law of
cosines so it should not be surprising that this symmetric sum is also related to the dot product.
For a Euclidean space where one the notion of perpendicularity can be expressed as

|a + b|2 = |a|2 + |b|2 (1.6)

we can then see that an implication of the vector product is the fact that perpendicular vectors
have the property

ab + ba = 0 (1.7)

or

ba = −ab (1.8)

This notion of perpendicularity will also be seen to make sense for non-Euclidean spaces.
Although it retracts from a purist Geometric Algebra approach where things can be done

in a coordinate free fashion, the connection between the symmetric product and the standard
vector dot product can be most easily shown by considering an expansion with respect to an
orthonormal basis.



1.4 antisymmetric product of two vectors (wedge product) 5

Lets write two vectors in an orthonormal basis as

a =
∑
µ

aµeµ

b =
∑
µ

bµeµ
(1.9)

Here the choice to utilize raised indices rather than lower for the coordinates is taken from
physics where summation is typically implied when upper and lower indices are matched as
above.

Forming the symmetric product we have

ab + ba =
∑
µ,ν

aµeµbνeν + bµeµaνeν

=
∑
µ,ν

aµbν (eµeν + eνeµ)

= 2
∑
µ

aµbµeµ2 +
∑
µ,ν

aµbν (eµeν + eνeµ)

(1.10)

For an Euclidean space we have eµ2 = 1, and eνeµ = −eµeν, so we are left with

∑
µ

aµbµ =
1
2

(ab + ba) (1.11)

This shows that we can make an identification between the symmetric product, and the anti-
commutator of physics with the dot product, and then define

a · b ≡
1
2
{a, b} =

1
2

(ab + ba) (1.12)

1.4 antisymmetric product of two vectors (wedge product)

Having identified or defined the symmetric product with the dot product we are now prepared
to examine a general product of two vectors. Employing a symmetric + antisymmetric decom-
position we can write such a general product as

ab =
1
2

(ab + ba)

a · b

+
1
2

(ab − ba)

a something b
(1.13)



6 introductory concepts

What is this remaining vector operation between the two vectors

a something b =
1
2

(ab − ba) (1.14)

One can continue the comparison with the quantum mechanics, and like the anticommutator
operator that expressed our symmetric sum in equation eq. (1.5) one can introduce a commutator
operator

[a, b] ≡ ab − ba (1.15)

The commutator however, does not naturally extend to more than two vectors, so as with
the scalar part of the vector product (the dot product part), it is desirable to make a different
identification for this part of the vector product.

One observation that we can make is that this vector operation changes sign when the opera-
tions are reversed. We have

b something a =
1
2

(ba − ab) = −a something b (1.16)

Similarly, if a and b are colinear, say b = αa, this product is zero

a something(αa) =
1
2

(a(αa) − (αa)a)

= 0
(1.17)

This complete antisymmetry, aside from a potential difference in sign, are precisely the prop-
erties of the wedge product used in the mathematics of differential forms. In this differential
geometry the wedge product of m one-forms (vectors in this context) can be defined as

a1 ∧ a2 · · · ∧ am =
1

m!

∑
ai1ai2 · · · aim sgn(π(i1i2 · · · im)) (1.18)

Here sgn(π(· · ·)) is the sign of the permutation of the indices. While we have not gotten yet
to products of more than two vectors it is helpful to know that the wedge product will have a
place in such a general product. An equation like eq. (1.18) makes a lot more sense after writing
it out in full for a few specific cases. For two vectors a1 and a2 this is

a1 ∧ a2 =
1
2
(a1a2(1) + a2a1(−1)) (1.19)
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and for three vectors this is

a1 ∧ a2 ∧ a3 =
1
6

(a1a2a3(1) + a1a3a2(−1)

+a2a1a3(−1) + a3a1a2(1)

+a2a3a1(1) + a3a2a1(−1))

(1.20)

We will see later that this completely antisymmetrized sum, the wedge product of differential
forms will have an important place in this algebra, but like the dot product it is a specific
construction of the more general vector product. The choice to identify the antisymmetric sum
with the wedge product is an action that amounts to a definition of the wedge product. Explicitly,
and complementing the dot product definition of eq. (1.12) for the dot product of two vectors,
we say

a∧ b ≡
1
2
[a, b] =

1
2

(ab − ba) (1.21)

Having made this definition, the symmetric and antisymmetric decomposition of two vectors
leaves us with a peculiar looking hybrid construction:

ab = a · b + a∧ b (1.22)

We had already seen that part of this vector product was not a vector, but was in fact a scalar.
We now see that the remainder is also not a vector but is instead something that resides in a
different space. In differential geometry this object is called a two form, or a simple element in∧2. Various labels are available for this object are available in Geometric (or Clifford) algebra,
one of which is a 2-blade. 2-vector or bivector is also used in some circumstances, but in di-
mensions greater than three there are reasons to reserve these labels for a slightly more general
construction.

The definition of eq. (1.22) is often used as the starting point in Geometric Algebra intro-
ductions. While there is value to this approach I have personally found that the non-axiomatic
approach becomes confusing if one attempts to sort out which of the many identities in the
algebra are the fundamental ones. That is why my preference is to treat this as a consequence
rather than the starting point.

1.5 expansion of the wedge product of two vectors

Many introductory geometric algebra treatments try very hard to avoid explicit coordinate treat-
ment. It is true that GA provides infrastructure for coordinate free treatment, however, this



8 introductory concepts

avoidance perhaps contributes to making the subject less accessible. Since we are so used to
coordinate geometry in vector and tensor algebra, let us take advantage of this comfort, and
express the wedge product explicitly in coordinate form to help get some comfort for it.

Employing the definition of eq. (1.21), and an orthonormal basis expansion in coordinates
for two vectors a, and b, we have

2(a∧ b) = (ab − ba)

=
∑
µ,ν

aµbνeµeν −
∑
α,β

aαbβeαeβ

=
∑
µ

aµbµ −
∑
α

aαbα

= 0

+
∑
µ,ν

aµbνeµeν −
∑
α,β

aαbβeαeβ

=
∑
µ<ν

(aµbνeµeν + aνbµeνeµ) −
∑
α<β

(aαbβeαeβ + aβbαeβeα)

= 2
∑
µ<ν

(aµbν − aνbµ)eµeν

(1.23)

So we have

a∧ b =
∑
µ<ν

∣∣∣∣∣∣∣aµ aν

bµ bν

∣∣∣∣∣∣∣ eµeν (1.24)

The similarity to the R3 vector cross product is not accidental. This similarity can be made
explicit by observing the following

e1e2 = e1e2(e3e3) = (e1e2e3)e3

e2e3 = e2e3(e1e1) = (e1e2e3)e1

e1e3 = e1e3(e2e2) = −(e1e2e3)e2

(1.25)

This common factor, a product of three normal vectors, or grade three blade, is called the
pseudoscalar for R3. We write i = e1e2e3, and can then express the R3 wedge product in terms
of the cross product

a∧ b =

∣∣∣∣∣∣∣a2 a3

b2 b3

∣∣∣∣∣∣∣ e2e3 +

∣∣∣∣∣∣∣a1 a3

b1 b3

∣∣∣∣∣∣∣ e1e3 +

∣∣∣∣∣∣∣a1 a2

b1 b2

∣∣∣∣∣∣∣ e1e2

= (e1e2e3)


∣∣∣∣∣∣∣a2 a3

b2 b3

∣∣∣∣∣∣∣ e1 −

∣∣∣∣∣∣∣a1 a3

b1 b3

∣∣∣∣∣∣∣ e2 +

∣∣∣∣∣∣∣a1 a2

b1 b2

∣∣∣∣∣∣∣ e3


(1.26)
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This is

a∧ b = i(a × b) (1.27)

With this identification we now also have a curious integrated relation where the dot and
cross products are united into a single structure

ab = a · b + i(a × b) (1.28)

1.6 vector product in exponential form

One naturally expects there is an inherent connection between the dot and cross products, espe-
cially when expressed in terms of the angle between the vectors, as in

a · b = |a||b| cos θa,b

a × b = |a||b| sin θa,bn̂a,b
(1.29)

However, without the structure of the geometric product the specifics of what connection is
is not obvious. In particular the use of eq. (1.28) and the angle relations, one can easily blunder
upon the natural complex structure of the geometric product

ab = a · b + i(a × b)

= |a||b| (cos θa,b + in̂a,b sin θa,b)
(1.30)

As we have seen pseudoscalar multiplication in R3 provides a mapping between a grade 2
blade and a vector, so this in̂ product is a 2-blade.

In R3 we also have in̂ = n̂i (exercise for reader) and also i2 = −1 (again for the reader), so
this 2-blade in̂ has all the properties of the i of complex arithmetic. We can, in fact, write

ab = a · b + i(a × b)

= |a||b| exp(in̂a,bθa,b)
(1.31)

In particular, for unit vectors a, b one is able to quaternion exponentials of this form to rotate
from one vector to the other

b = a exp(in̂a,bθa,b) (1.32)

This natural GA use of multivector exponentials to implement rotations is not restricted to
R3 or even Euclidean space, and is one of the most powerful features of the algebra.
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1.7 pseudoscalar

In general the pseudoscalar for RN is a product of N normal vectors and multiplication by such
an object maps m-blades to (N-m) blades.

For R2 the unit pseudoscalar has a negative square

(e1e2)(e1e2) = −(e2e1)(e1e2)

= −e2(e1e1)e2

= −e2e2

= −1

(1.33)

and we have seen an example of such a planar pseudoscalar in the subspace of the span of
two vectors above (where n̂i was a pseudoscalar for that subspace). In general the sign of the
square of the pseudoscalar depends on both the dimension and the metric of the space, so the
“complex” exponentials that rotate one vector into another may represent hyperbolic rotations.

For example we have for a four dimensional space the pseudoscalar square is

i2 = (e0e1e2e3)(e0e1e2e3)

= −e0e0e1e2e3e1e2e3

= −e0e0e1e2e3e1e2e3

= −e0e0e1e1e2e3e2e3

= e0e0e1e1e2e2e3e3

(1.34)

For a Euclidean space where each of the ek
2 = 1, we have i2 = 1, but for a Minkowski space

where one would have for k , 0, e0
2ek

2 = −1, we have i2 = −1
Such a mixed signature metric will allow for implementation of Lorentz transformations as

exponentials (hyperbolic) rotations in a fashion very much like the quaternionic spatial rotations
for Euclidean spaces.

It is also worth pointing out that the pseudoscalar multiplication naturally provides a mapping
operator into a dual space, as we have seen in the cross product example, mapping vectors to
bivectors, or bivectors to vectors. Pseudoscalar multiplication in fact provides an implementa-
tion of the Hodge duality operation of differential geometry.

In higher than three dimensions, such as four, this duality operation can in fact map 2-blades
to orthogonal 2-blades (orthogonal in the sense of having no common factors). Take for example
the typical example of a non-simple element from differential geometry

ω = e1 ∧ e2 + e3 ∧ e4 (1.35)
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The two blades that compose this sum have no common factors and thus cannot be formed
as the wedge product of two vectors. These two blades are orthogonal in a sense that can be
made more exact later. As this time we just wish to make the observation that the pseudoscalar
provides a natural duality operation between these two subspaces of

∧2. Take for example

ie1 ∧ e2 = e1e2e3e4e1e2

= −e1e1e2e3e4e2

= −e1e1e2e2e3e4

∝ e3e4

(1.36)

1.8 fixme: orphaned

As an exercise work out axiomatically some of the key vector identities of Geometric Algebra.
Want to at least derive the vector bivector dot product distribution identity

a · (b∧ c) = (a · b)c − (a · c)b (1.37)





2
G E O M E T R I C A L G E B R A . T H E V E RY Q U I C K E S T I N T RO D U C T I O N

2.1 motivation

An attempt to make a relatively concise introduction to Geometric (or Clifford) Algebra. Much
more complete introductions to the subject can be found in [8], [7], and [15].

2.2 axioms

We have a couple basic principles upon which the algebra is based

• Vectors can be multiplied.

• The square of a vector is the (squared) length of that vector (with appropriate generaliza-
tions for non-Euclidean metrics).

• Vector products are associative (but not necessarily commutative).

That is really all there is to it, and the rest, paraphrasing Feynman, can be figured out by
anybody sufficiently clever.

2.3 by example . the 2d case

Consider a 2D Euclidean space, and the product of two vectors a and b in that space. Utilizing
a standard orthonormal basis {e1, e2} we can write

a = e1x1 + e2x2

b = e1y1 + e2y2,
(2.1)

and let us write out the product of these two vectors ab, not yet knowing what we will end
up with. That is

ab = (e1x1 + e2x2)(e1y1 + e2y2)

= e2
1x1y1 + e2

2x2y2 + e1e2x1y2 + e2e1x2y1
(2.2)

13
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From axiom 2 we have e2
1 = e2

2 = 1, so we have

ab = x1y1 + x2y2 + e1e2x1y2 + e2e1x2y1. (2.3)

We have multiplied two vectors and ended up with a scalar component (and recognize that
this part of the vector product is the dot product), and a component that is a “something else”.
We will call this something else a bivector, and see that it is characterized by a product of non-
colinear vectors. These products e1e2 and e2e1 are in fact related, and we can see that by looking
at the case of b = a. For that we have

a2 = x1x1 + x2x2 + e1e2x1x2 + e2e1x2x1

= |a|2 + x1x2(e1e2 + e2e1)
(2.4)

Since axiom (2) requires our vectors square to equal its (squared) length, we must then have

e1e2 + e2e1 = 0, (2.5)

or

e2e1 = −e1e2. (2.6)

We see that Euclidean orthonormal vectors anticommute. What we can see with some addi-
tional study is that any colinear vectors commute, and in Euclidean spaces (of any dimension)
vectors that are normal to each other anticommute (this can also be taken as a definition of
normal).

We can now return to our product of two vectors eq. (2.3) and simplify it slightly

ab = x1y1 + x2y2 + e1e2(x1y2 − x2y1). (2.7)

The product of two vectors in 2D is seen here to have one scalar component, and one bivector
component (an irreducible product of two normal vectors). Observe the symmetric and antisym-
metric split of the scalar and bivector components above. This symmetry and antisymmetry can
be made explicit, introducing dot and wedge product notation respectively

a · b =
1
2

(ab + ba) = x1y1 + x2y2

a∧ b =
1
2

(ab − ba) = e1e2(x1yy − x2y1).
(2.8)
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so that the vector product can be written as

ab = a · b + a∧ b. (2.9)

2.4 pseudoscalar

In many contexts it is useful to introduce an ordered product of all the unit vectors for the space
is called the pseudoscalar. In our 2D case this is

i = e1e2, (2.10)

a quantity that we find behaves like the complex imaginary. That can be shown by considering
its square

(e1e2)2 = (e1e2)(e1e2)

= e1(e2e1)e2

= −e1(e1e2)e2

= −(e1e1)(e2e2)

= −12

= −1

(2.11)

Here the anticommutation of normal vectors property has been used, as well as (for the first
time) the associative multiplication axiom.

In a 3D context, you will see the pseudoscalar in many places (expressing the normals to
planes for example). It also shows up in a number of fundamental relationships. For example, if
one writes

I = e1e2e3 (2.12)

for the 3D pseudoscalar, then it is also possible to show

ab = a · b + I(a × b) (2.13)

something that will be familiar to the student of QM, where we see this in the context of Pauli
matrices. The Pauli matrices also encode a Clifford algebraic structure, but we do not need an
explicit matrix representation to do so.
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2.5 rotations

Very much like complex numbers we can utilize exponentials to perform rotations. Rotating in
a sense from e1 to e2, can be expressed as

aeiθ = (e1x1 + e2x2)(cos θ + e1e2 sin θ)

= e1(x1 cos θ − x2 sin θ) + e2(x2 cos θ + x1 sin θ)
(2.14)

More generally, even in N dimensional Euclidean spaces, if a is a vector in a plane, and û
and v̂ are perpendicular unit vectors in that plane, then the rotation through angle θ is given by

a→ aeûv̂θ. (2.15)

This is illustrated in fig. 2.1

û

v̂

a

aeûv̂θ

θ

Figure 2.1: Plane rotation

Notice that we have expressed the rotation here without utilizing a normal direction for the
plane. The sense of the rotation is encoded by the bivector ûv̂ that describes the plane and
the orientation of the rotation (or by duality the direction of the normal in a 3D space). By
avoiding a requirement to encode the rotation using a normal to the plane we have an method
of expressing the rotation that works not only in 3D spaces, but also in 2D and greater than 3D
spaces, something that is not possible when we restrict ourselves to traditional vector algebra
(where quantities like the cross product can not be defined in a 2D or 4D space, despite the fact
that things they may represent, like torque are planar phenomena that do not have any intrinsic
requirement for a normal that falls out of the plane.).

When a does not lie in the plane spanned by the vectors û and v̂ , as in fig. 2.2, we must
express the rotations differently. A rotation then takes the form

a→ e−ûv̂θ/2aeûv̂θ/2. (2.16)
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û

v̂

aa′

θ

Figure 2.2: 3D rotation

In the 2D case, and when the vector lies in the plane this reduces to the one sided complex
exponential operator used above. We see these types of paired half angle rotations in QM, and
they are also used extensively in computer graphics under the guise of quaternions.





3
A N ( E A R L I E R ) AT T E M P T T O I N T U I T I V E LY I N T RO D U C E T H E D OT,
W E D G E , C RO S S , A N D G E O M E T R I C P RO D U C T S

3.1 motivation

Both the NFCM and GAFP books have axiomatic introductions of the generalized (vector,
blade) dot and wedge products, but there are elements of both that I was unsatisfied with. Per-
haps the biggest issue with both is that they are not presented in a dumb enough fashion.

NFCM presents but does not prove the generalized dot and wedge product operations in terms
of symmetric and antisymmetric sums, but it is really the grade operation that is fundamental.
You need that to define the dot product of two bivectors for example.

GAFP axiomatic presentation is much clearer, but the definition of generalized wedge product
as the totally antisymmetric sum is a bit strange when all the differential forms book give such
a different definition.

Here I collect some of my notes on how one starts with the geometric product action on
colinear and perpendicular vectors and gets the familiar results for two and three vector products.
I may not try to generalize this, but just want to see things presented in a fashion that makes
sense to me.

3.2 introduction

The aim of this document is to introduce a “new” powerful vector multiplication operation, the
geometric product, to a student with some traditional vector algebra background.

The geometric product, also called the Clifford product 1, has remained a relatively obscure
mathematical subject. This operation actually makes a great deal of vector manipulation simpler
than possible with the traditional methods, and provides a way to naturally expresses many geo-
metric concepts. There is a great deal of information available on the subject, however most of
it is targeted for those with a university graduate school background in physics or mathematics.
That level of mathematical sophistication should not required to understand the subject.

It is the author’s opinion that this could be dumbed down even further, so that it would be
palatable for somebody without any traditional vector algebra background.

1 After William Clifford (1845-1879).

19
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3.3 what is multiplication?

The operations of vector addition, subtraction and numeric multiplication have the usual defi-
nitions (addition defined in terms of addition of coordinates, and numeric multiplication as a
scaling of the vector retaining its direction). Multiplication and division of vectors is often de-
scribed as “undefined”. It is possible however, to define a multiplication, or division operation
for vectors, in a natural geometric fashion.

What meaning should be given to multiplication or division of vectors?

3.3.1 Rules for multiplication of numbers

Assuming no prior knowledge of how to multiply two vectors (such as the dot, cross, or wedge
products to be introduced later) consider instead the rules for multiplication of numbers.

1. Product of two positive numbers is positive. Any consideration of countable sets of ob-
jects justifies this rule.

2. Product of a positive and negative number is negative. Example: multiplying a debt (neg-
ative number) increases the amount of the debt.

3. Product of a negative and negative number is positive.

4. Multiplication is distributive. Product of a sum is the sum of the products. 2

a(b + c) = ab + ac (3.1)

(a + b)c = ac + bc (3.2)

5. Multiplication is associative. Changing the order that multiplication is grouped by does
not change the result.

(ab)c = a(bc) (3.3)

2 The name of this property is not important and no student should ever be tested on it. It is a word like dividand
which countless countless school kids are forced to memorize. Like dividand it is perfectly acceptable to forget it
after the test because nobody has to know it to perform division. Since most useful sorts of multiplications have this
property this is the least important of the named multiplication properties. This word exists mostly so that authors
of math books can impress themselves writing phrases like “a mathematical entity that behaves this way is left and
right distributive with respect to addition”.
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6. Multiplication is commutative. Switching the order of multiplication does not change the
result.

ab = ba (3.4)

Unless the reader had an exceptionally gifted grade three teacher it is likely that rule three was
presented without any sort of justification or analogy. This can be considered as a special case
of the previous rule. Geometrically, a multiplication by -1 results in an inversion on the number
line. If one considers the number line to be a line in space, then this is a 180 degree rotation.
Two negative multiplications results in a 360 degree rotation, and thus takes the number back
to its original positive or negative segment on its “number line”.

3.3.2 Rules for multiplication of vectors with the same direction

Having identified the rules for multiplication of numbers, one can use these to define multipli-
cation rules for a simple case, one dimensional vectors. Conceptually a one dimensional vector
space can be thought of like a number line, or the set of all numbers as the set of all scalar
multiples of a unit vector of a particular direction in space.

It is reasonable to expect the rules for multiplication of two vectors with the same direction to
have some of the same characteristics as multiplication of numbers. Lets state this algebraically
writing the directed distance from the origin to the points a and b in a vector notation

a = ae
b = be

(3.5)

where e is the unit vector alone the line in question.
The product of these two vectors is

ab = abee (3.6)

Although no specific meaning has yet been given to the ee term yet, one can make a few
observations about a product of this form.

1. It is commutative, since ab = ba = abee.

2. It is distributive since numeric multiplication is.

3. The product of three such vectors is distributive (no matter the grouping of the multipli-
cations there will be a numeric factor and a eee factor.
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These properties are consistent with half the properties of numeric multiplication. If the other
half of the numeric multiplication rules are assumed to also apply we have

1. Product of two vectors in the same direction is positive (rules 1 and 3 above).

2. Product of two vectors pointing in opposite directions is negative (rule 2 above).

This can only be possible by giving the following meaning to the square of a unit vector

ee = 1 (3.7)

Alternately, one can state that the square of a vector is that vectors squared length.

aa = a2 (3.8)

This property, as well as the associative and distributive properties are the defining properties
of the geometric product.

It will be shown shortly that in order to retain this squared vector length property for vectors
with components in different directions it will be required to drop the commutative property of
numeric multiplication:

ab , ba (3.9)

This is a choice that will later be observed to have important consequences. There are many
types of multiplications that do not have the commutative property. Matrix multiplication is not
even necessarily defined when the order is switched. Other multiplication operations (wedge
and cross products) change sign when the order is switched.

Another important choice has been made to require the product of two vectors not be a vector
itself. This also breaks from the number line analogy since the product of two numbers is still
a number. However, it is notable that in order to take roots of a negative number one has to
introduce a second number line (the i, or imaginary axis), and so even for numbers, products
can be “different” than their factors. Interestingly enough, it will later be possible to show that
the choice to not require a vector product to be a vector allow complex numbers to be defined
directly in terms of the geometric product of two vectors in a plane.

3.4 axioms

The previous discussion attempts to justify the choice of the following set of axioms for multi-
plication of vectors
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1. linearity

2. associativity

3. contraction

Square of a vector is its squared length.

This last property is weakened in some circumstances (for example, an alternate definition of
vector length is desirable for relativistic calculations.)

3.5 dot product

One can express the dot product in terms of these axioms. This follows by calculating the
length of a sum or difference of vectors, starting with the requirement that the vector square is
the squared length of that vector.

Given two vectors a and b, their sum c = a + b has squared length:

c2 = (a + b)(a + b) = a2 + ba + ab + b2. (3.10)

We do not have any specific meaning for the product of vectors, but eq. (3.10) shows that the
symmetric sum of such a product:

ba + ab = scalar (3.11)

since the RHS is also a scalar.
Additionally, if a and b are perpendicular, then we must also have:

a2 + b2 = a2 + b2. (3.12)

This implies a rule for vector multiplication of perpendicular vectors

ba + ab = 0 (3.13)

Or,

ba = −ab. (3.14)
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Note that eq. (3.14) does not assign any meaning to this product of vectors when they per-
pendicular. Whatever that meaning is, the entity such a perpendicular vector product produces
changes sign with commutation.

Performing the same length calculation using standard vector algebra shows that we can
identify the symmetric sum of vector products with the dot product:

‖c‖2 = (a + b) · (a + b) = ‖a‖2 + 2a · b + ‖b‖2. (3.15)

Thus we can make the identity:

a · b =
1
2

(ab + ba) (3.16)

3.6 coordinate expansion of the geometric product

A powerful feature of geometric algebra is that it allows for coordinate free results, and the
avoidance of basis selection that coordinates require. While this is true, explicit coordinate
expansion, especially initially while making the transition from coordinate based vector algebra,
is believed to add clarity to the subject.

Writing a pair of vectors in coordinate vector notation:

a =
∑

i

aiei (3.17)

b =
∑

j

b je j (3.18)

Despite not yet knowing what meaning to give to the geometric product of two general (non-
colinear) vectors, given the axioms above and their consequences we actually have enough
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information to completely expand the geometric product of two vectors in terms of these coor-
dinates:

ab =
∑

i j

aib jeie j

=
∑
i= j

aib jeie j +
∑
i, j

aib jeie j

=
∑

i

aibieiei +
∑
i< j

aib jeie j +
∑
j<i

aib jeie j

=
∑

i

aibi +
∑
i< j

aib jeie j + a jbie jei

=
∑

i

aibi +
∑
i< j

(aib j − bia j)eie j

(3.19)

This can be summarized nicely in terms of determinants:

ab =
∑

i

aibi +
∑
i< j

∣∣∣∣∣∣∣ai a j

bi b j

∣∣∣∣∣∣∣ eie j (3.20)

This shows, without requiring the “triangle law” expansion of eq. (3.15), that the geometric
product has a scalar component that we recognize as the Euclidean vector dot product. It also
shows that the remaining bit is a “something else” component. This “something else” is called
a bivector. We do not yet know what this bivector is or what to do with it, but will come back to
that.

Observe that an interchange of a and b leaves the scalar part of equation eq. (3.20) unaltered
(ie: it is symmetric), whereas an interchange inverts the bivector (ie: it is the antisymmetric
part).

3.7 some specific examples to get a feel for things

Moving from the abstract, consider a few specific geometric product example.

• Product of two non-colinear non-orthogonal vectors.

(e1 + 2e2)(e1 − e2) = e1e1 − 2e2e2 + 2e2e1 − e1e2 = −1 + 3e2e1 (3.21)

Such a product produces both scalar and bivector parts.
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• Squaring a bivector

(e1e2)2 = (e1e2)(−e2e1) = −e1(e2e2)e1 = −e1e1 = −1 (3.22)

This particular bivector squares to minus one very much like the imaginary number i.

• Product of two perpendicular vectors.

(e1 + e2)(e1 − e2) = 2e2e1 (3.23)

Such a product generates just a bivector term.

• Product of a bivector and a vector in the plane.

(xe1 + ye2)e1e2 = xe2 − ye1 (3.24)

This rotates the vector counterclockwise by 90 degrees.

• General R3 geometric product of two vectors.

xy = (x1e1 + x2e2 + x3e3)(y1e1 + y2e2 + y3e3) (3.25)

= x · y +

∣∣∣∣∣∣∣x2 x3

y2 y3

∣∣∣∣∣∣∣ e2e3 +

∣∣∣∣∣∣∣x1 x3

y1 y3

∣∣∣∣∣∣∣ e1e3 +

∣∣∣∣∣∣∣x1 x2

y1 y2

∣∣∣∣∣∣∣ e1e2 (3.26)

Or,

xy = x · y +

∣∣∣∣∣∣∣∣∣∣∣
e2e3 e3e1 e1e2

x1 x2 x3

y1 y2 y3

∣∣∣∣∣∣∣∣∣∣∣ (3.27)

Observe that if one identifies e2e3, e3e1, and e1e2 with vectors e1, e2, and e3 respectively,
this second term is the cross product. A precise way to perform this identification will be
described later.

The key thing to observe here is that the structure of the cross product is naturally asso-
ciated with the geometric product. One can think of the geometric product as a complete
product including elements of both the dot and cross product. Unlike the cross product
the geometric product is also well defined in two dimensions and greater than three.

These examples are all somewhat random, but give a couple hints of results to come.
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3.8 antisymmetric part of the geometric product

Having identified the symmetric sum of vector products with the dot product we can write the
geometric product of two arbitrary vectors in terms of this and its difference

ab =
1
2

(ab + ba) +
1
2

(ab − ba)

= a · b + f (a,b)
(3.28)

Let us examine this second term, the bivector, a mapping of a pair of vectors into a different
sort of object of yet unknown properties.

f (a, ka) =
1
2

(aka − kaa) = 0 (3.29)

Property: Zero when the vectors are colinear.

f (a, ka + b) =
1
2

(a(ka + b) − (ka + mb)a) = f (a,b) (3.30)

Property: colinear contributions are rejected.

f (αa, βb) =
1
2

(αaβb − βbαa) = αβ f (a,b) (3.31)

Property: bilinearity.

f (b, a) =
1
2

(ba − ab) = −
1
2

(ab − ba) = − f (a,b) (3.32)

Property: Interchange inverts.
Operationally, these are in fact the properties of what in the calculus of differential forms is

called the wedge product (uncoincidentally, these are also all properties of the cross product as
well.)

Because the properties are identical the notation from differential forms is stolen, and we
write

a∧ b =
1
2

(ab − ba) (3.33)

And as mentioned, the object that this wedge product produces from two vectors is called a
bivector.
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Strictly speaking the wedge product of differential calculus is defined as an alternating, asso-
ciative, multilinear form. We have here bilinear, not multilinear and associativity is not mean-
ingful until more than two factors are introduced, however when we get to the product of more
than three vectors, we will find that the geometric vector product produces an entity with all of
these properties.

Returning to the product of two vectors we can now write

ab = a · b + a∧ b (3.34)

This is often used as the initial definition of the geometric product.

3.9 yes , but what is that wedge product thing

Combination of the symmetric and antisymmetric decomposition in eq. (3.34) shows that the
product of two vectors according to the axioms has a scalar part and a bivector part. What is
this bivector part geometrically?

One can show that the equation of a plane can be written in terms of bivectors. One can also
show that the area of the parallelogram spanned by two vectors can be expressed in terms of the
“magnitude” of a bivector. Both of these show that a bivector characterizes a plane and can be
thought of loosely as a “plane vector”.

Neither the plane equation or the area result are hard to show, but we will get to those later.
A more direct way to get an intuitive feel for the geometric properties of the bivector can be
obtained by first examining the square of a bivector.

By subtracting the projection of one vector a from another b, one can form the rejection of a
from b:

b′ = b − (b · â)â (3.35)

With respect to the dot product, this vector is orthogonal to a. Since a∧ â = 0, this allows us
to write the wedge product of vectors a and b as the direct product of two orthogonal vectors

a∧ b = a∧ (b − (b · â)â))

= a∧ b′

= ab′

= −b′a

(3.36)
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The square of the bivector can then be written

(a∧ b)2 = (ab′)(−b′a)

= −a2(b′)2.
(3.37)

Thus the square of a bivector is negative. It is natural to define a bivector norm:

|a∧ b| =
√
−(a∧ b)2 =

√
(a∧ b)(b∧ a) (3.38)

Dividing by this norm we have an entity that acts precisely like the imaginary number i.
Looking back to eq. (3.34) one can now assign additional meaning to the two parts. The first,

the dot product, is a scalar (ie: a real number), and a second part, the wedge product, is a pure
imaginary term. Provided a ∧ b , 0, we can write i = a∧b

|a∧b| and express the geometric product
in complex number form:

ab = a · b + i|a∧ b| (3.39)

The complex number system is the algebra of the plane, and the geometric product of two
vectors can be used to completely characterize the algebra of an arbitrarily oriented plane in a
higher order vector space.

It actually will be very natural to define complex numbers in terms of the geometric product,
and we will see later that the geometric product allows for the ad-hoc definition of “complex
number” systems according to convenience in many ways.

We will also see that generalizations of complex numbers such as quaternion algebras also
find their natural place as specific instances of geometric products.

Concepts familiar from complex numbers such as conjugation, inversion, exponentials as
rotations, and even things like the residue theory of complex contour integration, will all have a
natural geometric algebra analogue.

We will return to this, but first some more detailed initial examination of the wedge product
properties is in order, as is a look at the product of greater than two vectors.





4
C O M PA R I S O N O F M A N Y T R A D I T I O NA L V E C T O R A N D G A
I D E N T I T I E S

4.1 three dimensional vector relationships vs n dimensional equivalents

Here are some comparisons between standard R3 vector relations and their corresponding
wedge and geometric product equivalents. All the wedge and geometric product equivalents
here are good for more than three dimensions, and some also for two. In two dimensions the
cross product is undefined even if what it describes (like torque) is a perfectly well defined in a
plane without introducing an arbitrary normal vector outside of the space.

Many of these relationships only require the introduction of the wedge product to generalize,
but since that may not be familiar to somebody with only a traditional background in vector
algebra and calculus, some examples are given.

4.1.1 wedge and cross products are antisymmetric

v × u = −(u × v) (4.1)

v∧ u = −(u∧ v) (4.2)

4.1.2 wedge and cross products are zero when identical

u × u = 0 (4.3)

u∧ u = 0 (4.4)

4.1.3 wedge and cross products are linear

These are both linear in the first variable

(v + w) ×w = u ×w + v ×w (4.5)

31
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(v + w)∧w = u∧w + v∧w (4.6)

and are linear in the second variable

u × (v + w) = u × v + u ×w (4.7)

u∧ (v + w) = u∧ v + u∧w (4.8)

4.1.4 In general, cross product is not associative, but the wedge product is

(u × v) ×w , u × (v ×w) (4.9)

(u∧ v)∧w = u∧ (v∧w) (4.10)

4.1.5 Wedge and cross product relationship to a plane

u × v is perpendicular to plane containing u and v. u ∧ v is an oriented representation of the
plane containing u and v.

4.1.6 norm of a vector

The norm (length) of a vector is defined in terms of the dot product

‖u‖2 = u · u (4.11)

Using the geometric product this is also true, but this can be also be expressed more com-
pactly as

‖u‖2 = u2 (4.12)

This follows from the definition of the geometric product and the fact that a vector wedge
product with itself is zero

u u = u · u + u∧ u = u · u (4.13)
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4.1.7 Lagrange identity

In three dimensions the product of two vector lengths can be expressed in terms of the dot and
cross products

‖u‖2‖v‖2 = (u · v)2 + ‖u × v‖2 (4.14)

The corresponding generalization expressed using the geometric product is

‖u‖2‖v‖2 = (u · v)2 − (u∧ v)2 (4.15)

This follows from by expanding the geometric product of a pair of vectors with its reverse

(uv)(vu) = (u · v + u∧ v)(u · v − u∧ v) (4.16)

4.1.8 determinant expansion of cross and wedge products

u × v =
∑
i< j

∣∣∣∣∣∣∣ui u j

vi v j

∣∣∣∣∣∣∣ ei × e j (4.17)

u∧ v =
∑
i< j

∣∣∣∣∣∣∣ui u j

vi v j

∣∣∣∣∣∣∣ ei ∧ e j (4.18)

Without justification or historical context, traditional linear algebra texts will often define the
determinant as the first step of an elaborate sequence of definitions and theorems leading up to
the solution of linear systems, Cramer’s rule and matrix inversion.

An alternative treatment is to axiomatically introduce the wedge product, and then demon-
strate that this can be used directly to solve linear systems. This is shown below, and does not
require sophisticated math skills to understand.

It is then possible to define determinants as nothing more than the coefficients of the wedge
product in terms of "unit k-vectors" (ei ∧ e j terms) expansions as above.

A one by one determinant is the coefficient of e1 for an R1 1-vector.
A two-by-two determinant is the coefficient of e1 ∧ e2 for an R2 bivector
A three-by-three determinant is the coefficient of e1 ∧ e2 ∧ e3 for an R3 trivector
When linear system solution is introduced via the wedge product, Cramer’s rule follows

as a side effect, and there is no need to lead up to the end results with definitions of minors,
matrices, matrix invertablity, adjoints, cofactors, Laplace expansions, theorems on determinant
multiplication and row column exchanges, and so forth.
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4.1.9 Equation of a plane

For the plane of all points r through the plane passing through three independent points r0, r1,
and r2, the normal form of the equation is

((r2 − r0) × (r1 − r0)) · (r − r0) = 0 (4.19)

The equivalent wedge product equation is

(r2 − r0)∧ (r1 − r0)∧ (r − r0) = 0 (4.20)

4.1.10 Projective and rejective components of a vector

For three dimensions the projective and rejective components of a vector with respect to an
arbitrary non-zero unit vector, can be expressed in terms of the dot and cross product

v = (v · û)û + û × (v × û) (4.21)

For the general case the same result can be written in terms of the dot and wedge product and
the geometric product of that and the unit vector

v = (v · û)û + (v∧ û)û (4.22)

It is also worthwhile to point out that this result can also be expressed using right or left
vector division as defined by the geometric product

v = (v · u)
1
u

+ (v∧ u)
1
u

(4.23)

v =
1
u

(u · v) +
1
u

(u∧ v) (4.24)

4.1.11 Area (squared) of a parallelogram is norm of cross product

A2 = ‖u × v‖2 =
∑
i< j

∣∣∣∣∣∣∣ui u j

vi v j

∣∣∣∣∣∣∣
2

(4.25)
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and is the negated square of a wedge product

A2 = −(u∧ v)2 =
∑
i< j

∣∣∣∣∣∣∣ui u j

vi v j

∣∣∣∣∣∣∣
2

(4.26)

Note that this squared bivector is a geometric product.

4.1.12 Angle between two vectors

(sin θ)2 =
‖u × v‖2

‖u‖2‖v‖2
(4.27)

(sin θ)2 = −
(u∧ v)2

u2v2
(4.28)

4.1.13 Volume of the parallelepiped formed by three vectors

V2 = ‖(u × v) ·w‖2 =

∣∣∣∣∣∣∣∣∣∣∣
u1 u2 u3

v1 v2 v3

w1 w2 w3

∣∣∣∣∣∣∣∣∣∣∣
2

(4.29)

V2 = −(u∧ v∧w)2 = −


∑

i< j<k

∣∣∣∣∣∣∣∣∣∣∣
ui u j uk

vi v j vk

wi w j wk

∣∣∣∣∣∣∣∣∣∣∣ êi ∧ ê j ∧ êk


2

=
∑

i< j<k

∣∣∣∣∣∣∣∣∣∣∣
ui u j uk

vi v j vk

wi w j wk

∣∣∣∣∣∣∣∣∣∣∣
2

(4.30)

4.2 some properties and examples

Some fundamental geometric algebra manipulations will be provided below, showing how this
vector product can be used in calculation of projections, area, and rotations. How some of
these tie together and correlate concepts from other branches of mathematics, such as complex
numbers, will also be shown.

In some cases these examples provide details used above in the cross product and geometric
product comparisons.
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4.2.1 Inversion of a vector

One of the powerful properties of the Geometric product is that it provides the capability to
express the inverse of a non-zero vector. This is expressed by:

a−1 =
a
aa

=
a
‖a‖2

. (4.31)

4.2.2 dot and wedge products defined in terms of the geometric product

Given a definition of the geometric product in terms of the dot and wedge products, adding and
subtracting ab and ba demonstrates that the dot and wedge product of two vectors can also be
defined in terms of the geometric product

4.2.3 The dot product

a · b =
1
2

(ab + ba) (4.32)

This is the symmetric component of the geometric product. When two vectors are colinear
the geometric and dot products of those vectors are equal.

As a motivation for the dot product it is normal to show that this quantity occurs in the
solution of the length of a general triangle where the third side is the vector sum of the first and
second sides c = a + b.

‖c‖2 =
∑

i

(ai + bi)2 = ‖a‖2 + ‖b‖2 + 2
∑

i

aibi (4.33)

The last sum is then given the name the dot product and other properties of this quantity are
then shown (projection, angle between vectors, ...).

This can also be expressed using the geometric product

c2 = (a + b)(a + b) = a2 + b2 + (ab + ba) (4.34)

By comparison, the following equality exists

∑
i

aibi =
1
2

(ab + ba) (4.35)
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Without requiring expansion by components one can define the dot product exclusively in
terms of the geometric product due to its properties of contraction, distribution and associativity.
This is arguably a more natural way to define the geometric product. Addition of two similar
terms is not immediately required, especially since one of those terms is the wedge product
which may also be unfamiliar.

4.2.4 The wedge product

a∧ b =
1
2

(ab − ba) (4.36)

This is the antisymmetric component of the geometric product. When two vectors are orthog-
onal the geometric and wedge products of those vectors are equal.

Switching the order of the vectors negates this antisymmetric geometric product component,
and contraction property shows that this is zero if the vectors are equal. These are the defining
properties of the wedge product.

4.2.5 Note on symmetric and antisymmetric dot and wedge product formulas

A generalization of the dot product that allows computation of the component of a vector "in the
direction" of a plane (bivector), or other k-vectors can be found below. Since the signs change
depending on the grades of the terms being multiplied, care is required with the formulas above
to ensure that they are only used for a pair of vectors.

4.2.6 Reversing multiplication order. Dot and wedge products compared to the real and imag-
inary parts of a complex number

Reversing the order of multiplication of two vectors, has the effect of the inverting the sign of
just the wedge product term of the product.

It is not a coincidence that this is a similar operation to the conjugate operation of complex
numbers.

The reverse of a product is written in the following fashion

ba = (ab)† (4.37)

cba = (abc)† (4.38)
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Expressed this way the dot and wedge products are

a · b =
1
2

(ab + (ab)†) (4.39)

This is the symmetric component of the geometric product. When two vectors are colinear
the geometric and dot products of those vectors are equal.

a∧ b =
1
2

(ab − (ab)†) (4.40)

These symmetric and antisymmetric pairs, the dot and wedge products extract the scalar
and bivector components of a geometric product in the same fashion as the real and imagi-
nary components of a complex number are also extracted by its symmetric and antisymmetric
components

Re(z) =
1
2

(z + z) (4.41)

Im(z) =
1
2

(z − z) (4.42)

This extraction of components also applies to higher order geometric product terms. For
example

a∧ b∧ c =
1
2

(abc − (abc)†) =
1
2

(bca − (bca)†) =
1
2

(cab − (cab)†) (4.43)

4.2.7 Orthogonal decomposition of a vector

Using the Gram-Schmidt process a single vector can be decomposed into two components with
respect to a reference vector, namely the projection onto a unit vector in a reference direction,
and the difference between the vector and that projection.

With, û = u/‖u‖, the projection of v onto û is

Projû v = û(û · v) (4.44)

Orthogonal to that vector is the difference, designated the rejection,

v − û(û · v) =
1

‖u‖2
(‖u‖2v − u(u · v)) (4.45)
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The rejection can be expressed as a single geometric algebraic product in a few different ways

u
u2 (uv − u · v) =

1
u

(u∧ v) = û(û∧ v) = (v∧ û)û (4.46)

The similarity in form between between the projection and the rejection is notable. The sum
of these recovers the original vector

v = û(û · v) + û(û∧ v) (4.47)

Here the projection is in its customary vector form. An alternate formulation is possible that
puts the projection in a form that differs from the usual vector formulation

v =
1
u

(u · v) +
1
u

(u∧ v) = (v · u)
1
u

+ (v∧ u)
1
u

(4.48)

4.2.8 A quicker way to the end result

Working backwards from the end result, it can be observed that this orthogonal decomposition
result can in fact follow more directly from the definition of the geometric product itself.

v = ûûv = û(û · v + û∧ v) (4.49)

With this approach, the original geometrical consideration is not necessarily obvious, but it
is a much quicker way to get at the same algebraic result.

However, the hint that one can work backwards, coupled with the knowledge that the wedge
product can be used to solve sets of linear equations, 1 the problem of orthogonal decomposition
can be posed directly,

Let v = au + x, where u · x = 0. To discard the portions of v that are colinear with u, take the
wedge product

u∧ v = u∧ (au + x) = u∧ x (4.50)

Here the geometric product can be employed

u∧ v = u∧ x = ux − u · x = ux (4.51)

1 http://www.grassmannalgebra.info/grassmannalgebra/book/bookpdf/TheExteriorProduct.pdf
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Because the geometric product is invertible, this can be solved for x

x =
1
u

(u∧ v) (4.52)

The same techniques can be applied to similar problems, such as calculation of the component
of a vector in a plane and perpendicular to the plane.

4.2.9 Area of parallelogram spanned by two vectors

Figure 4.1: parallelogramArea

As depicted in fig. 4.1, one can see that the area of a parallelogram spanned by two vectors
is computed from the base times height. In the figure u was picked as the base, with length
‖u‖. Designating the second vector v, we want the component of v perpendicular to û for the
height. An orthogonal decomposition of v into directions parallel and perpendicular to û can be
performed in two ways.

v = vûû = (v · û)û + (v∧ û)û
= ûûv = û(û · v) + û(û∧ v)

(4.53)

The height is the length of the perpendicular component expressed using the wedge as either
û(û∧ v) or (v∧ û)û.
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Multiplying base times height we have the parallelogram area

A(u, v) = ‖u‖‖û(û∧ v)‖

= ‖û(u∧ v)‖
(4.54)

Since the squared length of an Euclidean vector is the geometric square of that vector, we can
compute the squared area of this parallogram by squaring this single scaled vector

A2 = (û(u∧ v))2 (4.55)

Utilizing both encodings of the perpendicular to û component of v computed above we have
for the squared area

A2 = (û(u∧ v))2

= ((v∧ u)û)(û(u∧ v))

= (v∧ u)(u∧ v)

(4.56)

Since u∧ v = −v∧ u, we have finally

A2 = −(u∧ v)2 (4.57)

There are a few things of note here. One is that the parallelogram area can easily be expressed
in terms of the square of a bivector. Another is that the square of a bivector has the same property
as a purely imaginary number, a negative square.

It can also be noted that a vector lying completely within a plane anticommutes with the
bivector for that plane. More generally components of vectors that lie within a plane commute
with the bivector for that plane while the perpendicular components of that vector commute.
These commutation or anticommutation properties depend both on the vector and the grade of
the object that one attempts to commute it with (these properties lie behind the generalized
definitions of the dot and wedge product to be seen later).

4.2.10 Expansion of a bivector and a vector rejection in terms of the standard basis

If a vector is factored directly into projective and rejective terms using the geometric product
v = 1

u (u · v + u∧ v), then it is not necessarily obvious that the rejection term, a product of vector
and bivector is even a vector. Expansion of the vector bivector product in terms of the standard
basis vectors has the following form
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Let

r =
1
u

(u∧ v) =
u
u2 (u∧ v) =

1

‖u‖2
u(u∧ v) (4.58)

It can be shown that

r =
1

‖u‖2
∑
i< j

∣∣∣∣∣∣∣ui u j

vi v j

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣ui u j

ei e j

∣∣∣∣∣∣∣ (4.59)

(a result that can be shown more easily straight from r = v − û(û · v)).

The rejective term is perpendicular to u, since

∣∣∣∣∣∣∣ui u j

ui u j

∣∣∣∣∣∣∣ = 0 implies r · u = 0.

The magnitude of r, is

‖r‖2 = r · v =
1

‖u‖2
∑
i< j

∣∣∣∣∣∣∣ui u j

vi v j

∣∣∣∣∣∣∣
2

(4.60)

.
So, the quantity

‖r‖2‖u‖2 =
∑
i< j

∣∣∣∣∣∣∣ui u j

vi v j

∣∣∣∣∣∣∣
2

(4.61)

is the squared area of the parallelogram formed by u and v.
It is also noteworthy that the bivector can be expressed as

u∧ v =
∑
i< j

∣∣∣∣∣∣∣ui u j

vi v j

∣∣∣∣∣∣∣ ei ∧ e j (4.62)

.
Thus is it natural, if one considers each term ei ∧ e j as a basis vector of the bivector space, to

define the (squared) "length" of that bivector as the (squared) area.
Going back to the geometric product expression for the length of the rejection 1

u (u ∧ v) we
see that the length of the quotient, a vector, is in this case is the "length" of the bivector divided
by the length of the divisor.

This may not be a general result for the length of the product of two k-vectors, however it
is a result that may help build some intuition about the significance of the algebraic operations.
Namely,

When a vector is divided out of the plane (parallelogram span) formed from it and another
vector, what remains is the perpendicular component of the remaining vector, and its length is
the planar area divided by the length of the vector that was divided out.
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4.2.11 Projection and rejection of a vector onto and perpendicular to a plane

Like vector projection and rejection, higher dimensional analogs of that calculation are also
possible using the geometric product.

As an example, one can calculate the component of a vector perpendicular to a plane and the
projection of that vector onto the plane.

Let w = au + bv + x, where u · x = v · x = 0. As above, to discard the portions of w that are
colinear with u or u, take the wedge product

w∧ u∧ v = (au + bv + x)∧ u∧ v = x∧ u∧ v (4.63)

Having done this calculation with a vector projection, one can guess that this quantity equals
x(u∧ v). One can also guess there is a vector and bivector dot product like quantity such that the
allows the calculation of the component of a vector that is in the "direction of a plane". Both of
these guesses are correct, and the validating these facts is worthwhile. However, skipping ahead
slightly, this to be proved fact allows for a nice closed form solution of the vector component
outside of the plane:

x = (w∧ u∧ v)
1

u∧ v
=

1
u∧ v

(u∧ v∧w) (4.64)

Notice the similarities between this planar rejection result a the vector rejection result. To
calculation the component of a vector outside of a plane we take the volume spanned by three
vectors (trivector) and "divide out" the plane.

Independent of any use of the geometric product it can be shown that this rejection in terms
of the standard basis is

x =
1

(Au,v)2

∑
i< j<k

∣∣∣∣∣∣∣∣∣∣∣
wi w j wk

ui u j uk

vi v j vk

∣∣∣∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣∣∣∣
ui u j uk

vi v j vk

ei e j ek

∣∣∣∣∣∣∣∣∣∣∣ (4.65)

Where

(Au,v)2 =
∑
i< j

∣∣∣∣∣∣∣ui u j

vi v j

∣∣∣∣∣∣∣ = −(u∧ v)2 (4.66)

is the squared area of the parallelogram formed by u, and v.
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The (squared) magnitude of x is

‖x‖2 = x ·w =
1

(Au,v)2

∑
i< j<k

∣∣∣∣∣∣∣∣∣∣∣
wi w j wk

ui u j uk

vi v j vk

∣∣∣∣∣∣∣∣∣∣∣
2

(4.67)

Thus, the (squared) volume of the parallelepiped (base area times perpendicular height) is

∑
i< j<k

∣∣∣∣∣∣∣∣∣∣∣
wi w j wk

ui u j uk

vi v j vk

∣∣∣∣∣∣∣∣∣∣∣
2

(4.68)

Note the similarity in form to the w,u,v trivector itself

∑
i< j<k

∣∣∣∣∣∣∣∣∣∣∣
wi w j wk

ui u j uk

vi v j vk

∣∣∣∣∣∣∣∣∣∣∣ei ∧ e j ∧ ek (4.69)

which, if you take the set of ei ∧ e j ∧ ek as a basis for the trivector space, suggests this is
the natural way to define the length of a trivector. Loosely speaking the length of a vector is a
length, length of a bivector is area, and the length of a trivector is volume.

4.2.12 Product of a vector and bivector. Defining the "dot product" of a plane and a vector

In order to justify the normal to a plane result above, a general examination of the product of a
vector and bivector is required. Namely,

w(u∧ v) =
∑
i, j<k

wiei

∣∣∣∣∣∣∣u j uk

v j vk

∣∣∣∣∣∣∣e j ∧ ek (4.70)

This has two parts, the vector part where i = j or i = k, and the trivector parts where no
indices equal. After some index summation trickery, and grouping terms and so forth, this is

w(u∧ v) =
∑
i< j

(wie j −w jei)

∣∣∣∣∣∣∣ui u j

vi v j

∣∣∣∣∣∣∣ + ∑
i< j<k

∣∣∣∣∣∣∣∣∣∣∣
wi w j wk

ui u j uk

vi v j vk

∣∣∣∣∣∣∣∣∣∣∣ei ∧ e j ∧ ek (4.71)
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The trivector term is w ∧ u ∧ v. Expansion of (u ∧ v)w yields the same trivector term. This
is the completely symmetric part, and the vector term is negated. Like the geometric product
of two vectors, this geometric product can be grouped into symmetric and antisymmetric parts,
one of which is a pure k-vector. In analogy the antisymmetric part of this product can be called
a generalized dot product, and is roughly speaking the dot product of a "plane" (bivector), and
a vector.

The properties of this generalized dot product remain to be explored, but first here is a sum-
mary of the notation

w(u∧ v) = w · (u∧ v) + w∧ u∧ v (4.72)

(u∧ v)w = −w · (u∧ v) + w∧ u∧ v (4.73)

w∧ u∧ v =
1
2

(w(u∧ v) + (u∧ v)w) (4.74)

w · (u∧ v) =
1
2

(w(u∧ v) − (u∧ v)w) (4.75)

Let w = x + y, where x = au + bv, and y · u = y · v = 0. Expressing w and the u∧ v, products
in terms of these components is

w(u∧ v) = x(u∧ v) + y(u∧ v) = x · (u∧ v) + y · (u∧ v) + y∧ u∧ v (4.76)

With the conditions and definitions above, and some manipulation, it can be shown that the
term y · (u∧ v) = 0, which then justifies the previous solution of the normal to a plane problem.
Since the vector term of the vector bivector product the name dot product is zero when the
vector is perpendicular to the plane (bivector), and this vector, bivector "dot product" selects
only the components that are in the plane, so in analogy to the vector-vector dot product this
name itself is justified by more than the fact this is the non-wedge product term of the geometric
vector-bivector product.

4.2.13 Complex numbers

There is a one to one correspondence between the geometric product of two R2 vectors and the
field of complex numbers.
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Writing, a vector in terms of its components, and left multiplying by the unit vector e1 yields

Z = e1P = e1(xe1 + ye2) = x(1) + y(e1e2) = x(1) + y(e1 ∧ e2) (4.77)

The unit scalar and unit bivector pair 1, e1 ∧ e2 can be considered an alternate basis for a
two dimensional vector space. This alternate vector representation is closed with respect to the
geometric product

Z1Z2 = e1(x1e1 + y1e2)e1(x2e1 + y2e2)

= (x1 + y1e1e2)(x2 + y2e1e2)

= x1x2 + y1y2(e1e2)e1e2)

+(x1y2 + x2y1)e1e2

(4.78)

This closure can be observed after calculation of the square of the unit bivector above, a
quantity

(e1 ∧ e2)2 = e1e2e1e2 = −e1e1e2e2 = −1 (4.79)

that has the characteristics of the complex number i2 = −1.
This fact allows the simplification of the product above to

Z1Z2 = (x1x2 − y1y2) + (x1y2 + x2y1)(e1 ∧ e2) (4.80)

Thus what is traditionally the defining, and arguably arbitrary seeming, rule of complex num-
ber multiplication, is found to follow naturally from the higher order structure of the geometric
product, once that is applied to a two dimensional vector space.

It is also informative to examine how the length of a vector can be represented in terms of a
complex number. Taking the square of the length

P · P = (xe1 + ye2) · (xe1 + ye2)

= (e1Z)e1Z

= ((x − ye1e2)e1)e1Z

= (x − y(e1 ∧ e2))Z

(4.81)

This right multiplication of a vector with e1, is named the conjugate

Z = x − y(e1 ∧ e2) (4.82)
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And with that definition, the length of the original vector can be expressed as

P · P = ZZ (4.83)

This is also a natural definition of the length of a complex number, given the fact that the
complex numbers can be considered an isomorphism with the two dimensional Euclidean vector
space.

4.2.14 Rotation in an arbitrarily oriented plane

A point P, of radius r, located at an angle θ from the vector û in the direction from u to v, can
be expressed as

P = r(û cos θ +
û(û∧ v)
‖û(û∧ v)‖

sin θ) = rû(cos θ +
(u∧ v)
‖û(u∧ v)‖

sin θ) (4.84)

Writing Iu,v = u∧v
‖û(u∧v)‖ , the square of this bivector has the property Iu,v

2 = −1 of the imaginary
unit complex number.

This allows the point to be specified as a complex exponential

= ûr(cos θ + Iu,v sin θ) = ûr exp(Iu,vθ) (4.85)

Complex numbers could be expressed in terms of the R2unit bivector e1 ∧ e2. However this
isomorphism really only requires a pair of linearly independent vectors in a plane (of arbitrary
dimension).

4.2.15 Quaternions

Similar to complex numbers the geometric product of two R3 vectors can be used to define
quaternions. Pre and Post multiplication with e1e2e3 can be used to express a vector in terms of
the quaternion unit numbers i, j, k, as well as describe all the properties of those numbers.

4.2.16 Cross product as outer product

Cross product can be written as a scaled outer product

a × b = −i(a∧ b) (4.86)
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i2 = (e1e2e3)2

= e1e2e3e1e2e3

= −e1e2e1e3e2e3

= e1e1e2e3e2e3

= −e3e2e2e3

= −1

(4.87)

The equivalence of the R3 cross product and the wedge product expression above can be
confirmed by direct multiplication of −i = −e1e2e3 with a determinant expansion of the wedge
product

u∧ v =
∑

1<=i< j<=3

(uiv j − viu j)ei ∧ e j =
∑

1<=i< j<=3

(uiv j − viu j)eie j (4.88)
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C R A M E R ’ S RU L E

5.1 cramer’s rule , determinants , and matrix inversion can be naturally ex-
pressed in terms of the wedge product

The use of the wedge product in the solution of linear equations can be quite useful.
This does not require any notion of geometric algebra, only an exterior product and the con-

cept of similar elements, and a nice example of such a treatment can be found in Solution of
Linear equations section of [2].

Traditionally, instead of using the wedge product, Cramer’s rule is usually presented as a
generic algorithm that can be used to solve linear equations of the form Ax = b (or equivalently
to invert a matrix). Namely

x =
1
|A|

adj(A) (5.1)

This is a useful theoretic result. For numerical problems row reduction with pivots and other
methods are more stable and efficient.

When the wedge product is coupled with the Clifford product and put into a natural geometric
context, the fact that the determinants are used in the expression of RN parallelogram area and
parallelepiped volumes (and higher dimensional generalizations of these) also comes as a nice
side effect.

As is also shown below, results such as Cramer’s rule also follow directly from the property
of the wedge product that it selects non identical elements. The end result is then simple enough
that it could be derived easily if required instead of having to remember or look up a rule.

5.1.1 Two variables example

[
a b

] x

y

 = ax + by = c (5.2)

Pre and post multiplying by a and b.

(ax + by)∧ b = (a∧ b)x = c∧ b (5.3)
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a∧ (ax + by) = (a∧ b)y = a∧ c (5.4)

Provided a∧ b , 0 the solution is

x

y

 =
1

a∧ b

c∧ b
a∧ c

 (5.5)

For a,b ∈ R2, this is Cramer’s rule since the e1 ∧ e2 factors of the wedge products

u∧ v =

∣∣∣∣∣∣∣u1 u2

v1 v2

∣∣∣∣∣∣∣ e1 ∧ e2 (5.6)

divide out.
Similarly, for three, or N variables, the same ideas hold

[
a b c

] 
x

y

z

 = d (5.7)


x

y

z

 =
1

a∧ b∧ c


d∧ b∧ c
a∧ d∧ c
a∧ b∧ d

 (5.8)

Again, for the three variable three equation case this is Cramer’s rule since the e1 ∧ e2 ∧ e3

factors of all the wedge products divide out, leaving the familiar determinants.

5.1.2 A numeric example

When there are more equations than variables case, if the equations have a solution, each of the
k-vector quotients will be scalars

To illustrate here is the solution of a simple example with three equations and two unknowns.


1

1

0

 x +


1

1

1

 y =


1

1

2

 (5.9)
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The right wedge product with (1, 1, 1) solves for x


1

1

0

∧

1

1

1

 x =


1

1

2

∧

1

1

1

 (5.10)

and a left wedge product with (1, 1, 0) solves for y


1

1

0

∧

1

1

1

 y =


1

1

0

∧

1

1

2

 (5.11)

Observe that both of these equations have the same factor, so one can compute this only once
(if this was zero it would indicate the system of equations has no solution).

Collection of results for x and y yields a Cramer’s rule like form (writing ei ∧ e j = ei j):

x

y

 =
1

(1, 1, 0)∧ (1, 1, 1)

(1, 1, 2)∧ (1, 1, 1)

(1, 1, 0)∧ (1, 1, 2)

 =
1

e13 + e23

−e13 − e23

2e13 + 2e23

 =

−1

2

 (5.12)
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T O R Q U E

Torque is generally defined as the magnitude of the perpendicular force component times dis-
tance, or work per unit angle.

Suppose a circular path in an arbitrary plane containing orthonormal vectors û and v̂ is
parametrized by angle.

r = r(û cos θ + v̂ sin θ) = rû(cos θ + ûv̂ sin θ) (6.1)

By designating the unit bivector of this plane as the imaginary number

i = ûv̂ = û∧ v̂ (6.2)

i2 = −1 (6.3)

this path vector can be conveniently written in complex exponential form

r = rûeiθ (6.4)

and the derivative with respect to angle is

dr
dθ

= rûieiθ = ri (6.5)

So the torque, the rate of change of work W, due to a force F, is

τ =
dW
dθ

= F ·
dr
dθ

= F · (ri) (6.6)

Unlike the cross product description of torque, τ = r × F no vector in a normal direction
had to be introduced, a normal that does not exist in two dimensions or in greater than three
dimensions. The unit bivector describes the plane and the orientation of the rotation, and the
sense of the rotation is relative to the angle between the vectors û and v̂.
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6.1 expanding the result in terms of components

At a glance this does not appear much like the familiar torque as a determinant or cross product,
but this can be expanded to demonstrate its equivalence. Note that the cross product is hiding
there in the bivector i = û∧ v̂. Expanding the position vector in terms of the planar unit vectors

ri = (ruû + rvv̂) ûv̂ = ruv̂ − rvû (6.7)

and expanding the force by components in the same direction plus the possible perpendicular
remainder term

F = Fuû + Fvv̂ + F⊥û,v̂ (6.8)

and then taking dot products yields is the torque

τ = F · (ri) = ruFv − rvFu (6.9)

This determinant may be familiar from derivations with û = e1, and v̂ = e2 (See the Feynman
lectures Volume I for example).

6.2 geometrical description

When the magnitude of the "rotational arm" is factored out, the torque can be written as

τ = F · (ri) = |r|(F · (r̂i)) (6.10)

The vector r̂i is the unit vector perpendicular to the r. Thus the torque can also be described
as the product of the magnitude of the rotational arm times the component of the force that is
in the direction of the rotation (ie: the work done rotating something depends on length of the
lever, and the size of the useful part of the force pushing on it).

6.3 slight generalization . application of the force to a lever not in the plane

If the rotational arm that the force is applied to is not in the plane of rotation then only the
components of the lever arm direction and the component of the force that are in the plane will
contribute to the work done. The calculation above was general with respect to the direction
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of the force, so to generalize it for an arbitrarily oriented lever arm, the quantity r needs to be
replaced by the projection of r onto the plane of rotation.

That component in the plane (bivector) i can be described with the geometric product nicely

ri = (r · i)
1
i

= −(r · i)i (6.11)

Thus, the vector with this magnitude that is perpendicular to this in the plane of the rotation
is

rii = −(r · i)i2 = (r · i) (6.12)

So, the most general for torque for rotation constrained to the plane i is:

τ = F · (r · i) (6.13)

This makes sense when once considers that only the dot product part of ri = r · i + r ∧ i
contributes to the component of r in the plane, and when the lever is in the rotational plane this
wedge product component of ri is zero.

6.4 expressing torque as a bivector

The general expression for torque for a rotation constrained to a plane has been found to be:

τ = F · (r · i) (6.14)

We have an expectation that torque should have a form similar to the traditional vector torque

τ = r × F = −i3(r∧ F) (6.15)

Note that here i3 = e1e2e3 is the unit pseudoscalar for R3, not the unit bivector for the
rotational plane. We should be able to express torque in a form related to r∧ F, but modified in
a fashion that results in a scalar value.

When the rotation is not constrained to a specific plane the motion will be in

i =
r̂∧ r′

‖r̂∧ r′‖
(6.16)
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The lever arm component in this plane is

r · i =
1
2

(ri − ir)

=
1

2‖r̂∧ r′‖
(r(r̂∧ r′) − (r̂∧ r′)r)

=
1

‖r̂∧ r′‖
r(r̂∧ r′)

(6.17)

So the torque in this natural plane of rotation is

τ = F · (r · i)

=
1

‖r̂∧ r′‖
F · (r(r̂∧ r′))

=
1

2‖r̂∧ r′‖
(Fr(r̂∧ r′) + (r′ ∧ r̂)rF)

=
1
2

(Fri + (Fri)†) =
1
2

(irF + (irF)†)

= 〈irF〉0

(6.18)

The torque is the scalar part of i(rF).

τ = 〈i(r · F + r∧ F)〉0 (6.19)

Since the bivector scalar product i(r · F) here contributes only a bivector part the scalar part
comes only from the i(r ∧ F) component, and one can write the torque in a fashion that is very
similar to the vector cross product torque. Here is both for comparison

τ = 〈i(r∧ F)〉0
τ = −i3(r∧ F)

(6.20)

Note again that i here is the unit bivector for the plane of rotation and not the unit 3D pseu-
doscalar i3.

6.5 plane common to force and vector

Physical intuition provides one further way to express this. Namely, the unit bivector for the
rotational plane should also be in the plane common to F and r

i =
F∧ r√
−(F∧ r)2

(6.21)
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So the torque is

τ =
1√

−(F∧ r)2
〈(F∧ r)(r∧ F)〉0

=
1√

−(F∧ r)2
(F∧ r)(r∧ F)

=
−(r∧ F)2√
−(r∧ F)2

=
√
−(r∧ F)2

= ‖r∧ F‖

(6.22)

Above the 〈· · ·〉0 could be dropped because the quantity has only a scalar part. The fact that
the sign of the square root can be either plus or minus follows from the fact that the orientation
of the unit bivector in the r, F plane has two possibilities. The positive root selection here is due
to the orientation picked for i.

For comparison, this can also be expressed with the cross product:

τ =
√
−(r∧ F)2

=
√
−(r∧ F)(r∧ F)

=
√
−((r × F)i3)(i3(r × F))

=
√

(r × F)2

= ‖r × F‖
= ‖τ‖

(6.23)

6.6 torque as a bivector

It is natural to drop the magnitude in the torque expression and name the bivector quantity

r∧ F (6.24)

This defines both the plane of rotation (when that rotation is unconstrained) and the orienta-
tion of the rotation, since inverting either the force or the arm position will invert the rotational
direction.

When examining the general equations for motion of a particle of fixed mass we will see this
quantity again related to the non-radial component of that particles acceleration. Thus we define
a torque bivector

τ = r∧ F (6.25)
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The magnitude of this bivector is our scalar torque, the rate of change of work on the object
with respect to the angle of rotation.



7
D E R I VAT I V E S O F A U N I T V E C T O R

7.1 first derivative of a unit vector

7.1.1 Expressed with the cross product

It can be shown that a unit vector derivative can be expressed using the cross product. Two cross
product operations are required to get the result back into the plane of the rotation, since a unit
vector is constrained to circular (really perpendicular to itself) motion.

d
dt

(
r
‖r‖

)
=

1

‖r‖3

(
r ×

dr
dt

)
× r =

(
r̂ ×

1
‖r‖

dr
dt

)
× r̂ (7.1)

This derivative is the rejective component of dr
dt with respect to r̂, but is scaled by 1/‖r‖.

How to calculate this result can be found in other places, such as [27].

7.2 equivalent result utilizing the geometric product

The equivalent geometric product result can be obtained by calculating the derivative of a vector
r = rr̂.

dr
dt

= r
dr̂
dt

+ r̂
dr
dt

(7.2)

7.2.1 Taking dot products

One trick is required first (as was also the case in the Salus and Hille derivation), which is
expressing dr

dt via the dot product.

d(r2)
dt

= 2r
dr
dt

d(r · r)
dt

= 2r ·
dr
dt

(7.3)
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Thus,

dr
dt

= r̂ ·
dr
dt

(7.4)

Taking dot products of the derivative above yields

r̂ ·
dr
dt

= r̂ · r
dr̂
dt

+ r̂ · r̂
dr
dt

= r ·
dr̂
dt

+
dr
dt

= r ·
dr̂
dt

+ r̂ ·
dr
dt

(7.5)

=⇒ r ·
dr̂
dt

= 0 (7.6)

One could alternatively prove this with a diagram.

7.2.2 Taking wedge products

As in linear equation solution, the r̂ component can be eliminated by taking a wedge product

r̂∧
dr
dt

= r̂∧ r
dr̂
dt

+ r̂∧ r̂
dr
dt

= rr̂∧
dr̂
dt

= r∧
dr̂
dt

= r∧
dr̂
dt

+ r ·
dr̂
dt

= r
dr̂
dt

(7.7)

This allows expression of dr̂
dt in terms of dr

dt in various ways (compare to the cross product
results above)

dr̂
dt

=
1
r

(
r̂∧

dr
dt

)
=

1
‖r‖

r̂
(
r̂∧

dr
dt

)
=

1
‖r‖

(
dr
dt
− r̂(r̂ ·

dr
dt

)
) (7.8)
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Thus this derivative is the component of 1
‖r‖

dr
dt in the direction perpendicular to r.

7.2.3 Another view

When the objective is not comparing to the cross product, it is also notable that this unit vector
derivative can be written

r
dr̂
dt

= r̂∧
dr
dt

(7.9)
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R A D I A L C O M P O N E N T S O F V E C T O R D E R I VAT I V E S

8.1 first derivative of a radially expressed vector

Having calculated the derivative of a unit vector, the total derivative of a radially expressed
vector can be calculated

(rr̂)′ = r′r̂ + rr̂′

= r′r̂ + r̂(r̂∧ r′)
(8.1)

There are two components. One is in the r̂ direction (linear component) and the other perpen-
dicular to that (a rotational component) in the direction of the rejection of r̂ from r′.

8.2 second derivative of a vector

Taking second derivatives of a radially expressed vector, we have

(rr̂)′′ = (r′r̂ + rr̂′)′

= r′′r̂ + r′r̂′ + (rr̂′)′

= r′′r̂ + (r′/r)r̂(r̂∧ r′) + (rr̂′)′
(8.2)

Expanding the last term takes a bit more work

(rr̂′)′ = (r̂(r̂∧ r′))′

= r̂′(r̂∧ r′) + r̂(r̂′ ∧ r′) + r̂(r̂∧ r′′)
= (1/r)(r̂(r̂∧ r′))(r̂∧ r′) + r̂(r̂′ ∧ r′) + r̂(r̂∧ r′′)
= (1/r)r̂(r̂∧ r′)2 + r̂(r̂′ ∧ r′) + r̂(r̂∧ r′′)

(8.3)
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There are three terms to this. One a scalar (negative) multiple of r̂, and another, the rejection
of r̂ from r′′. The middle term here remains to be expanded. In particular,

r̂′ ∧ r′ = r̂′ ∧ (rr̂′ + r′r̂)

= r′r̂′ ∧ r̂
= r′/2(r̂′r̂ − r̂r̂′)
= r′/2r((r′ ∧ r̂)r̂r̂ − r̂r̂(r̂∧ r′))
= r′/2r(r′ ∧ r̂ − r̂∧ r′)
= −(r′/r)r̂∧ r′

(8.4)

=⇒ (rr̂′)′ = (1/r)r̂(r̂∧ r′)2 − (r′/r)r̂(r̂∧ r′) + r̂(r̂∧ r′′) (8.5)

=⇒ (rr̂)′′ = r′′r̂ + (r′/r)r̂(r̂∧ r′) + (1/r)r̂(r̂∧ r′)2 − (r′/r)r̂(r̂∧ r′) + r̂(r̂∧ r′′)
= r′′r̂ + (1/r)r̂(r̂∧ r′)2 + r̂(r̂∧ r′′)

= r̂
(
r′′ + (1/r)(r̂∧ r′)2

)
+ r̂(r̂∧ r′′)

(8.6)

There are two terms here that are in the r̂ direction (the bivector square is a negative scalar),
and one rejective term in the direction of the component perpendicular to r̂ relative to r′′.
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ROTAT I O NA L DY NA M I C S

9.1 ga introduction of angular velocity

By taking the first derivative of a radially expressed vector we have the velocity

v = r′r̂ + r̂(r̂∧ r′) = r̂(vr + r̂∧ v) (9.1)

Or,

r̂v = vr + r̂∧ v (9.2)

r̂v = vr + (1/r)r∧ v (9.3)

Put this way, the earlier calculus exercise to derive this seems a bit silly, since it is probably
clear that vr = r̂ · v.

Anyways, let us work with velocity expressed this way in a few ways.

9.1.1 Speed in terms of linear and rotational components

|v|2 = v2
r + (r̂(r̂∧ v))2 (9.4)

And,

(r̂(r̂∧ v))2 = (v∧ r̂)r̂r̂(r̂∧ v)

= (v∧ r̂)(r̂∧ v)

= −(r̂∧ v)2

= |r̂∧ v|2

(9.5)

=⇒ |v|2 = v2
r + |r̂∧ v|2

= v2
r + |r̂∧ v|2

(9.6)
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So, we can assign a physical significance to the bivector.

|r̂∧ v| = |v⊥| (9.7)

The bivector |r̂∧ v| has the magnitude of the non-radial component of the velocity. This
equals the magnitude of the component of the velocity perpendicular to its radial component
(ie: the angular component of the velocity).

9.1.2 angular velocity. Prep

Because |r̂∧ v| is the non-radial velocity component, for small angles v⊥/r will equal the angle
between the vector and its displacement.

This allows for the calculation of the rate of change of that angle with time, what it called the
scalar angular velocity (dimensions are 1/t not x/t). This can be done by taking the sin as the
ratio of the length of the non-radial component of the delta to the length of the displaced vector.

sin dθ =
|r̂(r̂∧ dr)|
|r + dr|

(9.8)

With dr = dr
dt dt = vdt, the angular velocity is

sin dθ =
1

|r + vdt|
|r̂(r̂∧ v)dt|

=
1

|r + vdt|
|(r̂∧ v)dt|

sin dθ
|dt|

=
1

|r + vdt|
|r̂∧ v|

=
1

|r||r + vdt|
|r∧ v|

(9.9)

In the limit, taking dt > 0, this is

ω =
dθ
dt

=
1
r2 |r∧ v| (9.10)
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9.1.3 angular velocity. Summarizing

Here is a summary of calculations so far involving the r∧ v bivector

v = r̂vr +
r̂
|r|

(r∧ v)

dr̂
dt

=
r̂
r2 (r∧ v)

|v⊥| =
1
|r|
|r∧ v|

ω =
dθ
dt

=
1
r2 |r∧ v|

(9.11)

It makes sense to give the bivector a name. Given its magnitude the angular velocity bivector
ω is designated

ω =
r∧ v

r2 (9.12)

So the linear and rotational components of the velocity can thus be expressed in terms of this,
as can our unit vector derivative, scalar angular velocity, and perpendicular velocity magnitude:

ω =
dθ
dt

= |ω|

v = r̂vr + rω
= r̂(vr + rω)

dr̂
dt

= r̂ω

|v⊥| = r|ω|

(9.13)

This is similar to the vector angular velocity (ω = (r× v)/r2), but instead of lying perpendic-
ular to the plane of rotation, it defines the plane of rotation (for a vector a, a ∧ω is zero if the
vector is in the plane and non-zero if the vector has a component outside of the plane).

9.1.4 Explicit perpendicular unit vector

If one introduces a unit vector θ̂ in the direction of rejection of r from dr, the total velocity takes
the symmetrical form

v = vrr̂ + rωθ̂

=
dr
dt

r̂ + r
dθ
dt
θ̂

(9.14)
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9.1.5 acceleration in terms of angular velocity bivector

Taking derivatives of velocity, one can with a bit of work, express acceleration in terms of radial
and non-radial components

a = (r̂vr + rω)′

= r̂′vr + r̂v′r + r′ω + rω′

= r̂ωvr + r̂v′r + r′ω + rω′

= r̂ωvr + r̂ar + vω + rω′

(9.15)

But,

ω′ = ((1/r2)(r∧ v))′

= (−2/r3)r′(r∧ v) + (1/r2)(v∧ v + r∧ a)

= −(2/r)vrω + (1/r2)(r∧ a)

(9.16)

So,

a = r̂ar − r̂ωvr + vω + r̂(r̂∧ a)

= r̂ar − (v − rω)ω + vω + r̂(r̂∧ a)

= r̂ar + rω2 + r̂(r̂∧ a)

= r̂(ar + rω2) + r̂(r̂∧ a)

(9.17)

Note that ω2 is a negative scalar, so as normal writing ‖ω‖2 = −ω2, we have acceleration in
a fashion similar to the traditional cross product form:

a = r̂(ar − r‖ω‖2) + r̂(r̂∧ a)

= r̂(ar − r‖ω‖2 + r̂∧ a)
(9.18)

In the traditional representation, this last term, the non-radial acceleration component, is often
expressed as a derivative.

In terms of the wedge product, this can be done by noting that

(r∧ v)′ = v∧ v + r∧ a = r∧ a (9.19)
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a = r̂(ar − r‖ω‖2) +
r
r2 (r∧ v)′)

= r̂(ar − r‖ω‖2) +
1
r

d(r2ω)
dt

(9.20)

Expressed in terms of force (for constant mass) this is

F = ma

= r̂(mar) + (mr)ω2 +
1
r

d(mr2ω)
dt

= Fr + (mr)ω2 +
1
r

d(mr2ω)
dt

(9.21)

Alternately, the non-radial term can be expressed in terms of torque

r̂(r̂∧ a) = r̂(r̂∧ma)

=
r
r2 (r∧ F)

=
1
r

(r∧ F)

=
1
r
τ

(9.22)

Thus the torque bivector, which in magnitude was the angular derivative of the work done by
the force ‖τ‖ = τ = dW

dθ = F · dr
dθ is also expressible as a time derivative

τ =
d(mr2ω)

dt

=
d(mr∧ v)

dt

=
d(r∧mv)

dt

=
d(r∧ p)

dt

(9.23)

This bivector mr2ω = r∧ p is called the angular momentum, designated J. It is related to the
total momentum as follows

p = r̂(r̂ · p) +
1
r

J (9.24)
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So the total force is

F = Fr + mrω2 +
1
r

dJ
dt

(9.25)

Observe that for a purely radial (ie: central) force, we must have dJ
dt = 0 so, the angular

momentum must be constant.

9.1.6 Kepler’s laws example

This follows the [27] treatment, modified for the GA notation.
Consider the gravitational force

ma = −G
mM
r2 r̂

a = −GM
r̂
r2 = −ρ

r̂
r2

(9.26)

Or,

r̂
r2 = −

1
ρ

dv
dt

(9.27)

The unit vector derivative is

dr̂
dt

=
r̂
r

(r̂∧ v)

=
r̂
r2

J
m

= −
1

mρ
dv
dt

J

=
d(− 1

mρvJ)

dt

(9.28)

The last because J, m, and ρ are all constant.
Before continuing, let us examine this funny vector bivector product term. In general a vector

bivector product will have vector and trivector parts, but the differential equation implies that
this is a vector. Let us confirm this

vJ = v(r∧mv)

= (mv2)v̂(r∧ v̂)

= −(mv2)v̂(v̂∧ r)

(9.29)
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So, this is in fact a vector, it is the rejective component of r from the direction of v̂ scaled by
−mv2. We can also calculate the product Jv from this:

vJ = −(mv2)v̂(v̂∧ r)

= −(mv2)(r∧ v̂)v̂
= −(r∧mv)v
= −Jv

(9.30)

This antisymetrical result vJ = −Jv is actually the defining property of the vector bivector
“dot product” (unlike the vector dot product which is the symmetrical parts). This vector bivector
dot product selects the vector component, leaving the trivector part. Since v lies completely in
the plane of the angular velocity bivector v∧ J = 0 in this case.

Anyways, back to the problem, integrating with respect to time, and introducing a vector
integration constant e we have

r̂ +
1

mρ
vJ = e (9.31)

Multiplying by r

r +
1

mρ
rvJ = re

r +
1

m2ρ
(r · p + J)J = r · e + r∧ e

(9.32)

This results in three equations, one for each of the scalar, vector, and bivector parts

r +
J2

m2ρ
= r · e

1
mρ

(r · v)J = 0

r∧ e = 0

(9.33)

The first of these equations is the result from Salas and Hille (integration constant differs in
sign though).

r −
J2

m2ρ
= r · e (9.34)
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9.1.7 Circular motion

For circular motion vr = ar = 0, so:

v = rω (9.35)

a = r̂
(
−

v2

r
+ r̂∧ a

)
(9.36)

For constant circular motion:

a = vω + rω′

= vω + r(0)

= r(ω)2

= −r|ω|2

(9.37)

ie: the r̂(r̂∧ a) term is zero... all acceleration is inwards.
Can also expand this in terms of r and v:

a = r (ω)2

= r
(
1
r

v
)2

= −r
(
v

1
r

1
r

v
)

= −r
(
v2

r2

)
= −

1
r

v2

(9.38)
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B I V E C T O R G E O M E T RY

10.1 motivation

Consider the derivative of a vector parametrized bivector square such as

d
dλ

(x∧ k)2 =

(
dx
dλ
∧ k

)
(x∧ k) + (x∧ k)

(
dx
dλ
∧ k

)
(10.1)

where k is constant. In this case, the left hand side is a scalar so the right hand side, this
symmetric product of bivectors must also be a scalar. In the more general case, do we have any
reason to assume a symmetric bivector product is a scalar as is the case for the symmetric vector
product?

Here this question is considered, and examination of products of intersecting bivectors is
examined. We take intersecting bivectors to mean that there a common vector (k above) can
be factored from both of the two bivectors, leaving a vector remainder. Since all non copla-
nar bivectors in R3 intersect this examination will cover the important special case of three
dimensional plane geometry.

A result of this examination is that many of the concepts familiar from vector geometry such
as orthogonality, projection, and rejection will have direct bivector equivalents.

General bivector geometry, in spaces where non-coplanar bivectors do not necessarily inter-
sect (such as in R4) is also considered. Some of the results require plane intersection, or become
simpler in such circumstances. This will be pointed out when appropriate.

10.2 components of grade two multivector product

The geometric product of two bivectors can be written:

AB = 〈AB〉0 + 〈AB〉2 + 〈AB〉4 = A ·B + 〈AB〉2 + A∧B (10.2)

BA = 〈BA〉0 + 〈BA〉2 + 〈BA〉4 = B ·A + 〈BA〉2 + B∧A (10.3)

Because we have three terms involved, unlike the vector dot and wedge product we cannot
generally separate these terms by symmetric and antisymmetric parts. However forming those
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sums will still worthwhile, especially for the case of intersecting bivectors since the last term
will be zero in that case.

10.2.1 Sign change of each grade term with commutation

Starting with the last term we can first observe that

A∧B = B∧A (10.4)

To show this let A = a∧ b, and B = c∧ d. When
A∧B , 0, one can write:

A∧B = a∧ b∧ c∧ d
= −b∧ c∧ d∧ a
= c∧ d∧ a∧ b
= B∧A

(10.5)

To see how the signs of the remaining two terms vary with commutation form:

(A + B)2 = (A + B)(A + B)

= A2 + B2 + AB + BA
(10.6)

When A and B intersect we can write A = a∧ x, and B = b∧ x, thus the sum is a bivector

(A + B) = (a + b)∧ x (10.7)

And so, the square of the two is a scalar. When A and B have only non intersecting compo-
nents, such as the grade two R4 multivector e12 + e34, the square of this sum will have both
grade four and scalar parts.

Since the LHS = RHS, and the grades of the two also must be the same. This implies that the
quantity

AB + BA = A ·B + B ·A + 〈AB〉2 + 〈BA〉2 + A∧B + B∧A (10.8)

is a scalar ⇐⇒ A + B is a bivector, and in general has scalar and grade four terms. Because
this symmetric sum has no grade two terms, regardless of whether A, and B intersect, we have:

〈AB〉2 + 〈BA〉2 = 0 (10.9)
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=⇒ 〈AB〉2 = −〈BA〉2 (10.10)

One would intuitively expect A · B = B ·A. This can be demonstrated by forming the com-
plete symmetric sum

AB + BA = A ·B + B ·A + 〈AB〉2 + 〈BA〉2 + A∧B + B∧A
= A ·B + B ·A + 〈AB〉2 − 〈AB〉2 + A∧B + A∧B
= A ·B + B ·A + 2A∧B

(10.11)

The LHS commutes with interchange of A and B, as does A∧B. So for the RHS to also
commute, the remaining grade 0 term must also:

A ·B = B ·A (10.12)

10.2.2 Dot, wedge and grade two terms of bivector product

Collecting the results of the previous section and substituting back into eq. (10.2) we have:

A ·B =

〈
AB + BA

2

〉
0

(10.13)

〈AB〉2 =
AB −BA

2
(10.14)

A∧B =

〈
AB + BA

2

〉
4

(10.15)

When these intersect in a line the wedge term is zero, so for that special case we can write:

A ·B =
AB + BA

2

〈AB〉2 =
AB −BA

2

A∧B = 0

(note that this is always the case for R3).
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10.3 intersection of planes

Starting with two planes specified parametrically, each in terms of two direction vectors and a
point on the plane:

x = p + αu + βv
y = q + aw + bz

(10.16)

If these intersect then all points on the line must satisfy x = y, so the solution requires:

p + αu + βv = q + aw + bz (10.17)

=⇒ (p + αu + βv)∧w∧ z = (q + aw + bz)∧w∧ z = q∧w∧ z (10.18)

Rearranging for β, and writing B = w∧ z:

β =
q∧B − (p + αu)∧B

v∧B
(10.19)

Note that when the solution exists the left vs right order of the division by v ∧ B should not
matter since the numerator will be proportional to this bivector (or else the β would not be a
scalar).

Substitution of β back into x = p +αu +βv (all points in the first plane) gives you a parametric
equation for a line:

x = p +
(q − p)∧B

v∧B
v + α

1
v∧B

((v∧B)u − (u∧B)v) (10.20)

Where a point on the line is:

p +
(q − p)∧B

v∧B
v (10.21)

And a direction vector for the line is:

1
v∧B

((v∧B)u − (u∧B)v) (10.22)
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∝ (v∧B)2u − (v∧B)(u∧B)v (10.23)

Now, this result is only valid if v∧B , 0 (ie: line of intersection is not directed along v), but
if that is the case the second form will be zero. Thus we can add the results (or any non-zero
linear combination of) allowing for either of u, or v to be directed along the line of intersection:

a
(
(v∧B)2u − (v∧B)(u∧B)v

)
+ b

(
(u∧B)2v − (u∧B)(v∧B)u

)
(10.24)

Alternately, one could formulate this in terms of A = u ∧ v, w, and z. Is there a more sym-
metrical form for this direction vector?

10.3.1 Vector along line of intersection in R3

For R3 one can solve the intersection problem using the normals to the planes. For simplicity
put the origin on the line of intersection (and all planes through a common point in R3 have at
least a line of intersection). In this case, for bivectors A and B, normals to those planes are iA,
and iB respectively. The plane through both of those normals is:

(iA)∧ (iB) =
(iA)(iB) − (iB)(iA)

2
=

BA −AB
2

= 〈BA〉2 (10.25)

The normal to this plane

i〈BA〉2 (10.26)

is directed along the line of intersection. This result is more appealing than the general RN

result of eq. (10.24), not just because it is simpler, but also because it is a function of only the
bivectors for the planes, without a requirement to find or calculate two specific independent
direction vectors in one of the planes.

10.3.2 Applying this result to RN

If you reject the component of A from B for two intersecting bivectors:

RejA(B) =
1
A
〈AB〉2 (10.27)
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the line of intersection remains the same ... that operation rotates B so that the two are mu-
tually perpendicular. This essentially reduces the problem to that of the three dimensional case,
so the solution has to be of the same form... you just need to calculate a “pseudoscalar” (what
you are calling the join), for the subspace spanned by the two bivectors.

That can be computed by taking any direction vector that is on one plane, but is not in the
second. For example, pick a vector u in the plane A that is not on the intersection of A and B.
In mathese that is u = 1

A (A · u) (or u ∧A = 0), where u ∧ B , 0. Thus a pseudoscalar for this
subspace is:

i =
u∧B
|u∧B|

(10.28)

To calculate the direction vector along the intersection we do not care about the scaling above.
Also note that provided u has a component in the plane A, u ·A is also in the plane (it is rotated
π/2 from 1

A (A · u).
Thus, provided that u ·A is not on the intersection, a scaled “pseudoscalar” for the subspace

can be calculated by taking from any vector u with a component in the plane A:

i ∝ (u ·A)∧B (10.29)

Thus a vector along the intersection is:

d = ((u ·A)∧B)〈AB〉2 (10.30)

Interchange of A and B in either the trivector or bivector terms above would also work.
Without showing the steps one can write the complete parametric solution of the line through

the planes of equations eq. (10.16) in terms of this direction vector:

x = p +

(
(q − p)∧B
(d ·A)∧B

)
(d ·A) + αd (10.31)

Since (d · A) , 0 and (d · A) ∧ B , 0 (unless A and B are coplanar), observe that this is a
natural generator of the pseudoscalar for the subspace, and as such shows up in the expression
above.

Also observe the non-coincidental similarity of the q − p term to Cramer’s rule (a ration of
determinants).
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10.4 components of a grade two multivector

The procedure to calculate projections and rejections of planes onto planes is similar to a vector
projection onto a space.

To arrive at that result we can consider the product of a grade two multivector A with a
bivector B and its inverse ( the restriction that B be a bivector, a grade two multivector that can
be written as a wedge product of two vectors, is required for general invertability).

A
1
B

B =

(
A ·

1
B

+

〈
A

1
B

〉
2

+ A∧
1
B

)
B

= A ·
1
B

B

+

〈
A

1
B

〉
2
·B +

〈〈
A

1
B

〉
2
B
〉

2
+

〈
A

1
B

〉
2
∧B

+

(
A∧

1
B

)
·B +

〈
A∧

1
B

B
〉

4
+ A∧

1
B
∧B

(10.32)

Since 1
B = − B

|B|2
, this implies that the 6-grade term A ∧ 1

B ∧ B is zero. Since the LHS has
grade 2, this implies that the 0-grade and 4-grade terms are zero (also independently implies
that the 6-grade term is zero). This leaves:

A = A ·
1
B

B +

〈〈
A

1
B

〉
2
B
〉

2
+

(
A∧

1
B

)
·B (10.33)

This could be written somewhat more symmetrically as

A =
∑

i=0,2,4

〈〈
A

1
B

〉
i
B
〉

2

=

〈〈
A

1
B

〉
B +

〈
A

1
B

〉
2
B +

〈
A

1
B

〉
4
B
〉

2

(10.34)

This is also a more direct way to derive the result in retrospect.
Looking at eq. (10.33) we have three terms. The first is

A ·
1
B

B (10.35)

This is the component of A that lies in the plane B (the projection of A onto B).
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The next is〈〈
A

1
B

〉
2
B
〉

2
(10.36)

If B and A have any intersecting components, this is the components of A from the intersec-
tion that are perpendicular to B with respect to the bivector dot product. ie: This is the rejective
term.

And finally,

(
A∧

1
B

)
·B (10.37)

This is the remainder, the non-projective and non-coplanar terms. Greater than three dimen-
sions is required to generate such a term. Example:

A = e12 + e23 + e43

B = e34
(10.38)

Product terms for these are:

A ·B = 1

〈AB〉2 = e24

A∧B = e1234

(10.39)

The decomposition is thus:

A = (A ·B + 〈AB〉2 + A∧B)
1
B

= (1 + e24 + e1234)e43 (10.40)

10.4.1 Closer look at the grade two term

The grade two term of eq. (10.36) can be expanded using its antisymmetric bivector product
representation

〈
A

1
B

〉
2
B =

1
2

(
A

1
B
−

1
B

A
)

B

=
1
2

(
A −

1
B

AB
)

=
1
2

(
A −

1
B̂

AB̂
) (10.41)
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Observe here one can restrict the examination to the case where B is a unit bivector without
loss of generality.

〈
A

1
i

〉
2
i =

1
2
(A + iAi)

=
1
2

(
A − i†Ai

) (10.42)

The second term is a rotation in the plane i, by 180 degrees:

i†Ai = e−iπ/2Aeiπ/2 (10.43)

So, any components of A that are completely in the plane cancel out (ie: the A · 1
i i compo-

nent).
Also, if 〈Ai〉4 , 0 then those components of Ai commute so

〈
A − i†Ai

〉
4

= 〈A〉4 −
〈
i†Ai

〉
4

= 〈A〉4 −
〈
i†iA

〉
4

= 〈A〉4 − 〈A〉4
= 0

(10.44)

This implies that we have only grade two terms, and the final grade selection in eq. (10.36)
can be dropped:

〈〈
A

1
B

〉
2
B
〉

2
=

〈
A

1
B

〉
2
B (10.45)

It is also possible to write this in a few alternate variations which are useful to list explicitly
so that one can recognize them in other contexts:

〈
A

1
B

〉
2
B =

1
2

(
A −

1
B

AB
)

=
1
2

(
A + B̂AB̂

)
=

1
2

(
B̂A −AB̂

)
B̂

=
〈
B̂A

〉
2
B̂

= B̂
〈
AB̂

〉
2

(10.46)
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10.4.2 Projection and Rejection

Equation (10.45) can be substituted back into eq. (10.33) yielding:

A = A ·
1
B

B +

〈
A

1
B

〉
2
B +

(
A∧

1
B

)
·B (10.47)

Now, for the special case where A ∧ B = 0 (all bivector components of the grade two multi-
vector A have a common vector with bivector B) we can write

A = A ·
1
B

B +

〈
A

1
B

〉
2
B

= B
1
B
·A + B

〈
1
B

A
〉

2

(10.48)

This is

A = ProjB(A) + RejB(A) (10.49)

It is worth verifying that these two terms are orthogonal (with respect to the grade two vector
dot product)

ProjB(A) ·RejB(A) =
〈
ProjB(A) RejB(A)

〉
=

〈
A ·

1
B

BB
〈

1
B

A
〉

2

〉
=

1
4B2 〈(AB + BA)(BA −AB)〉

=
1

4B2 〈ABBA −ABAB + BABA −BAAB〉

=
1

4B2 〈−ABAB + BABA〉

(10.50)

Since we have introduced the restriction A ∧ B , 0, we can use the dot product to reorder
product terms:

AB = −BA + 2A ·B (10.51)

This can be used to reduce the grade zero term above:

〈BABA −ABAB〉 = 〈BA(−AB + 2A ·B) − (−BA + 2A ·B)AB〉
= +2(A ·B)〈BA −AB〉
= +4(A ·B)〈〈BA〉2〉
= 0

(10.52)
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This proves orthogonality as expected.

10.4.3 Grade two term as a generator of rotations

Figure 10.1: Bivector rejection. Perpendicular component of plane

Figure 10.1 illustrates how the grade 2 component of the bivector product acts as a rotation
in the rejection operation.

Provided that A and B are not coplanar, 〈AB〉2 is a plane mutually perpendicular to both.
Given two mutually perpendicular unit bivectors A and B, we can in fact write:

B = A〈BA〉2 (10.53)

B = 〈AB〉2A (10.54)

Compare this to a unit bivector for two mutually perpendicular vectors:

b = a(a∧ b) (10.55)

b = (b∧ a)a (10.56)
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In both cases, the unit bivector functions as an imaginary number, applying a rotation of π/2
rotating one of the perpendicular entities onto the other.

As with vectors one can split the rotation of the unit bivector into half angle left and right
rotations. For example, for the same mutually perpendicular pair of bivectors one can write

B = A〈BA〉2
= Ae〈BA〉2π/2

= e−〈BA〉2π/4Ae〈BA〉2π/4

=

(
1
√

2
(1 −BA)

)
A

(
1
√

2
(1 + BA)

) (10.57)

Direct multiplication can be used to verify that this does in fact produce the desired result.
In general, writing

i =
〈BA〉2
|〈BA〉2|

(10.58)

the rotation of plane B towards A by angle θ can be expressed with either a single sided full
angle

Rθ:A→B(A) = Aeiθ

= e−iθA
(10.59)

or double sided the half angle rotor formulas:

Rθ:A→B(A) = e−iθ/2Aeiθ/2 = R†AR (10.60)

Where:

R = eiθ/2

= cos(θ/2) +
〈BA〉2
|〈BA〉2|

sin(θ/2)
(10.61)

As with half angle rotors applied to vectors, there are two possible orientations to rotate.
Here the orientation of the rotation is such that the angle is measured along the minimal arc
between the two, where the angle between the two is in the range (0, π) as opposed to the (π, 2π)
rotational direction.
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10.4.4 Angle between two intersecting planes

Worth pointing out for comparison to the vector result, one can use the bivector dot product to
calculate the angle between two intersecting planes. This angle of separation θ between the two
can be expressed using the exponential:

B̂ = Âe
〈BA〉2
|〈BA〉2 |

θ (10.62)

=⇒ −ÂB̂ = e
〈BA〉2
|〈BA〉2 |

θ (10.63)

Taking the grade zero terms of both sides we have:

−
〈
ÂB̂

〉
=

〈
e
〈BA〉2
|〈BA〉2 |

θ
〉

(10.64)

=⇒ cos(θ) = −
A ·B
|A||B|

(10.65)

The sine can be obtained by selecting the grade two terms

−
〈
ÂB̂

〉
2

=
〈BA〉2
|〈BA〉2|

sin(θ) (10.66)

=⇒ sin(θ) =
|〈BA〉2|
|A||B|

(10.67)

Note that the strictly positive sine result here is consistent with the fact that the angle is being
measured such that it is in the (0, π) range.

10.4.5 Rotation of an arbitrarily oriented plane

As stated in a few of the GA books the rotor equation is a rotation representation that works
for all grade vectors. Let us verify this for the bivector case. Given a plane through the origin
spanned by two direction vectors and rotated about the origin in a plane specified by unit mag-
nitude rotor R, the rotated plane will be specified by the wedge of the rotations applied to the
two direction vectors. Let

A = u∧ v (10.68)
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Then,

R(A) = R(u)∧ R(v)

= (R†uR)∧ (R†vR)

=
1
2

(R†uRR†vR −R†vRR†uR)

=
1
2

(R†uvR −R†vuR)

= R†
uv − vu

2
R

= R†u∧ vR

= R†AR

(10.69)

Observe that with this half angle double sided rotation equation, any component of A in
the plane of rotation, or any component that does not intersect the plane of rotation, will be
unchanged by the rotor since it will commute with it. In those cases the opposing sign half
angle rotations will cancel out. Only the components of the plane that are perpendicular to the
rotational plane will be changed by this rotation operation.

10.5 a couple of reduction formula equivalents from R3 vector geometry

The reduction of the R3 dot of cross products to dot products can be naturally derived using
GA arguments. Writing i as the R3 pseudoscalar we have:

(a × b) · (c × d) =
a ∧ b

i
·

c ∧ d
i

=
1
2

(
a ∧ b

i
c ∧ d

i
+

c ∧ d
i

a ∧ b
i

)
= −

1
2
((a ∧ b)(c ∧ d) + (c ∧ d)(a ∧ b))

= −(a ∧ b) · (c ∧ d) − (a ∧ b) ∧ (c ∧ d)

(10.70)

In R3 this last term must be zero, thus one can write

(a × b) · (c × d) = −(a ∧ b) · (c ∧ d) (10.71)
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This is now in a form where it can be reduced to products of vector dot products.

(a ∧ b) · (c ∧ d) =
1
2
〈(a ∧ b)(c ∧ d) + (c ∧ d)(a ∧ b)〉

=
1
2
〈(a ∧ b)(c ∧ d) + (d ∧ c)(b ∧ a)〉

=
1
2
〈(ab − a · b)(c ∧ d) + (d ∧ c)(ba − b · a)〉

=
1
2
〈ab(c ∧ d) + (d ∧ c)ba〉

=
1
2
〈a(b · (c ∧ d) + b ∧ (c ∧ d))((d ∧ c) · b + (d ∧ c) ∧ b)a〉

=
1
2
〈a(b · (c ∧ d)) + ((d ∧ c) · b)a〉

=
1
2
〈a((b · c)d − (b · d)c) + (d(c · b) − c(d · b))a〉

=
1
2

((a · d)(b · c) − (b · d)(a · c) + (d · a)(c · b) − (c · a)(d · b))

= (a · d)(b · c) − (a · c)(b · d)
(10.72)

Summarizing with a comparison to the R3 relations we have:

(a∧ b) · (c∧ d) = −(a × b) · (c × d) = (a · d)(b · c) − (a · c)(b · d) (10.73)

(a∧ c) · (b∧ c) = −(a × c) · (b × c) = (a · c)(b · c) − c2(a · b) (10.74)

The bivector relations hold for all of RN .
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T R I V E C T O R G E O M E T RY

11.1 motivation

The direction vector for two intersecting planes can be found to have the form:

a
(
(v∧B)2u − (v∧B)(u∧B)v

)
+ b

(
(u∧B)2v − (u∧B)(v∧B)u

)
(11.1)

While trying to put eq. (11.1) into a form that eliminated u, and v in favor of A = u ∧ v
symmetric and antisymmetric formulations for the various grade terms of a trivector product
looked like they could be handy. Here is a summary of those results.

11.2 grade components of a trivector product

11.2.1 Grade 6 term

Writing two trivectors in terms of mutually orthogonal components

A = x∧ y∧ z = xyz (11.2)

and

B = u∧ v∧w = uvw (11.3)

89
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Assuming that there is no common vector between the two, the wedge of these is

A∧B = 〈AB〉6
= 〈xyzuvw〉6
= 〈yz(xu)vw〉6
= 〈yz(−ux + 2u · x)vw〉6
= −〈yzu(xv)w〉6
= −〈yzu(−vx + 2v · x)w〉6
= 〈yzuv(xw)〉6
= · · ·

= −〈uvwxyz〉6
= −〈BA〉6
= −B∧A

(11.4)

Note above that any interchange of terms inverts the sign (demonstrated explicitly for all the
x interchanges).

As an aside, this sign change on interchange is taken as the defining property of the wedge
product in differential forms. That property also implies also that the wedge product is zero
when a vector is wedged with itself since zero is the only value that is the negation of itself.
Thus we see explicitly how the notation of using the wedge for the highest grade term of two
blades is consistent with the traditional wedge product definition.

The end result here is that the grade 6 term of a trivector trivector product changes sign on
interchange of the trivectors:

〈AB〉6 = −〈BA〉6 (11.5)

11.2.2 Grade 4 term

For a trivector product to have a grade 4 term there must be a common vector between the two

A = x∧ y∧ z = xyz (11.6)

and

B = u∧ v∧ z = uvz (11.7)
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The grade four term of the product is

〈BA〉4 = 〈uvzxyz〉4
= 〈uvzzxy〉4
= z2〈uvxy〉4
= z2〈u(vx)y〉4
= z2〈u(−xv + 2x · v)y〉4
= −z2〈uxvy〉4
= · · ·

= z2〈xyuv〉4
= 〈xyzzuv〉4
= 〈xyzuvz〉4
= 〈xyzuvz〉4
= 〈AB〉4

(11.8)

Thus the grade 4 term commutes on interchange:

〈AB〉4 = 〈BA〉4 (11.9)

11.2.3 Grade 2 term

Similar to above, for a trivector product to have a grade 2 term there must be two common
vectors between the two

A = x∧ y∧ z = xyz (11.10)

and

B = u∧ y∧ z = uyz (11.11)
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The grade two term of the product is

〈AB〉2 = 〈xyzuyz〉2
= 〈xyzyzu〉2
= (yz)2〈xu〉2
= −(yz)2〈ux〉2
= −〈BA〉2

(11.12)

The grade 2 term anticommutes on interchange:

〈AB〉2 = −〈BA〉2 (11.13)

11.2.4 Grade 0 term

Any grade 0 terms are due to products of the form A = kB

〈AB〉0 = 〈kBB〉0
= 〈BkB〉0
= 〈BA〉0

(11.14)

The grade 2 term commutes on interchange:

〈AB〉0 = 〈BA〉0 (11.15)

11.2.5 combining results

AB = 〈AB〉0 + 〈AB〉2 + 〈AB〉4 + 〈AB〉6

BA = 〈BA〉0 + 〈BA〉2 + 〈BA〉4 + 〈BA〉6
= 〈AB〉0 − 〈AB〉2 + 〈AB〉4 − 〈AB〉6

(11.16)
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These can be combined to express each of the grade terms as subsets of the symmetric and
antisymmetric parts:

A ·B = 〈AB〉0 =

〈
AB + BA

2

〉
0

〈AB〉2 =

〈
AB −BA

2

〉
2

〈AB〉4 =

〈
AB + BA

2

〉
4

A∧B = 〈AB〉6 =

〈
AB −BA

2

〉
6

(11.17)

Note that above I have been somewhat loose with the argument above. A grade three vector
will have the following form:

∑
i< j<k

Di jkei jk (11.18)

Where Di jk is the determinant of i jk components of the vectors being wedged. Thus the
product of two trivectors will be of the following form:

∑
i< j<k

∑
i′< j′<k′

Di jkD′i′ j′k′(ei jkei′ j′k′) (11.19)

It is really each of these ei jkei′ j′k′ products that have to be considered in the grade and sign
arguments above. The end result will be the same though... one would just have to present it a
bit more carefully for a true proof.

11.2.6 Intersecting trivector cases

As with the intersecting bivector case, when there is a line of intersection between the two
volumes one can write:

A ·B = 〈AB〉0 =

〈
AB + BA

2

〉
0

〈AB〉2 =
AB −BA

2

〈AB〉4 =

〈
AB + BA

2

〉
4

A∧B = 〈AB〉6 = 0

(11.20)
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And if these volumes intersect in a plane a further simplification is possible:

A ·B = 〈AB〉0 =
AB + BA

2

〈AB〉2 =
AB −BA

2
〈AB〉4 = 0

A∧B = 〈AB〉6 = 0

(11.21)
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One can show that the grade zero component of a multivector product is independent of the
order of the terms:

〈AB〉 = 〈BA〉 (12.1)

Doran/Lasenby has an elegant proof of this, but a dumber proof using an explicit expansion
by basis also works and highlights the similarities with the standard component definition of
the vector dot product.

Writing:

A =
∑

i

〈A〉i (12.2)

B =
∑

i

〈B〉i (12.3)

The product of A and B is:

AB =
∑

i j

〈A〉i〈B〉 j

=
∑

i j

min(i, j)∑
k=0

〈
〈A〉i〈B〉 j

〉
2k+|i− j|

(12.4)

AB =
∑

i j

min(i, j)∑
k=0

〈
〈A〉i〈B〉 j

〉
2k+|i− j|

(12.5)

To get a better feel for this, consider an example

A = e1 + e2 + e12 + e13 + e34 + e345 (12.6)

95
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B = e2 + e21 + e23 (12.7)

AB = (e1 + e2 + e12 + e13 + e34 + e345)(e2 + e21 + e23) (12.8)

Here are multivectors with grades ranging from zero to three. This multiplication will include
vector/vector, vector/bivector, vector/trivector, bivector/bivector, and bivector/trivector. Some of
these will be grade lowering, some grade preserving and some grade raising.

Only the like grade terms can potentially generate grade zero terms, so the grade zero terms
of the product in eq. (12.5) are:

AB =
∑
i= j

〈
〈A〉i〈B〉 j

〉
(12.9)

Using the example above we have

〈AB〉 = 〈(e1 + e2)e2〉 + 〈(e12 + e13 + e34)e21〉 (12.10)

In general one can introduce an orthonormal basis σk = {σk
i }i for each of the 〈〉k spaces. Here

orthonormal is with respect to the k-vector dot product

σk
i ·σ

k
j = (−1)k(k−1)/2δi j (12.11)

then one can decompose each of the k-vectors with respect to that basis:

〈A〉k =
∑

i

(
〈A〉k ·σk

i

) 1
σk

i

(12.12)

〈B〉k =
∑

j

(
〈B〉k ·σk

j

) 1
σk

j

(12.13)

Thus the scalar part of the product is

〈AB〉 =
∑
k,i, j

〈(
〈A〉k ·σk

i

) 1
σk

i

(
〈B〉k ·σk

j

) 1
σk

j

〉
=

∑
k,i, j

〈
σk

iσ
k
j

〉 (
〈A〉k ·σk

i

) (
〈B〉k ·σk

j

)
=

∑
k,i, j

(−1)k(k−1)/2
δi j

(
〈A〉k ·σk

i

) (
〈B〉k ·σk

j

) (12.14)



multivector product grade zero terms 97

Thus the complete scalar product can be written

〈AB〉 =
∑
k,i

(−1)k(k−1)/2 (
〈A〉k ·σk

i

) (
〈B〉k ·σk

i

)
(12.15)

Note, compared to the vector dot product, the alternation in sign, which is dependent on the
grades involved.

Also note that this now trivially proves that the scalar product is commutative.
Perhaps more importantly we see how similar this generalized dot product is to the standard

component formulation of the vector dot product we are so used to. At a glance the component-
less geometric algebra formulation seems so much different than the standard vector dot product
expressed in terms of components, but we see here that this is in fact not the case.





13
B L A D E G R A D E R E D U C T I O N

13.1 general triple product reduction formula

Consideration of the reciprocal frame bivector decomposition required the following identity

(Aa ∧Ab) ·Ac = Aa · (Ab ·Ac) (13.1)

This holds when a + b ≤ c, and a <= b. Similar equations for vector wedge blade dot blade
reduction can be found in NFCM, but intuition let me to believe the above generalization was
valid.

To prove this use the definition of the generalized dot product of two blades:

(Aa ∧Ab) ·Ac = 〈(Aa ∧Ab)Ac〉|c−(a+b)| (13.2)

The subsequent discussion is restricted to the b ≥ a case. Would have to think whether this
restriction is required.

Aa ∧Ab = AaAb −

a+b∑
i=|b−a|,i+=2

〈AaAb〉i

= AaAb −

a−1∑
k=0

〈AaAb〉2k+b−a

(13.3)

Back substitution gives:

〈(Aa ∧Ab)Ac〉|c−(a+b)| = 〈AaAbAc〉|c−(a+b)| −

a−1∑
k=0

〈〈AaAb〉2k+b−aAc〉c−a−b (13.4)
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Temporarily writing 〈AaAb〉2k+b−a = Ci,

〈AaAb〉2k+b−aAc =

c+i∑
j=c−i, j+=2

〈CiAc〉 j

=

i∑
r=0

〈CiAc〉c−i+2r

=

2k+b−a∑
r=0

〈CiAc〉c−2k−b+a+2r

=

2k+b−a∑
r=0

〈CiAc〉c−b+a+2(r−k)

(13.5)

We want the only the following grade terms:

c − b + a + 2(r − k) = c − b − a =⇒ r = k − a (13.6)

There are many such k, r combinations, but we have a k ∈ [0, a− 1] constraint, which implies
r ∈ [−a,−1]. This contradicts with r strictly positive, so there are no such grade elements.

This gives an intermediate result, the reduction of the triple product to a direct product, re-
moving the explicit wedge:

(Aa ∧Ab) ·Ac = 〈AaAbAc〉c−a−b (13.7)

〈AaAbAc〉c−a−b = 〈Aa(AbAc)〉c−a−b

=

〈
Aa

∑
i

〈AbAc〉i

〉
c−a−b

=

〈∑
j

〈
Aa

∑
i

〈AbAc〉i

〉
j

〉
c−a−b

(13.8)

Explicitly specifying the grades here is omitted for simplicity. The lowest grade of these is
(c − b) − a, and all others are higher, so grade selection excludes them.

By definition

〈AbAc〉c−b = Ab ·Ac (13.9)
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so that lowest grade term is thus

〈Aa〈AbAc〉c−b〉c−a−b = 〈Aa(Ab ·Ac)〉c−a−b = Aa · (Ab ·Ac) (13.10)

This completes the proof.

13.2 reduction of grade of dot product of two blades

The result above can be applied to reducing the dot product of two blades. For k <= s:

(a1 ∧ a2 ∧ a3 · · · ∧ ak) · (b1 ∧ b2 · · · ∧ bs) (13.11)

= (a1 ∧ (a2 ∧ a3 · · · ∧ ak)) · (b1 ∧ b2 · · · ∧ bs)

= (a1 · ((a2 ∧ a3 · · · ∧ ak)) · (b1 ∧ b2 · · · ∧ bs))

= (a1 · (a2 · (a3 · · · ∧ ak)) · (b1 ∧ b2 · · · ∧ bs))

= · · ·

= a1 · (a2 · (a3 · (· · · · (ak · (b1 ∧ b2 · · · ∧ bs)))))

(13.12)

This can be reduced to a single determinant, as is done in the Flanders’ differential forms
book definition of the

∧k inner product (which is then used to define the Hodge dual).
The first such product is:

ak · (b1 ∧ b2 · · · ∧ bk) =
∑

(−1)u−1(ak · bu)b1 ∧ · · · b̌u · · · ∧ bk (13.13)

Next, take dot product with ak−1:

1. k = 2

ak−1 · (ak · (b1 ∧ b2 · · · ∧ bk))

=
∑
v,u

(−1)u−1(ak · bu)(a1 · bv)

=
∑
u<v

(−1)v−1(ak · bv)(a1 · bu) +
∑
u<v

(−1)u−1(ak · bu)(a1 · bv)

= +
∑
u<v

(ak · bu)(a1 · bv) −
∑
u<v

(ak · bv)(a1 · bu)

= +
∑
u<v

(ak · bu)(a1 · bv) − (ak · bv)(a1 · bu)

(13.14)
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−
∑
u<v

∣∣∣∣∣∣∣ak−1 · bu ak−1 · bv

ak · bu ak · bv

∣∣∣∣∣∣∣ (13.15)

2. k > 2

ak−1 · (ak · (b1 ∧ b2 · · · ∧ bk)) (13.16)

=
∑

(−1)u−1(ak · bu)ak−1 · (b1 ∧ · · · b̌u · · · ∧ bk)

=
∑
v<u

(−1)u−1(ak · bu)(−1)v−1(ak−1 · bv)(b1 ∧ · · · b̌v · · · b̌u · · · ∧ bk)

+
∑
v>u

(−1)u−1(ak · bu)(−1)v(ak−1 · bv)(b1 ∧ · · · b̌u · · · b̌v · · · ∧ bk)

(13.17)

Add negation exponents, and use a change of variables for the first sum

=
∑
u<v

(−1)v+u(ak · bv)(ak−1 · bu)(b1 ∧ · · · b̌u · · · b̌v · · · ∧ bk)

−
∑
u<v

(−1)u+v(ak · bu)(ak−1 · bv)(b1 ∧ · · · b̌u · · · b̌v · · · ∧ bk)
(13.18)

Merge sums:

=
∑
u<v

(−1)u+v ((ak · bv)(ak−1 · bu) − (ak · bu)(ak−1 · bv))

(b1 ∧ · · · b̌u · · · b̌v · · · ∧ bk)
(13.19)

ak−1 · (ak · (b1 ∧ b2 · · · ∧ bk)) = (13.20)

∑
u<v

(−1)u+v

∣∣∣∣∣∣∣ak−1 · bu ak−1 · bv

ak · bu ak · bv

∣∣∣∣∣∣∣ (b1 ∧ · · · b̌u · · · b̌v · · · ∧ bk)

Note that special casing k = 2 does not seem to be required because in that case −1u+v =

−11+2 = −1, so this is identical to eq. (13.15) after all.
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13.2.1 Pause to reflect

Although my initial aim was to show that Ak ·Bk could be expressed as a determinant as in the
differential forms book (different sign though), and to determine exactly what that determinant
is, there are some useful identities that fall out of this even just for this bivector kvector dot
product expansion.

Here is a summary of some of the things figured out so far

1. Dot product of grade one blades.

Here we have a result that can be expressed as a one by one determinant. Worth mention-
ing to explicitly show the sign.

a · b = det[a · b] (13.21)

2. Dot product of grade two blades.

(a1 ∧ a2) · (b1 ∧ b2) = −

∣∣∣∣∣∣∣a1 · b1 a1 · b2

a2 · b1 a2 · b2

∣∣∣∣∣∣∣ = − det[ai · b j] (13.22)

3. Dot product of grade two blade with grade > 2 blade.

(a1 ∧ a2) · (b1 ∧ b2 · · · ∧ bk)

=
∑
u<v

(−1)u+v−1(a1 ∧ a2) · (bu ∧ bv)(b1 ∧ · · · b̌u · · · b̌v · · · ∧ bk) (13.23)

Observe how similar this is to the vector blade dot product expansion:

a · (b1 ∧ b2 · · · ∧ bk) =
∑

(−1)i−1(a · bi)(b1 ∧ · · · b̌i · · · ∧ bk) (13.24)
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13.2.1.1 Expand it for k = 3

Explicit expansion of eq. (13.23) for the k = 3 case, is also helpful to get a feel for the equation:

(a1 ∧ a2) · (b1 ∧ b2 ∧ b3) = (a1 ∧ a2) · (b1 ∧ b2)b3

+ (a1 ∧ a2) · (b3 ∧ b1)b2

+ (a1 ∧ a2) · (b2 ∧ b3)b1

(13.25)

Observe the cross product like alternation in sign and indices. This suggests that a more
natural way to express the sign coefficient may be via a sgn(π) expression for the sign of the
permutation of indices.

13.3 trivector dot product

With the result of eq. (13.23), or the earlier equivalent determinant expression in equation
eq. (13.20) we are now in a position to evaluate the dot product of a trivector and a greater
or equal grade blade.

a1 · ((a2 ∧ a3) · (b1 ∧ b2 · · · ∧ bk))

=
∑
u<v

(−1)u+v−1(a2 ∧ a3) · (bu ∧ bv)a1 · (b1 ∧ · · · b̌u · · · b̌v · · · ∧ bk)

=
∑

w<u<v

(−1)u+v+w(a2 ∧ a3) · (bu ∧ bv)(a1 · bw)(b1 ∧ · · · b̌w · · · b̌u · · · b̌v · · · ∧ bk)

+
∑

u<w<v

(−1)u+v+w−1(a2 ∧ a3) · (bu ∧ bv)(a1 · bw)(b1 ∧ · · · b̌u · · · b̌w · · · b̌v · · · ∧ bk)

+
∑

u<v<w

(−1)u+v+w(a2 ∧ a3) · (bu ∧ bv)(a1 · bw)(b1 ∧ · · · b̌u · · · b̌v · · · b̌w · · · ∧ bk)

(13.26)

Change the indices of summation and grouping like terms we have:∑
u<v<w

(−1)u+v+w((a2 ∧ a3) · (bv ∧ bw)(a1 · bu)

− (a2 ∧ a3) · (bu ∧ bw)(a1 · bv)

+ (a2 ∧ a3) · (bu ∧ bv)(a1 · bw)

)(b1 ∧ · · · b̌u · · · b̌v · · · b̌w · · · ∧ bk)

(13.27)
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Now, each of the embedded dot products were in fact determinants:

(a2 ∧ a3) · (bx ∧ by) = −

∣∣∣∣∣∣∣a2 · bx a2 · by

a3 · bx a3 · by

∣∣∣∣∣∣∣ (13.28)

Thus, we can expand these triple dot products like so (factor of −1 omitted):

(a2 ∧ a3) · (bv ∧ bw)(a1 · bu)

− (a2 ∧ a3) · (bu ∧ bw)(a1 · bv)

+ (a2 ∧ a3) · (bu ∧ bv)(a1 · bw)

= (a1 · bu)

∣∣∣∣∣∣∣a2 · bv a2 · bw

a3 · bv a3 · bw

∣∣∣∣∣∣∣
− (a1 · bv)

∣∣∣∣∣∣∣a2 · bu a2 · bw

a3 · bu a3 · bw

∣∣∣∣∣∣∣
+ (a1 · bw)

∣∣∣∣∣∣∣a2 · bu a2 · bv

a3 · bu a3 · bv

∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣∣
a1 · bu a1 · bv a1 · bw

a2 · bu a2 · bv a2 · bw

a3 · bu a3 · bv a3 · bw

∣∣∣∣∣∣∣∣∣∣∣

(13.29)

Final back substitution gives:

(a1 ∧ a2 ∧ a3) · (b1 ∧ b2 · · · ∧ bk)

=
∑

u<v<w

(−1)u+v+w−1

∣∣∣∣∣∣∣∣∣∣∣
a1 · bu a1 · bv a1 · bw

a2 · bu a2 · bv a2 · bw

a3 · bu a3 · bv a3 · bw

∣∣∣∣∣∣∣∣∣∣∣ (b1 ∧ · · · b̌u · · · b̌v · · · b̌w · · · ∧ bk) (13.30)

In particular for k = 3 we have

(a1 ∧ a2 ∧ a3) · (b1 ∧ b2 ∧ b3)

= −

∣∣∣∣∣∣∣∣∣∣∣
a1 · b1 a1 · b2 a1 · b3

a2 · b1 a2 · b2 a2 · b3

a3 · b1 a3 · b2 a3 · b3

∣∣∣∣∣∣∣∣∣∣∣ = − det[ai · b j] (13.31)
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This can be substituted back into eq. (13.30) to put it in a non determinant form.

(a1 ∧ a2 ∧ a3) · (b1 ∧ b2 · · · ∧ bk)

=
∑

u<v<w

(−1)u+v+w(a1 ∧ a2 ∧ a3) · (bu ∧ bv ∧ bw)(b1 ∧ · · · b̌u · · · b̌v · · · b̌w · · · ∧ bk) (13.32)

13.4 induction on the result

It is pretty clear that recursively performing these calculations will yield similar determinant
and inner dot product reduction results.

13.4.1 dot product of like grade terms as determinant

Let us consider the equal grade case first, summarizing the results so far

a · b = det[a · b]

(a1 ∧ a2) · (b1 ∧ b2) = − det[ai · b j]

(a1 ∧ a2 ∧ a3) · (b1 ∧ b2 ∧ b3) = − det[ai · b j]

(13.33)

What will the sign be for the higher grade equivalents? It has the appearance of being related
to the sign associated with blade reversion. To verify this calculate the dot product of a blade
formed from a set of perpendicular unit vectors with itself.

(e1 ∧ · · · ∧ ek) · (e1 ∧ e2 ∧ · · · ∧ ek)

= (−1)k(k−1)/2(e1 ∧ · · · ∧ ek) · (ek ∧ · · · ∧ e2 ∧ e1)

= (−1)k(k−1)/2e1 · (e2 · · · (ek · (ek ∧ · · · ∧ e2 ∧ e1)))

= (−1)k(k−1)/2e1 · (e2 · · · (ek−1 · (ek−1 ∧ · · · ∧ e2 ∧ e1)))

= · · ·

= (−1)k(k−1)/2

(13.34)

This fixes the sign, and provides the induction hypothesis for the general case:

(a1 ∧ · · · ∧ ak) · (b1 ∧ b2 ∧ · · · ∧ bk) = (−1)k(k−1)/2 det[ai · b j] (13.35)
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Alternately, one can remove the sign change coefficient with reversion of one of the blades:

(a1 ∧ · · · ∧ ak) · (bk ∧ bk−1 ∧ · · · ∧ b1) = det[ai · b j] (13.36)

13.4.2 Unlike grades

Let us summarize the results for unlike grades at the same time reformulating the previous
results in terms of index permutation, also writing for brevity As = a1 ∧ · · · ∧ as, and Bk =

b1 ∧ · · · ∧ bk:

A1 ·Bk =
∑

i

sgn(π(i, 1, 2, · · · ǐ · · · , k))(A1 · bi)(b1 ∧ · · · b̌i · · · ∧ bk) (13.37)

A2 ·Bk =
∑
i1<i2

sgn(π(i1, i2, 1, 2, · · · ǐ1 · · · ǐ2 · · · , k)) (13.38)

A2 · (bi1 ∧ bi2)(b1 ∧ · · · b̌i1 · · · b̌i2 · · · ∧ bk) (13.39)

A3 ·Bk =
∑

i1<i2<i3

sgn(π(i1, i2, i3, 1, 2, · · · ǐ1 · · · ǐ2 · · · ǐ3 · · · , k)) (13.40)

A3 · (bi1 ∧ bi2 ∧ bi3)(b1 ∧ · · · b̌i1 · · · b̌i2 · · · b̌i3 · · · ∧ bk) (13.41)

We see that the dot product consumes any of the excess sign variation not described by the
sign of the permutation of indices.

The induction hypothesis is basically described above (change 3 to s, and add extra dots):

As ·Bk =
∑

i1<i2···<is

sgn(π(i1, i2 · · · , is, 1, 2, · · · ǐ1 · · · ǐ2 · · · ǐs · · · , k))

As · (bi1 ∧ bi2 · · · ∧ bis)(b1 ∧ · · · b̌i1 · · · b̌i2 · · · b̌is · · · ∧ bk) (13.42)

13.4.3 Perform the induction

In a sense this has already been done. The steps will be pretty much the same as the logic that
produced the bivector and trivector results. Thinking about typing this up in latex is not fun, so
this will be left for a paper proof.





14
M O R E D E TA I L S O N N F C M P L A N E F O R M U L AT I O N

14.1 wedge product formula for a plane

The equation of the plane with bivector U through point a is given by

(x − a)∧U = 0 (14.1)

or

x∧U = a∧U = T (14.2)

14.1.1 Examining this equation in more details

Without any loss of generality one can express this plane equation in terms of a unit bivector i

x∧ i = a∧ i (14.3)

As with the line equation, to express this in the “standard” parametric form, right multiplica-
tion with 1/i is required.

(x∧ i)
1
i

= (a∧ i)
1
i

(14.4)

We have a trivector bivector product here, which in general has a vector, trivector, and 5-
vector component. Since i∧ i = 0, the 5-vector component is zero:

x∧ i∧ −i = 0 (14.5)

and intuition says that the trivector component will also be zero. However, as well as provid-
ing verification of this, expansion of this product will also demonstrate how to find the projective
and rejective components of a vector with respect to a plane (ie: components in and out of the
plane).
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14.1.2 Rejection from a plane product expansion

Here is an explicit expansion of the rejective term above

(x∧ i)
1
i

= −(x∧ i)i

= −
1
2

(xi + ix)i

=
1
2

(x − ixi)

=
1
2

(x − (xi + 2i · x)i)

= x − (i · x)i

(14.6)

In this last term the quantity i · x is a vector in the plane. This can be demonstrated by writing
i in terms of a pair of orthonormal vectors i = ûv̂ = û∧ v̂.

i · x = (û∧ v̂) · x
= û(v̂ · x) − v̂(û · x)

(14.7)

Thus, (i · x)∧ i = 0, and (i · x)i = (i · x) · i. Inserting this above we have the end result

(x∧ i)
1
i

= x − (i · x) · i

= a − (i · a) · i
(14.8)

Or

x − a = (i · (x − a)) · i (14.9)

This is actually the standard parametric equation of a plane, but expressed in terms of a unit
bivector that describes the plane instead of in terms of a pair of vectors in the plane.

To demonstrate this expansion of the right hand side is required

(i · x) · i = (û(v̂ · x) − v̂(û · x))ûv̂
= v̂(v̂ · x) + û(û · x)

(14.10)

Substituting this back yields:

x = a + û(û · (x − a)) + v̂(v̂ · (x − a))

= a + sû + tv̂
= a + s′y + t′w

(14.11)
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Where y and w are two arbitrary, but non-colinear vectors in the plane.
In words this says that the plane is specified by a point in the plane, and the span of any pair

of linearly independent vectors directed in that plane.
An expression of this form, or a normal form in terms of the cross product is often how the

plane is defined, and the analysis above demonstrates that the bivector wedge product formula,

x∧U = a∧U (14.12)

where specific direction vectors in the plane need not be explicitly specified, also implicitly
contains this parametric representation.

14.1.3 Orthonormal decomposition of a vector with respect to a plane

With the expansion above we have a separation of a vector into two components, and these can
be demonstrated to be the components that are directed entirely within and out of the plane.

Rearranging terms from above we have:

x = (x · i) ·
1
i

+ (x∧ i) ·
1
i

= (x · i)
1
i

+ (x∧ i)
1
i

(14.13)

Writing the vector x in terms of components parallel and perpendicular to the plane

x = x⊥ + x‖ (14.14)

Only the x‖ component contributes to the dot product and only the x⊥ component contributes
to the wedge product:

x = (x‖ · i) ·
1
i

+ (x⊥ ∧ i) ·
1
i

x‖ = (x · i) ·
1
i

x⊥ = (x∧ i) ·
1
i

(14.15)

So, just as in the orthonormal decomposition of a vector with respect to a unit vector, this
gives us a way to calculate components of a vector in and rejected from any plane, a very useful
result in its own right.
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Returning to back to the equation of a plane we have

−(x∧ i)i = −(a∧ i)i = a − (a · i) ·
1
i

(14.16)

Thus, for the fixed point in the plane, the quantity

d = (a∧ i) ·
1
i

(14.17)

is the component of that vector perpendicular to the plane or the minimal length directed
vector from the origin to the plane (directrix). In terms of the unit bivector for the plane and its
directrix the equation of a plane becomes

x∧ i = di = d∧ i (14.18)

Note that the directrix is a normal to the plane.

14.1.4 Alternate derivation of orthonormal planar decomposition

This could alternately be derived by expanding the vector unit bivector product directly

xi
1
i

= (x · i + x∧ i)
1
i

= −(x · i) · i − (x · i)∧ i − (x∧ i)i
= −(x · i) · i − (x∧ i) · i − 〈(x∧ i)i〉3 − (x∧ i)∧ i

= (x · i) ·
1
i

+ (x∧ i) ·
1
i
− 〈(x∧ i)i〉3

(14.19)

Since the LHS of this equation is the vector x, the RHS must also be a vector, which demon-
strates that the term

〈(x∧ i)i〉3 = 0 (14.20)

So, one has

x = (x · i) ·
1
i

+ (x∧ i) ·
1
i

= (x · i)
1
i

+ (x∧ i)
1
i

(14.21)
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14.2 generalization of orthogonal decomposition to components with respect

to a hypervolume

Having observed how to directly calculate the components of a vector in and out of a plane, we
can now do the same thing for a rth degree volume element spanned by an r-blade hypervolume
element U.

14.2.1 Hypervolume element and its inverse written in terms of a spanning orthonormal set

We take U to be a simple element, not an arbitrary multivector of grade r. Such an element can
always be written in the form

U = ku1u2 · · · ur (14.22)

Where uk are unit vectors that span the volume element.
The inverse of U is thus

U−1 =
U†

UU†

=
kur · · · u1

(ku1 · · · ur)(kurur−1 · · · u1)

=
ur · · · u1

k

(14.23)

14.2.2 Expanding the product

Having gathered the required introductory steps we are now in a position to express the vector
x in terms of components projected into and rejected from this hypervolume

x = xU
1
U

= (x ·U + x∧U)
1
U

(14.24)
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The dot product term can be expanded to

(x ·U)
1
U

= k((x · u1)u2u3 · · · ur − (x · u2)u1u3u4 · · · ur + · · ·)
1
U

= (x · u1)(u2u3 · · · ur)(urur−1 · · · u1) − (x · u2)(u1u3u4 · · · ur)(ur−1 · · · u1) + · · ·

= (x · u1)u1 + (x · u2)u2 + · · ·

(14.25)

This demonstrates that (x ·U) 1
U is a vector. Because all the potential 3, 5, ...2r − 1 grade terms

of this product are zero one can write

(x ·U)
1
U

=

〈
(x ·U)

1
U

〉
1

= (x ·U) ·
1
U

(14.26)

In general the product of a r − 1-blade and an r-blade such as (x · Ar)Br) could potentially
have any of these higher order terms.

Summarizing the results so far we have

x = (x ·U)
1
U

+ (x∧U)
1
U

= (x ·U) ·
1
U

+ (x∧U)
1
U

(14.27)

Since the RHS of this equation is a vector, this implies that the LHS is also a vector and thus

(x∧U)
1
U

=

〈
(x∧U)

1
U

〉
1

= (x∧U) ·
1
U

(14.28)

Thus we have an explicit formula for the projective and rejective terms of a vector with
respect to a hypervolume element U:

x = (x ·U)
1
U

+ (x∧U)
1
U

= (x ·U) ·
1
U

+ (x∧U) ·
1
U

=
−1r(r−1)/2

|U|2
((x ·U) ·U + (x∧U) ·U)

(14.29)
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14.2.3 Special note. Interpretation for projection and rejective components of a line

The proof above utilized the general definition of the dot product of two blades, the selection of
the lowest grade element of the product:

Ak ·B j =
〈
AkB j

〉
|k− j|

(14.30)

Because of this, the scalar-vector dot product is perfectly well defined

a · b = 〈ab〉1−0 = ab (14.31)

So, when U is a vector, the equations above also hold.

14.2.4 Explicit expansion of projective and rejective components

Having calculated the explicit vector expansion of the projective term to prove that the all the
higher grade product terms were zero, this can be used to explicitly expand the projective and
rejective components in terms of a set of unit vectors that span the hypervolume

x‖ = (x ·U) ·
1
U

= (x · u1)u1 + (x · u2)u2 + · · ·

x⊥ = (x∧U) ·
1
U

= x − (x · u1)u1 − (x · u2)u2 − · · ·

(14.32)

Recall here that the unit vectors uk are not the standard basis vectors. They are instead an
arbitrary set of orthonormal vectors that span the hypervolume element U.
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14.3 verification that projective and rejective components are orthogonal

In NFCM, for the equation of a line, it is demonstrated that the two vector components (directrix
and parametrization) are orthogonal, and that the directrix is the minimal distance to the line
from the origin. That can be done here too for the hypervolume result.

x∧U = a∧U
(x∧U)U−1 = (a∧U)U−1

(xU − x ·U)U−1 = (a∧U)U−1

x = (x ·U)U−1 + (a∧U)U−1

= αU−1 + d

(14.33)

This first component, the projective term αU−1 = (x ·U)U−1, can be interpreted as a parametriza-
tion term. The last component, the rejective term d = (a ∧U)U−1 is identified as the directrix.
Calculation of |x| allows us to verify the physical interpretation of this vector.

Expansion of the projective term has previously shown that given

U = ku1 ∧ u2 · · · ∧ ur (14.34)

then the expansion of this parametrization term has the form

α =

 r∑
i=1

αiui

 U (14.35)

This is a very specific parametrization, a r − 1 grade parametrization α with r free variables,
producing a vector directed strictly in hypervolume spanned by U.

We can calculate the length of the projective component of x expressed in terms of this
parametrization:

x‖2 =
(
(x ·U)U−1

)2

= α
U†

UU†

(
U†

UU†

)†
α†

= α
U†

|U|2
U
|U|2

α†

=
|α|2

|U|2

(14.36)
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x2 = (αU−1)2 + d2 + 2(αU−1) · d

=
|α|2

|U|2
+ d2 + 2(αU−1) · d

(14.37)

Direct computation shows that this last dot product term is zero

(αU−1) · d = (αU−1) · ((a∧U)U−1)

= (αU−1) · (U−1(U∧ a))

=
(−1)r(r−1)/2

|U|2
(αU−1) · (U(U∧ a))

=
(−1)r(r−1)/2

|U|2
〈
αU−1U(U∧ a)

〉
0

=
(−1)r(r−1)/2

|U|2
〈α(U∧ a)〉0

(14.38)

This last term is a product of an r − 1 grade blade and a r + 1 grade blade. The lowest order
term of this product has grade r + 1 − (r − 1) = 2, which implies that 〈α(U∧ a)〉0 = 0. This
demonstrates explicitly that the parametrization term is perpendicular to the rejective term as
expected.

The length from the origin to the volume is thus

x2 =
|α|2

|U|2
+ d2 (14.39)

This is minimized when α = 0. Thus d is a vector directed from the origin to the hypervolume,
perpendicular to that hypervolume, and also has the minimal distance to that space.





15
Q UAT E R N I O N S

Like complex numbers, quaternions may be written as a multivector with scalar and bivector
components (a 0,2-multivector).

q = α + B (15.1)

Where the complex number has one bivector component, and the quaternions have three.
One can describe quaternions as 0,2-multivectors where the basis for the bivector part is

left handed. There is not really anything special about quaternion multiplication, or complex
number multiplication, for that matter. Both are just a specific examples of a 0,2-multivector
multiplication. Other quaternion operations can also be found to have natural multivector equiv-
alents. The most important of which is likely the quaternion conjugate, since it implies the norm
and the inverse. As a multivector, like complex numbers, the conjugate operation is reversal:

q = q† = α −B (15.2)

Thus |q|2 = qq = α2 − B2. Note that this norm is a positive definite as expected since a
bivector square is negative.

To be more specific about the left handed basis property of quaternions one can note that the
quaternion bivector basis is usually defined in terms of the following properties

i2 = j2 = k2 = −1 (15.3)

ij = −ji, ik = −ki, jk = −kj (15.4)

ij = k (15.5)

The first two properties are satisfied by any set of orthogonal unit bivectors for the space. The
last property, which could also be written ijk = −1, amounts to a choice for the orientation of
this bivector basis of the 2-vector part of the quaternion.
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As an example suppose one picks

i = e2e3 (15.6)

j = e3e1 (15.7)

Then the third bivector required to complete the basis set subject to the properties above is

ij = e2e1 = k (15.8)

.
Suppose that, instead of the above, one picked a slightly more natural bivector basis, the duals

of the unit vectors obtained by multiplication with the pseudoscalar (e1e2e3ei). These bivectors
are

i = e2e3, j = e3e1,k = e1e2 (15.9)

.
A 0,2-multivector with this as the basis for the bivector part would have properties similar

to the standard quaternions (anti-commutative unit quaternions, negation for unit quaternion
square, same conjugate, norm and inversion operations, ...), however the triple product would
have the value ijk = 1, instead of −1.

15.1 quaternion as generator of dot and cross product

The product of pure quaternions is noted as being a generator of dot and cross products. This is
also true of a vector bivector product.

Writing a vector x as

x =
∑

i

xiei = x1e1 + x2e2 + x3e3 (15.10)

And a bivector B (where for short, ei j = eie j = ei ∧ e j) as:

B =
∑

i

bieiI = b1e23 + b2e31 + b3e12 (15.11)
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The product of these two is

xB = (x1e1 + x2e2 + x3e3)(b1e23 + b2e31 + b3e12)

= (x3b2 − x2b3)e1 + (x1b3 − x3b1)e2 + (x2b1 − x1b2)e3

+ (x1b1 + x2b2 + x3b3)e123

(15.12)

Looking at the vector and trivector components of this we recognize the dot product and
negated cross product immediately (as with multiplication of pure quaternions).

Those products are, in fact, x ·B and x∧B respectively.
Introducing a vector and bivector basis α = {ei}, and β = {eiI}, we can express the dot product

and cross product of the associated coordinate vectors in terms of vector bivectors products as
follows:

[x]α · [B]β =
B∧ x

I
(15.13)

[x]α × [B]β = [B · x]α (15.14)
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C AU C H Y E Q UAT I O N S E X P R E S S E D A S A G R A D I E N T

The complex number derivative, when it exists, is defined as:

δ f
δz

=
f (z + δz) − f (z)

δz

f ′(z) = limit|δz|→0
δ f
δz

Like any two variable function, this limit requires that all limiting paths produce the same
result, thus it is minimally necessary that the limits for the particular cases of δz = δx + iδy
exist for both δx = 0, and δy = 0 independently. Of course there are other possible ways for
δz → 0, such as spiraling inwards paths. Apparently it can be shown that if the specific cases
are satisfied, then this limit exists for any path (I am not sure how to show that, nor will try, at
least now).

Examining each of these cases separately, we have for δx = 0, and f (z) = u(x, y) + iv(x, y):

δ f
δz

=
u(x, y + δy) + iv(x, y + δy)

iδy

→ −i
∂u(x, y)
∂y

+
∂v(x, y)
∂y

(16.1)

and for δy = 0

δ f
δz

=
u(x + δx, y) + iv(x + δx, y)

δx

→
∂u(x, y)
∂x

+ i
∂v(x, y)
∂x

(16.2)

If these are equal regardless of the path, then equating real and imaginary parts of these
respective equations we have:

∂v
∂x

+
∂u
∂y

= 0

∂u
∂x
−
∂v
∂y

= 0
(16.3)
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124 cauchy equations expressed as a gradient

Now, these are strikingly similar to the gradient, and we make this similarly explicit using
the planar pseudoscalar i = e1 ∧ e2 = e1e2 as the unit imaginary. For the first equation, pre
multiplying by 1 = e11, and post multiplying by e2 we have:

e1
∂e12v
∂x

+ e2
∂u
∂y

= 0,

and for the second, pre multiply by e1, and post multiply the ∂y term by 1 = e22, and rear-
range:

e1
∂u
∂x

+ e2
∂e12v
∂y

= 0.

Adding these we have:

e1
∂u + e12

∂x
+ e2

∂u + e12v
∂y

= 0.

Since f = u + iv, this is just

e1
∂ f
∂x

+ e2
∂ f
∂y

= 0. (16.4)

Or,

∇ f = 0 (16.5)

By taking second partial derivatives and equating mixed partials we are used to seeing these
Cauchy-Riemann equations take this form as second order equations:

∇2u = uxx + uyy = 0 (16.6)

∇2v = vxx + vyy = 0 (16.7)

Given this, eq. (16.5) is something that we could have perhaps guessed, since the square root
of the Laplacian operator, is in fact the gradient (there are an infinite number of such square
roots, since any rotation of the coordinate system that expresses the gradient also works). How-
ever, a guess of this is not required since we see this explicitly through some logical composition
of relationships.

The end result is that we can make a statement that in regions where the complex function is
analytic (has a derivative), the gradient of that function is zero in that region.

This is a kind of interesting result and I expect that this will relevant when figuring out how
the geometric calculus all fits together.



16.1 verify we still have the cauchy equations hiding in the gradient 125

16.1 verify we still have the cauchy equations hiding in the gradient

We have:

∇ f e1 = ∇(e1u − e2v) = 0

If this is to be zero, both the scalar and bivector parts of this equation must also be zero.

(∇ · f )e1 = ∇ · (e1u − e2v)

= (e1∂x + e2∂y) · (e1u − e2v)

= (∂xu − ∂yv) = 0

(16.8)

(∇∧ f )e1 = ∇∧ (e1u − e2v)

= (e1∂x + e2∂y)∧ (e1u − e2v)

= −e1 ∧ e2(∂xv + ∂yu) = 0

(16.9)

We therefore see that this recovers the expected pair of Cauchy equations:

∂xu − ∂yv = 0

∂xv + ∂yu = 0
(16.10)





17
L E G E N D R E P O LY N O M I A L S

Exercise 8.4, from [15].
Find the first couple terms of the Legendre polynomial expansion of

1
|x − a|

(17.1)

Write

f (x) =
1
|x|

(17.2)

Expanding f (x − a) about x we have

1
|x − a|

=
∑
k=0

1
k!

(−a · ∇)k 1
|x|

(17.3)

Expanding the first term we have

−a · ∇
1
|x|

=
1

|x|2
a · ∇|x|

=
1

|x|2
a · ∇(x2)1/2

=
1

|x|2
(1/2)

(|x|2)1/2
a · ∇x2

=
a · x
|x|3

(17.4)

Expansion of the second derivative term is

(−a · ∇)
2

(−a · ∇)
1

1
|x|

=
a · ∇

2

(
−a · x
|x|3

)
=
−1
2

(
a · ∇(a · x)

|x|3
+ (a · x)a · ∇

1

|x|3

) (17.5)
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For this we need

a · ∇(a · x) = a · (a · ∇x) = a2 (17.6)

And

a · ∇
1

|x|k
= k

1

|x|k−1 a · ∇
1
|x|

= k
1

|x|k−1

−a · x
|x|3

= −k
a · x
|x|k+2

(17.7)

Thus the second derivative term is

−1
2

(
a2

|x|3
− 3

(a · x)2

|x|5

)
=

(1/2)
(
3(a · x)2 − a2x2

)
|x|5

(17.8)

Summing these terms we have

1
|x − a|

=
1
|x|

+
a · x
|x|3

+
(1/2)

(
3(a · x)2 − a2x2

)
|x|5

+ · · · (17.9)

NFCM writes this as

1
|x − a|

=
P0(xa)
|x|

+
P1(xa)

|x|3
+

P2(xa)

|x|5
+ · · · (17.10)

And calls Pi = Pi(xa) terms the Legendre polynomials. This is not terribly clear since one
expects a different form for the Legendre polynomials.

Using the Taylor formula one can derive a recurrence relation for these that makes the calcu-
lation a bit simpler

Pk+1

|x|2(k+1)+1 =
−a · ∇
k + 1

(
Pk

|x|2k+1

)
=
−1

k + 1

(
a · ∇(Pk

|x|2k+1 + Pk
a · ∇
|x|2k+1

)
=

1
k + 1

(
Pk(2k + 1)

a · x
|x|2k+3 − x2 a · ∇Pk

|x|2k+3

) (17.11)

Or

(k + 1)Pk+1 = Pk(2k + 1)a · x − x2a · ∇Pk (17.12)
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Some of these have been calculated

P0 = 1

P1 = a · x

P2 =
1
2

(3(a · x)2 − a2x2)

(17.13)

And for the derivatives

a · ∇P0 = 0

a · ∇P1 = a2

a · ∇P2 =
1
2

((3)(2)(a · x)a2 − 2a2x · a)

= 2a2(x · a)

(17.14)

Using the recurrence relation one can calculate P3 for example.

P3 = (1/3)
(
5
2

(3(a · x)2 − a2x2)(a · x) − 2x2a2(x · a)
)

= (1/3)(a · x)
(
5
2

(3(a · x)2 − a2x2) − 2x2a2
)

= (a · x)
(
5
2

((a · x)2) − 3/2x2a2
)

=
1
2

(a · x)(5(a · x)2 − 3x2a2)

(17.15)

17.1 putting things in standard legendre polynomial form

This is still pretty laborious to calculate, especially because of not having a closed form recur-
rence relation for a · ∇Pk. Let us relate these to the standard Legendre polynomial form.

Observe that we can write

P0(xa) = 1
P1(xa)
|x||a|

= â · x̂

P2(xa)
|x|2|a|2

=
1
2

(3(â · x̂)2 − 1)

P3(xa)
|x|3|a|3

=
1
2

(5(â · x̂)3 − 3(â · x̂))

(17.16)
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With this scaling, we have the standard form for the Legendre polynomials, and can write

1
x − a

=
1
|x|

P0 +
|a|
|x|

P1(â · x̂) +

(
|a|
|x|

)2

P2(â · x̂) +

(
|a|
|x|

)3

P3(â · x̂) + · · ·

 (17.17)

17.2 scaling standard form legendre polynomials

Since the odd Legendre polynomials have only odd terms and even have only even terms this
allows for the scaled form that NFCM uses.

P0(xa) = P0(â · x̂)

P1(xa) = |x||a|P1(â · x̂) = a · x

P2(xa) = |x|2|a|2P2(â · x̂) =
1
2

(3(a · x)2 − x2a2)

P3(xa) = |x|3|a|3P3(â · x̂) =
1
2

(5(a · x)3 − 3(a · x)x2a2)

(17.18)

Every term for the kth polynomial is a permutation of the geometric product xkak.
This allows for writing some of these terms using the wedge product. Using the product

expansion:

(a · x)2 = (a∧ x)2 + a2x2 (17.19)

Thus we have:

P2(xa) = (a · x)2 +
1
2

(a∧ x)2

= (a · x)2 −
1
2
|a∧ x|2

(17.20)

This is nice geometrically since the directional dependence of this term on the co-linearity
and perpendicularity of the vectors a and x is clear.

Doing the same for the P3:

P3(xa) = (a · x)
1
2

(5(a · x)2 − 3x2a2)

= (a · x)
1
2

(2(a · x)2 + 3(a∧ x)2)

= (a · x)((a · x)2 −
3
2
|a∧ x|2)

(17.21)
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I suppose that one could get the same geometrical interpretation with a standard Legendre
expansion in terms of â · x̂ = cos(θ) terms, by collect both sin(θ) and cos(θ) powers, but one can
see the power of writing things explicitly in terms of the original vectors.

17.3 note on nfcm legendre polynomial notation

In NFCM’s slightly abusive notation Pk was used with various meanings. He wrote Pk(â · x̂) =
Pk(xa)
|x|k |a|k .

Note for example that the standard first degree Legendre polynomial P1(x) = x evaluated
with a xa value:

1
|x||a|

P1(x)|x=xa = x̂â

= x̂ · â + x̂∧ â
(17.22)

This has a bivector component in addition to the component identical to the standard Legen-
dre polynomial term (the first part).

By luck it happens that the scalar part of this equals P1(â · x̂), but this is not the case for other
terms. Example, P2(xa):

P2(x)|x=xa =
1
2

(3(xa)2 − 1)

=
1
2

(3(−ax + 2a · x)(xa) − 1)

=
1
2

(3(−a2x2 + 2(a · x)2 + 2(a · x)(x∧ a)) − 1)

= −(3/2)a2x2 + 3(a · x)2 + 3(a · x)(x∧ a) − 1/2

(17.23)

Scaling this by 1/(a2x2) is

−
3
2

+ 3(â · x̂)2 + 3(â · x̂)(x̂∧ â) −
1

a2x2 (17.24)

The scalar part of this is not anything recognizable.
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L E V I - C I V I T I C A S U M M AT I O N I D E N T I T Y

18.1 motivation

In [3] it is left to the reader to show

∑
k

εi jkεklm = δilδ jm − δ jlδim (18.1)

18.2 a mechanical proof

Although it is not mathematical, this is easy to prove, at least for 3D. The following perl code
does the trick

#!/usr/bin/perl

$e{111} = 0 ; $e{112} = 0 ; $e{113} = 0 ;

$e{121} = 0 ; $e{122} = 0 ; $e{123} = 1 ;

$e{131} = 0 ; $e{132} = -1 ; $e{133} = 0 ;

$e{211} = 0 ; $e{212} = 0 ; $e{213} = -1 ;

$e{221} = 0 ; $e{222} = 0 ; $e{223} = 0 ;

$e{231} = 1 ; $e{232} = 0 ; $e{233} = 0 ;

$e{311} = 0 ; $e{312} = 1 ; $e{313} = 0 ;

$e{321} = -1 ; $e{322} = 0 ; $e{323} = 0 ;

$e{331} = 0 ; $e{332} = 0 ; $e{333} = 0 ;

$d{11} = 1 ; $d{12} = 0 ; $d{13} = 0 ;

$d{21} = 0 ; $d{22} = 1 ; $d{23} = 0 ;

$d{31} = 0 ; $d{32} = 0 ; $d{33} = 1 ;

# prove: \sum_k e_{ijk} e_{klm}

# = \delta_{il}\delta_{jm} - \delta_{jl}\delta_{im}

#print "$e{123} $e{113} $e{321}\n" ;

for ( my $i = 1 ; $i <= 3 ; $i++ ) {

for ( my $j = 1 ; $j <= 3 ; $j++ ) {
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134 levi-civitica summation identity

for ( my $l = 1 ; $l <= 3 ; $l++ ) {

for ( my $m = 1 ; $m <= 3 ; $m++ ) {

my $lhs = 0 ;

my $rhs = $d{"${i}${l}"} * $d{"${j}${m}"}

- $d{"${j}${l}"} * $d{"${i}${m}"} ;

for ( my $k = 1 ; $k <= 3 ; $k++ ) {

$lhs += $e{"${i}${j}${k}"} * $e{"${k}${l}${m}"} ;

}

if ( $rhs != $lhs ) {

print ’ERROR: \\sum_{k=1}^{3} \\epsilon_{’ .

"${i}${j}k" .

’} \\epsilon_{’ .

"k${l}${m}} = $lhs\n" ;

print ’ERROR: \\delta_{’ .

"${i}${l}}" . ’\\delta_{’ .

"${j}${m}" . ’} - \\delta_{’ .

"${j}${l}" . ’}\\delta_{’ .

"${i}${m}} = $rhs\n\n" ;

} else {

print "$lhs &= " .

’\\sum_{k=1}^{3} \\epsilon_{’ .

"${i}${j}k" . ’} \\epsilon_{’ .

"k${l}${m}} = " . ’\\delta_{’ .

"${i}${l}}" . ’\\delta_{’ . "${j}${m}" .

’} - \\delta_{’ . "${j}${l}" .

’}\\delta_{’ . "${i}${m}}" .

’ \\\\’ . " \n" ;

} } } } } �
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The output produced has all the variations of indices, such as

0 =

3∑
k=1

ε11kεk11 = δ11δ11 − δ11δ11

0 =

3∑
k=1

ε11kεk12 = δ11δ12 − δ11δ12

...

0 =

3∑
k=1

ε11kεk33 = δ13δ13 − δ13δ13

0 =

3∑
k=1

ε12kεk11 = δ11δ21 − δ21δ11

1 =

3∑
k=1

ε12kεk12 = δ11δ22 − δ21δ12

0 =

3∑
k=1

ε12kεk13 = δ11δ23 − δ21δ13

−1 =

3∑
k=1

ε12kεk21 = δ12δ21 − δ22δ11

...

(18.2)

18.3 proof using bivector dot product

This identity can also be derived from an expansion of the bivector dot product in two different
ways.

(ei ∧ e j) · (em ∧ en) = ((ei ∧ e j) · em) · en

= (ei(e j · em) − e j(ei · em)) · en

= (eiδ jm − e jδim) · en

= δinδ jm − δ jnδim

(18.3)

Expressing the wedge product in terms duality, using the pseudoscalar I = e1e2e3, we have

(ei ∧ e j)ek = Iεi jk (18.4)
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Or

ei ∧ e j = I
∑

k

εi jkek (18.5)

Then the bivector dot product is

(ei ∧ e j) · (em ∧ en) =

〈
I
∑

k

εi jkekI
∑

p

εmnpep

〉
= I2

∑
k,p

εi jkεmnp
〈
ekep

〉
= −

∑
k,p

εi jkεmnpδkp

= −
∑

k

εi jkεmnk

(18.6)

Comparing the two expansions we have

∑
k

εi jkεmnk = δ jnδim − δinδ jm (18.7)

Which is equivalent to the original identity (after an index switcheroo). Note both the dimen-
sion and metric dependencies in this proof.



19
S O M E N F C M E X E R C I S E S O L U T I O N S A N D N OT E S

Solutions for problems in chapter 2 I recall that some of the problems from this chapter of
[15] were fairly tricky. Did I end up doing them all? I intended to revisit these and make sure I
understood it all. As I do so, write up solutions, starting with 1.3, a question on the Geometric
Algebra group.

Another thing I recall from the text is that I was fairly confused about all the mass of identities
by the time I got through it, and it was not clear to me which were the fundamental ones.
Eventually I figured out that it is really grade selection that is the fundamental operation, and
found better presentations of axiomatic treatment in [7].

For reference the GA axioms are

• vector product is linear

a(αb + βc) = αab + βac

(αa + βb)c = αac + βbc
(19.1)

• distribution of vector product

(ab)c = a(bc) = abc (19.2)

• vector contraction

a2 ∈ R (19.3)

For a Euclidean space, this provides the length a2 = |a|2, but for relativity and conformal
geometry this specific meaning is not required.

The definition of the generalized dot between two blades is

Ar · Bs = 〈AB〉|r−s| (19.4)
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and the generalized wedge product definition for two blades is

Ar ∧ Bs = 〈AB〉r+s. (19.5)

With these definitions and the GA axioms everything else should logically follow.
I personally found it was really easy to go around in circles attempting the various proofs,

and intended to revisit all of these and prove them all for myself making sure I did not invoke
any circular arguments and used only things already proven.

19.0.1 Exercise 1.3

Solve for x

αx + ax · b = c (19.6)

where α is a scalar and all the rest are vectors.

19.0.1.1 Solution

Can dot or wedge the entire equation with the constant vectors. In particular

c · b = (αx + ax · b) · b

= (α + a · b)x · b
(19.7)

=⇒ x · b =
c · b

α + a · b
(19.8)

and

c∧ a = (αx + ax · b)∧ a

= α(x ∧ a) + (a∧ a)

= 0

(x · b)∧ a

(19.9)

=⇒ x ∧ a =
1
α

(c∧ a) (19.10)
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This last can be reduced by dotting with b, and then substitute the result for x · b from above

(x ∧ a) · b = x(a · b) − (x · b)a

= x(a · b) −
c · b

α + a · b
a

(19.11)

Thus the final solution is

x =
1

a · b

(
c · b

α + a · b
a +

1
α

(c∧ a) · b
)

(19.12)

Question: was there a geometric or physical motivation for this question. I can not recall one?

19.1 sequential proofs of required identities

19.1.1 Split of symmetric and antisymmetric parts of the vector product

NFCM defines the vector dot and wedge products in terms of the symmetric and antisymmetric
parts, and not in terms of grade selection.

The symmetric and antisymmetric split of a vector product takes the form

ab =
1
2

(ab + ba) +
1
2

(ab − ba) (19.13)

Observe that if the two vectors are colinear, say b = αa, then this is

ab =
α

2
(a2 + a2) +

α

2
(a2 − a2) (19.14)

The antisymmetric part is zero for any colinear vectors, while the symmetric part is a scalar
by the contraction axiom eq. (19.3).

Now, suppose that one splits the vector b into a part that is explicit colinear with a, as in
b = αa + c.

Here one can observe that none of the colinear component of this vector contributes to the
antisymmetric part of the split

1
2

(ab − ba) =
1
2

(a(αa + c) − (αa + c)a)

=
1
2

(ac − ca)
(19.15)
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So, in a very loose fashion the symmetric part can be observed to be due to only colinear
parts of the vectors whereas colinear components of the vectors do not contribute at all to the
antisymmetric part of the product split. One can see that there is a notion of parallelism and
perpendicularity built into this construction.

What is of interest here is to show that this symmetric and antisymmetric split also provides
the scalar and bivector parts of the product, and thus matches the definitions of generalized dot
and wedge products.

While it has been observed that the symmetric product is a scalar for colinear vectors it has
not been demonstrated that this is necessarily a scalar in the general case.

Consideration of the square of a + b is enough to do so.

(a + b)2 = a2 + b2 + ab + ba

=⇒
(19.16)

1
2

(
(a + b)2 − a2 − b2

)
=

1
2

(ab + ba) (19.17)

We have only scalar terms on the LHS, which demonstrates that the symmetric product is
necessarily a scalar. This is despite the fact that the exact definition of a2 (ie: the metric for the
space) has not been specified, nor even a requirement that this vector square is even satisfies
a2 >= 0. Such an omission is valuable since it allows for a natural formulation of relativistic
four-vector algebra where both signs are allowed for the vector square.

Observe that eq. (19.17) provides a generalization of the Pythagorean theorem. If one defines,
as in Euclidean space, that two vectors are perpendicular by

(a + b)2 = a2 + b2 (19.18)

Then one necessarily has

1
2

(ab + ba) = 0 (19.19)

So, that we have as a consequence of this perpendicularity definition a sign inversion on
reversal

ba = −ab (19.20)

This equation contains the essence of the concept of grade. The product of a pair of vectors is
grade two if reversal of the factors changes the sign, which in turn implies the two factors must
be perpendicular.
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Given a set of vectors that, according to the symmetric vector product (dot product) are all
either mutually perpendicular or colinear, grouping by colinear sets determines the grade

a1a2a3...am = (b j1b j2 ...)(bk1bk2 ...)...(bl1bl2 ...) (19.21)

after grouping in pairs of colinear vectors (for which the squares are scalars) the count of
the remaining elements is the grade. By example, suppose that ei is a normal basis for RN

ei · e j ∝ δi j, and one wishes to determine the grade of a product. Permuting this product so that
it is ordered by index leaves it in a form that the grade can be observed by inspection

e3e7e1e2e1e7e6e7 = −e3e1e7e2e1e7e6e7

= e1e3e7e2e1e7e6e7

= ...

∝ e1e1e2e3e6e7e7e7

= (e1e1)e2e3e6(e7e7)e7

∝ e2e3e6e7

(19.22)

This is an example of a grade four product. Given this implicit definition of grade, one can
then see that the antisymmetric product of two vectors is necessarily grade two. An explicit
enumeration of a vector product in terms of an explicit normal basis and associated coordinates
is helpful here to demonstrate this.

Let

a =
∑

i

aiei

b =
∑

j

b je j
(19.23)

now, form the product

ab =
∑

i

∑
j

aib jeie j

=
∑
i< j

aib jeie j +
∑
i= j

aib jeie j +
∑
i> j

aib jeie j

=
∑
i< j

aib jeie j +
∑
i= j

aib jeie j +
∑
j>i

a jbie jei

=
∑
i< j

aib jeie j +
∑
i= j

aib jeie j −
∑
i< j

a jbieie j

=
∑

i

aibi(ei)2 +
∑
i< j

(aib j − a jbi)eie j

(19.24)
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similarly

ba =
∑

i

aibi(ei)2 −
∑
i< j

(aib j − a jbi)eie j (19.25)

Thus the symmetric and antisymmetric products are respectively

1
2

(ab + ba) =
∑

i

aibi(ei)2

1
2

(ab − ba) =
∑
i< j

(aib j − a jbi)eie j

(19.26)

The first part as shown above with non-coordinate arguments is a scalar. Each term in the
antisymmetric product has a grade two term, which as a product of perpendicular vectors cannot
be reduced any further, so it is therefore grade two in its entirety.

following the definitions of eq. (19.4) and eq. (19.5) respectively, one can then write

a · b =
1
2

(ab + ba)

a∧ b =
1
2

(ab − ba)
(19.27)

These can therefore be seen to be a consequence of the definitions and axioms rather than a
required a-priori definition in their own right. Establishing these as derived results is important
to avoid confusion when one moves on to general higher grade products. The vector dot and
wedge products are not sufficient by themselves if taken as a fundamental definition to establish
the required results for such higher grade products (in particular the useful formulas for vector
times blade dot and wedge products should be observed to be derived results as opposed to
definitions).

19.1.2 bivector dot with vector reduction

In the 1.3 solution above the identity

(a∧ b) · c = a(b · c) − (a · c)b (19.28)
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was used. Let us prove this.

(a∧ b) · c = 〈(a∧ b)c〉1
=⇒

2(a∧ b) · c = 〈abc − bac〉1
= 〈abc − b(−ca + 2a · c)〉1
= 〈abc + bca〉1 − 2b(a · c)

= 〈a(b · c + b∧ c) + (b · c + b∧ c)a〉1 − 2b(a · c)

= 2a(b · c) + a · (b∧ c) + (b∧ c) · a − 2b(a · c)

(19.29)

To complete the proof we need a · B = −B · a, but once that is demonstrated, one is left with
the desired identity after dividing through by 2.

19.1.3 vector bivector dot product reversion

Prove a · B = −B · a.





20
O U T E R M O R P H I S M Q U E S T I O N

20.1

[7] has an example of a linear operator.

F(a) = a + α(a · f1) f2. (20.1)

This is used to compute the determinant without putting the operator in matrix form.

20.1.1 bivector outermorphism

Their first step is to compute the wedge of this function applied to two vectors. Doing this
myself (not omitting steps), I get:

F(a∧ b) = F(a)∧ F(b)

= (a + α(a · f1) f2)∧ (b + α(b · f1) f2)

= a∧ b + α(a · f1) f2 ∧ b + α(b · f1)a∧ f2 + α2(a · f1)(b · f1) f2 ∧ f2

= 0

= a∧ b + α ((b · f1)a − (a · f1)b) ∧ f2
= a∧ b + α ((a∧ b) · f1) ∧ f2

(20.2)

This has a very similar form to the original function F. In particular one can write

F(a) = a + α(a · f1) f2
= a + 〈α(a · f1) f2〉1
= a + 〈α(a · f1) f2〉0+1

= a + α(a · f1)∧ f2

(20.3)

Here the fundamental definition of the wedge product as the highest grade part of a product
of blades has been used to show that the new bivector function defined via outermorphism has

145



146 outermorphism question

the same form as the original, once we put the original in the new form that applies to bivector
and vector:

F(A) = A + α(A · f1)∧ f2 (20.4)

20.1.2 Induction

Now, proceeding inductively, assuming that this is true for some grade k blade A, one can
calculate F(A)∧ F(b) for a vector b:

F(A)∧ F(b)

= (A + α(A · f1)∧ f2)∧ (b + α(b · f1) f2)

= A∧ b + α(b · f1)A∧ f2 + α((A · f1)∧ f2)∧ b + α2(b · f1)((A · f1)∧ f2)∧ f2
= A∧ b + α ((b · f1)A − (A · f1)∧ b) ∧ f2
= A∧ b + α〈(b · f1)A − (A · f1)b〉k ∧ f2

(20.5)

Now, similar to the bivector case, this inner quantity can be reduced, but it is messier to do
so:

〈(b · f1)A − (A · f1)b〉k =
1
2

〈
b f1A − A f1b + f1(bA + (−1)kAb)

〉
k

(20.6)

=⇒ 〈(b · f1)A − (A · f1)b〉k =
1
2
〈b f1A − A f1b〉k + 〈 f1(b∧ A)〉k (20.7)

Consider first the right hand expression:

〈 f1(b∧ A)〉k = f1 · (b∧ A)

= (−1)k f1 · (A∧ b)

= (−1)k(−1)k(A∧ b) · f1
= (A∧ b) · f1

(20.8)

The right hand expression in eq. (20.7) can be shown to equal zero. That is messier still and
the calculation can be found at the end.

Using that equals zero result we now have:

F(A)∧ F(b) = A∧ b + α((A∧ b) · f1)∧ f2 (20.9)

This completes the induction.
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20.1.3 Can the induction be avoided?

Now, GAFP did not do this induction, nor even claim it was required. The statement is "It
follows that", after only calculating the bivector case. Is there a reason that they would be able
to make such a statement without proof that is obvious to them perhaps but not to me?

It has been pointed out that this question is answered, “yes, the induction can be avoided”, in
[23] page 148.

20.2 appendix . messy reduction for induction

Q: Is there an easier way to do this?
Here we want to show that

1
2
〈b f1A − A f1b〉k = 0

Expanding the innards of this expression to group A and b parts together:

b f1A − A f1b = ( f1b − 2b∧ f1)A − A(b f1 − 2 f1 ∧ b)

= f1bA − Ab f1 − 2(b∧ f1)A + 2A( f1 ∧ b)

= f1(b · A + b∧ A) − (A · b + A∧ b) f1
− 2 ((b∧ f1) · A + 〈(b∧ f1)A〉k + (b∧ f1)∧ A)

+ 2 (A · ( f1 ∧ b) + 〈A( f1 ∧ b)〉k + A∧ ( f1 ∧ b))

(20.10)

the grade k − 2, and grade k + 2 terms of the bivector product cancel (we are also only inter-
ested in the grade-k parts so can discard them). This leaves:

f1 ∧ (b · A) − (A · b)∧ f1 + f1 · (b∧ A) − (A∧ b) · f1 − 2〈(b∧ f1)A〉k + 2〈A( f1 ∧ b)〉k

The bivector, blade product part of this is the antisymmetric part of that product so those
two last terms can be expressed with the commutator relationship for a bivector with blade:
〈B2A〉k = 1

2 (B2A − AB2):

2〈A( f1 ∧ b)〉k − 2〈(b∧ f1)A〉k = A( f1 ∧ b) − ( f1 ∧ b)A − (b∧ f1)A + A(b∧ f1)

= A( f1 ∧ b) − ( f1 ∧ b)A + ( f1 ∧ b)A − A( f1 ∧ b)

= 0

(20.11)
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So, we now have to show that we have zero for the remainder:

2〈b f1A − A f1b〉k = f1 ∧ (b · A) − (A · b)∧ f1
+ f1 · (b∧ A) − (A∧ b) · f1

= (−1)k−1 f1 ∧ (A · b) − (−1)k−1 f1 ∧ (A · b)

+ (−1)k f1 · (A∧ b) − (−1)k f1 · (A∧ b)

= 0

(20.12)

20.3 new observation

Looking again, I think I see one thing that I missed. The text said they were constructing the
action on a general multivector. So, perhaps they meant b to be a blade. This is a typesetting
subtlety if that is the case. Let us assume that is what they meant, and that b is a grade k blade.
This makes the coefficient of the scalar α in equation 4.147 :

a · f1 f2 ∧ b + b · f1a∧ f2 =
(
(b · f1)a + (−1)k(a · f1)b

)
∧ f2 (20.13)

whereas they have:

((b · f1)a − (a · f1)b) ∧ f2

So, no, I think they must have intended b to be a vector, not an arbitrary grade blade.
Now, indirectly, it has been proven here that for a vectors x, y, and a grade-k blade B:

(A∧ x) · y = A(x · y) − (A · y)∧ x (20.14)

Or,

(A∧ x) · y = (y · x)A + (−1)k(y · A)∧ x (20.15)

(changed variable names to disassociate this from the specifics of this particular example),
which is a generalization of the wedge product with dot product distribution identity for vectors:

(a∧ b) · c = a(b · c) − (a · c)∧ b (20.16)

I believe I have seen a still more general form of eq. (20.14) in a Hestenes paper, but did not
think about using it a-priori. Regardless, it does not really appear the the GAFP text was treating
b as anything but a vector, since there would have to be a (−1)k factor on equation 4.147 for it
to be general.
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Exercise 20.1 Elliptic parameterization ([15] ch. 3, pr. 8.6)
Show that an ellipse can be parameterized by

(20.17)r(t) = c cosh(µ + it).

Here i is a unit bivector, and i∧ c is zero (i.e. c must be in the plane of the bivector i).
Answer for Exercise 20.1

Note that µ, t, i all commute since µ, t are both scalars. That allows a complex-like expansion
of the hyperbolic cosine to be used

(20.18)
cosh(µ + it) =

1
2

(
eµ+it + e−µ−it

)
=

1
2

(
eµ(cos t + i sin t) + e−µ(cos t − i sin t)

)
= cosh µ cos t + i sinh µ sin t.

Since an ellipse can be parameterized as

(20.19)r(t) = a cos t + b sin t,

where the vector directions a and b are perpendicular, the multivector hyperbolic cosine
representation parameterizes the ellipse provided

(20.20)
a = c cosh µ

b = ci sinh µ.

It is desirable to relate the parameters µ, i to the vectors a,b. Because c ∧ i = 0, the vector c
anticommutes with i, and therefore (ci)2 = −ciic = c2, which means

(20.21)
a2 = c2 cosh2 µ

b2 = c2 sinh2 µ,

or

(20.22)µ = tanh−1 |b|
|a|
.

The bivector i is just the unit bivector for the plane containing a and b

(20.23)

a ∧ b = cosh µ sinh µc ∧ (ci)
= cosh µ sinh µ〈cci〉2
= cosh µ sinh µic2

= cosh µ sinh µi
a2

cosh2 µ

= a2 tanh µi

= a2i
|b|
|a|
,
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so

(20.24)i =
a ∧ b
|a||b|

.

Observe that i is a unit bivector provided the vectors a,b are perpendicular, as required

(20.25)

(a ∧ b)2 = (a ∧ b) · (a ∧ b)
= ((a ∧ b) · a) · b
= (a(b · a) − ba2) · b
= (a · b)2 − b2a2

= −b2a2.
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R E C I P RO C A L F R A M E V E C T O R S

21.1 approach without geometric algebra

Without employing geometric algebra, one can use the projection operation expressed as a dot
product and calculate the a vector orthogonal to a set of other vectors, in the direction of a
reference vector.

Such a calculation also yields RN results in terms of determinants, and as a side effect pro-
duces equations for parallelogram area, parallelepiped volume and higher dimensional ana-
logues as a side effect (without having to employ change of basis diagonalization arguments
that do not work well for higher dimensional subspaces).

21.1.1 Orthogonal to one vector

The simplest case is the vector perpendicular to another. In anything but R2 there are a whole
set of such vectors, so to express this as a non-set result a reference vector is required.

Calculation of the coordinate vector for this case follows directly from the dot product. Bor-
rowing the GA term, we subtract the projection to calculate the rejection.

Rejû (v) = v − v · ûû

=
1
u2 (vu2 − v · uu)

=
1
u2

∑
vieiu ju j − v ju juiei

=
1
u2

∑
u jei

∣∣∣∣∣∣∣vi v j

ui u j

∣∣∣∣∣∣∣
=

1
u2

∑
i< j

(uie j − u jei)

∣∣∣∣∣∣∣ui u j

vi v j

∣∣∣∣∣∣∣

(21.1)

Thus we can write the rejection of v from û as:

Rejû (v) =
1
u2

∑
i< j

∣∣∣∣∣∣∣ui u j

vi v j

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣ui u j

ei e j

∣∣∣∣∣∣∣ (21.2)
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Or introducing some shorthand:

Duv
i j =

∣∣∣∣∣∣∣ui u j

vi v j

∣∣∣∣∣∣∣
Due

i j =

∣∣∣∣∣∣∣ui u j

ei e j

∣∣∣∣∣∣∣
(21.3)

eq. (21.2) can be expressed in a form that will be slightly more convenient for larger sets of
vectors:

Rejû (v) =
1
u2

∑
i< j

Duv
i j Due

i j (21.4)

Note that although the GA axiom u2 = u · u has been used in equations eq. (21.2) and
eq. (21.4) above and the derivation, that was not necessary to prove them. This can, for now, be
thought of as a notational convenience, to avoid having to write u · u, or ‖u‖2.

This result can be used to express the RN area of a parallelogram since we just have to
multiply the length of Rejû (v):

‖Rejû (v)‖
2 = Rejû (v) · v =

1
u2

∑
i< j

(
Duv

i j

)2
(21.5)

with the length of the base ‖u‖. [FIXME: insert figure.]
Thus the area (squared) is:

A2
u,v =

∑
i< j

(
Duv

i j

)2
(21.6)

For the special case of a vector in R2 this is

Au,v = |Duv
12 | = abs


∣∣∣∣∣∣∣ui u j

vi v j

∣∣∣∣∣∣∣
 (21.7)
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21.1.2 Vector orthogonal to two vectors in direction of a third

The same procedure can be followed for three vectors, but the algebra gets messier. Given three
vectors u, v, and w we can calculate the component w′ of w perpendicular to u and v. That is:

v′ = v − v · ûû
=⇒

w′ = w −w · ûû −w · v̂′v̂′
(21.8)

After expanding this out, a number of the terms magically cancel out and one is left with

w′′ = w′(u2v2 − (u · v)2) = u
(
−u ·wv2 + (u · v)(v ·w)

)
+ v

(
−u2(v ·w) − (u · v)(u ·w)

)
+ w

(
u2v2 − (u · v)2

) (21.9)

And this in turn can be expanded in terms of coordinates and the results collected yielding

w′′ =
∑

eiu jvk

ui

∣∣∣∣∣∣∣v j vk

w j wk

∣∣∣∣∣∣∣ − vi

∣∣∣∣∣∣∣u j uk

w j wk

∣∣∣∣∣∣∣ wi

∣∣∣∣∣∣∣u j uk

v j vk

∣∣∣∣∣∣∣


=
∑

eiu jvk

∣∣∣∣∣∣∣∣∣∣∣
ui u j uk

vi v j vk

wi w j wk

∣∣∣∣∣∣∣∣∣∣∣
=

∑
i, j<k

ei

∣∣∣∣∣∣∣u j uk

v j vk

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣∣∣∣
ui u j uk

vi v j vk

wi w j wk

∣∣∣∣∣∣∣∣∣∣∣
=

 ∑
i< j<k

+
∑
j<i<k

+
∑
j<k<i

 ei

∣∣∣∣∣∣∣u j uk

v j vk

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣∣∣∣
ui u j uk

vi v j vk

wi w j wk

∣∣∣∣∣∣∣∣∣∣∣ .

(21.10)

Expanding the sum of the denominator in terms of coordinates:

u2v2 − (u · v)2 =
∑
i< j

∣∣∣∣∣∣∣ui u j

vi v j

∣∣∣∣∣∣∣
2

(21.11)
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and using a change of summation indices, our final result for the vector perpendicular to two
others in the direction of a third is:

Rejû,v̂ (w) =

∑
i< j<k

∣∣∣∣∣∣∣∣∣∣∣
ui u j uk

vi v j vk

wi w j wk

∣∣∣∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣∣∣∣
ui u j uk

vi v j vk

ei e j ek

∣∣∣∣∣∣∣∣∣∣∣
∑

i< j

∣∣∣∣∣∣∣ui u j

vi v j

∣∣∣∣∣∣∣
2 (21.12)

As a small aside, it is notable here to observe that span


∣∣∣∣∣∣∣ui u j

ei e j

∣∣∣∣∣∣∣
 is the null space for the vec-

tor u, and the set span


∣∣∣∣∣∣∣∣∣∣∣
ui u j uk

vi v j vk

ei e j ek

∣∣∣∣∣∣∣∣∣∣∣
 is the null space for the two vectors u and v respectively.

Since the rejection is a normal to the set of vectors it must necessarily include these cross
product like determinant terms.

As in eq. (21.4), use of a Duvw
i jk notation allows for a more compact result:

Rejûv̂ (w) =

∑
i< j

(
Duv

i j

)2


−1 ∑

i< j<k

Duvw
i jk Duve

i jk (21.13)

And, as before this yields the Volume of the parallelepiped by multiplying perpendicular
height:

‖Rejûv̂ (w)‖ = Rejûv̂ (w) ·w =

∑
i< j

(
Duv

i j

)2


−1 ∑

i< j<k

(
Duvw

i jk

)2
(21.14)

by the base area.
Thus the squared volume of a parallelepiped spanned by the three vectors is:

V2
u,v,w =

∑
i< j<k

(
Duvw

i jk

)2
. (21.15)
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The simplest case is for R3 where we have only one summand:

Vu,v,w = |Duvw
i jk | = abs


∣∣∣∣∣∣∣∣∣∣∣
u1 u2 u3

v1 v2 v3

w1 w2 w3

∣∣∣∣∣∣∣∣∣∣∣
 . (21.16)

21.1.3 Generalization. Inductive Hypothesis

There are two things to prove

1. hypervolume of parallelepiped spanned by vectors u1,u2, . . . ,uk

V2
u1,u2,···,uk

=
∑

i1<i2<···<ik

(
D

ui1 ui2 ···uik
i1i2···ik

)2
(21.17)

2. Orthogonal rejection of a set of vectors in direction of another.

Rejû1···ûk−1
(uk) =

∑
i1<···<ik D

ui1 ···uik
i1···ik

D
ui1 ···uik−1 e
i1···ik∑

i1<···<ik−1

(
D

ui1 ···uik−1
i1···ik−1

)2 (21.18)

I cannot recall if I ever did the inductive proof for this. Proving for the initial case is done
(since it is proved for both the two and three vector cases). For the limiting case where k = n it
can be observed that this is normal to all the others, so the only thing to prove for that case is if
the scaling provided by hypervolume eq. (21.17) is correct.

21.1.4 Scaling required for reciprocal frame vector

Presuming an inductive proof of the general result of eq. (21.18) is possible, this rejection has
the property

Rejû1···ûk−1
(uk) · ui ∝ δki

With the scaling factor picked so that this equals δki, the resulting “reciprocal frame vector”
is

uk =

∑
i1<···<ik D

ui1 ···uik
i1···ik

D
ui1 ···uik−1 e
i1···ik∑

i1<···<ik

(
D

ui1 ···uik
i1···ik

)2 (21.19)
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The superscript notation is borrowed from Doran/Lasenby, and denotes not a vector raised to
a power, but this this special vector satisfying the following orthogonality and scaling criteria:

uk · ui = δki. (21.20)

Note that for k = n − 1, eq. (21.19) reduces to

un =
Du1···un−1e

1···(n−1)

Du1···un
1···n

. (21.21)

This or some other scaled version of this is likely as close as we can come to generalizing the
cross product as an operation that takes vectors to vectors.

21.1.5 Example. R3 case. Perpendicular to two vectors

Observe that for R3, writing u = u1, v = u2, w = u3, and w′ = u3
3 this is:

w′ =

∣∣∣∣∣∣∣∣∣∣∣
u1 u2 u3

v1 v2 v3

e1 e2 e3

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
u1 u2 u3

v1 v2 v3

w1 w2 w3

∣∣∣∣∣∣∣∣∣∣∣
=

u × v
(u × v) ·w

(21.22)

This is the cross product scaled by the (signed) volume for the parallelepiped spanned by the
three vectors.

21.2 derivation with ga

Regression with respect to a set of vectors can be expressed directly. For vectors ui write B =

u1 ∧ u2 · · · uk. Then for any vector we have:

x = xB
1
B

=

〈
xB

1
B

〉
1

=

〈
(x ·B + x∧B)

1
B

〉
1

(21.23)
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All the grade three and grade five terms are selected out by the grade one operation, leaving
just

x = (x ·B) ·
1
B

+ (x∧B) ·
1
B
. (21.24)

This last term is the rejective component.

RejB (x) = (x∧B) ·
1
B

=
(x∧B) ·B†

BB†
(21.25)

Here we see in the denominator the squared sum of determinants in the denominator of
eq. (21.18):

BB† =
∑

i1<···<ik

(
D

ui1 ···uik
i1···ik

)2
(21.26)

In the numerator we have the dot product of two wedge products, each expressible as sums
of determinants:

B† = (−1)k(k−1)/2
∑

i1<···<ik

D
ui1 ···uik
i1···ik

ei1ei2 · · · eik (21.27)

And

x∧B =
∑

i1<···<ik+1

D
xui1 ···uik
i1···ik+1

ei1ei2 · · · eik+1 (21.28)

Dotting these is all the grade one components of the product. Performing that calculation
would likely provide an explicit confirmation of the inductive hypothesis of eq. (21.18). This
can be observed directly for the k + 1 = n case. That product produces a Laplace expansion
sum.

(x∧B) ·B† = Dxu1···un−1
12···n

(
e1Du1···un−1

234···n − e2Du1···un−1
134···n + e3Du1···un−1

124···n

)
(21.29)

(x∧B) ·
1
B

=
Dxu1···un−1

12···n Deu1···un−1
12···n∑

i1<···<ik

(
D

ui1 ···uik
i1···ik

)2 (21.30)
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Thus eq. (21.18) for the k = n− 1 case is proved without induction. A proof for the k + 1 < n
case would be harder. No proof is required if one picks the set of basis vectors ei such that
ei ∧ B = 0 (then the k + 1 = n result applies). I believe that proves the general case too if one
observes that a rotation to any other basis in the span of the set of vectors only changes the sign
of the each of the determinants, and the product of the two sign changes will then have value
one.

Follow through of the details for a proof of original non GA induction hypothesis is proba-
bly not worthwhile since this reciprocal frame vector problem can be tackled with a different
approach using a subspace pseudovector.

It is notable that although this had no induction in the argument above, note that it is funda-
mentally required. That is because there is an inductive proof required to prove that the general
wedge and dot product vector formulas:

x ·B =
1
2

(xB − (−1)kBx) (21.31)

x∧B =
1
2

(xB + (−1)kBx) (21.32)

from the GA axioms (that is an easier proof without the mass of indices and determinant
products.)

21.3 pseudovector from rejection

As noted in the previous section the reciprocal frame vector uk is the vector in the direction of
uk that has no component in span u1, · · · ,uk−1, normalized such that uk · uk = 1. Explicitly, with
B = u1 ∧ u2 · · · ∧ uk−1 this is:

uk =
(uk ∧B) ·B

uk · ((uk ∧B) ·B)
(21.33)

This is derived from eq. (21.25), after noting that B†
BB† ∝ B, and further scaling to produce the

desired orthonormal property of equation eq. (21.20) that defines the reciprocal frame vector.
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21.3.1 back to reciprocal result

Now, eq. (21.33) looks considerably different from the Doran/Lasenby result. Reduction to a
direct pseudovector/blade product is possible since the dot product here can be converted to a
direct product.

(uk ∧B) ·B = (xB)

x = uk − (uk ·B) · 1
B

·B

= 〈xBB〉1
= xB2

=

((
uk − (uk ·B) ·

1
B

)
∧B

)
B

= (uk ∧B)B

(21.34)

Thus eq. (21.33) is a scaled pseudovector for the subspace defined by span ui, multiplied by
a k-1 blade.

21.4 components of a vector

The delta property of eq. (21.20) allows one to use the reciprocal frame vectors and the basis that
generated them to calculate the coordinates of the a vector with respect to this (not necessarily
orthonormal) basis.

That is a pretty powerful result, but somewhat obscured by the Doran/Lasenby super/sub
script notation.

Suppose one writes a vector in span ui in terms of unknown coefficients

a =
∑

aiui (21.35)

Dotting with u j gives:

a · u j =
∑

aiui · u j =
∑

aiδi j = a j (21.36)

Thus

a =
∑

(a · ui)ui (21.37)
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Similarly, writing this vectors in terms of ui we have

a =
∑

biui (21.38)

Dotting with u j gives:

a · u j =
∑

biui · u j =
∑

biδi j = b j (21.39)

Thus

a =
∑

(a · ui)ui (21.40)

We are used to seeing the equation for components of a vector in terms of a basis in the
following form:

a =
∑

(a · ui)ui (21.41)

This is true only when the basis vectors are orthonormal. Equations eq. (21.37) and eq. (21.40)
provide the general decomposition of a vector in terms of a general linearly independent set.

21.4.1 Reciprocal frame vectors by solving coordinate equation

A more natural way to these results are to take repeated wedge products. Given a vector decom-
position in terms of a basis ui, we want to solve for ai:

a =

k∑
i=1

aiui (21.42)

The solution, from the wedge is:

a∧ (u1 ∧ u2 · · · ǔi · · · ∧ uk = ai(−1)i−1u1 ∧ · · · ∧ uk (21.43)

=⇒ ai = (−1)i−1 a∧ (u1 ∧ u2 · · · ǔi · · · ∧ uk

u1 ∧ · · · ∧ uk
) (21.44)
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The complete vector in terms of components is thus:

a =
∑

(−1)i−1 a∧ (u1 ∧ u2 · · · ǔi · · · ∧ uk)

u1 ∧ · · · ∧ uk
ui (21.45)

We are used to seeing the coordinates expressed in terms of dot products instead of wedge
products. As in R3 where the pseudovector allows wedge products to be expressed in terms of
the dot product we can do the same for the general case.

Writing B ∈
∧k−1 and I ∈

∧k we want to reduce an equation of the following form

a∧B
I

=
1
I

aB + (−1)k−1Ba
2

(21.46)

The pseudovector either commutes or anticommutes with a vector in the subspace depending
on the grade

Ia = I · a + I∧ a

= 0

= (−1)k−1a · I
= (−1)k−1aI

(21.47)

Substituting back into eq. (21.46) we have

a∧B
I

= (−1)k−1
a
(

1
I B

)
+

(
1
I B

)
a

2

= (−1)k−1a ·
(
1
I

B
)

= a ·
(
B

1
I

) (21.48)

With I = u1 ∧ · · ·uk, and B = u1 ∧ u2 · · · ǔi · · · ∧ uk, back substitution back into eq. (21.45)
is thus

a =
∑

a ·
(
(−1)i−1B

1
I

)
ui (21.49)
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The final result yields the reciprocal frame vector uk, and we see how to arrive at this result
naturally attempting to answer the question of how to find the coordinates of a vector with
respect to a (not necessarily orthonormal) basis.

a =
∑

a ·
(
(u1 ∧ u2 · · · ǔi · · · ∧ uk)

(−1)i−1

u1 ∧ · · · ∧ uk

)uk

ui (21.50)

21.5 components of a bivector

To find the coordinates of a bivector with respect to an arbitrary basis we have a similar problem.
For a vector basis ai, introduce a bivector basis ai ∧ a j, and write

B =
∑
u<v

buvau ∧ av (21.51)

Wedging with ai ∧ a j will select all but the i j component. Specifically

B∧ (a1 ∧ · · · ǎi · · · ǎ j · · · ∧ ak) = bi jai ∧ a j ∧ (a1 ∧ · · · ǎi · · · ǎ j · · · ∧ ak)

= bi j(−1) j−2+i−1(a1 ∧ · · · ∧ ak)
(21.52)

Thus

bi j = (−1)i+ j−3B∧
(a1 ∧ · · · ǎi · · · ǎ j · · · ∧ ak)

a1 ∧ · · · ∧ ak
(21.53)

We want to put this in dot product form like eq. (21.50). To do so we need a generalized
grade reduction formula

(Aa ∧Ab) ·Ac = Aa · (Ab ·Ac) (21.54)

This holds when a + b ≤ c. Writing A = a1 ∧ · · · ǎi · · · ǎ j · · · ∧ ak, and I = a1 ∧ · · · ∧ ak, we
have

(B∧A)
1
I

= (B∧A) ·
1
I

= B ·
(
A ·

1
I

)
= B ·

(
A

1
I

) (21.55)
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Thus the bivector in terms of its coordinates for this basis is:

∑
u<v

B ·
(
(a1 ∧ · · · ǎu · · · ǎv · · · ∧ ak)

(−1)u+v−2−1

a1 ∧ · · · ∧ ak

)
au ∧ av (21.56)

It is easy to see how this generalizes to higher order blades since eq. (21.54) is good for all
required grades. In all cases, the form is going to be the same, with only differences in sign and
the number of omitted vectors in the A blade.

For example for a trivector

T =
∑

u<v<w

tuvwau ∧ av ∧ aw (21.57)

It is pretty straightforward to show that this can be decomposed as follows

T =
∑

u<v<w

T ·
(
(a1 ∧ · · · ǎu · · · ǎv · · · ǎw · · · ∧ ak)

(−1)u+v+w−3−2−1

a1 ∧ · · · ∧ ak

)
au ∧ av ∧ aw (21.58)

21.5.1 Compare to GAFP

Doran/Lasenby’s GAFP demonstrates eq. (21.50), and with some incomprehensible steps skips
to a generalized result of the form 1

B =
∑
i< j

B ·
(
a j ∧ ai

)
ai ∧ a j (21.59)

GAFP states this for general multivectors instead of bivectors, but the idea is the same.
This makes intuitive sense based on the very similar vector result. This does not show that the

generalized reciprocal frame k-vectors calculated in eq. (21.56) or eq. (21.58) can be produced
simply by wedging the corresponding individual reciprocal frame vectors.

To show that either takes algebraic identities that I do not know, or am not thinking of as
applicable. Alternately perhaps it would just take simple brute force.

Easier is to demonstrate the validity of the final result directly. Then assuming my direct
calculations are correct implicitly demonstrates equivalence.

1 In retrospect I do not think that the in between steps had anything to do with logical sequence. The authors wanted
some of the results for subsequent stuff (like: rotor recovery) and sandwiched it between the vector and reciprocal
frame multivector results somewhat out of sequence.
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Starting with B as defined in eq. (21.51), take dot products with a j ∧ ai.

B · (a j ∧ ai) =
∑
u<v

buv(au ∧ av) · (a j ∧ ai)

=
∑
u<v

buv

∣∣∣∣∣∣∣au · ai au · a j

av · ai av · a j

∣∣∣∣∣∣∣
=

∑
u<v

buv

∣∣∣∣∣∣∣δui δu j

δvi δv j

∣∣∣∣∣∣∣
(21.60)

Consider this determinant when u = i for example∣∣∣∣∣∣∣δui δu j

δvi δv j

∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣ 1 δi j

δvi δv j

∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣ 1 0

δvi δv j

∣∣∣∣∣∣∣ = δv j (21.61)

If any one index is common, then both must be common (i j = uv) for this determinant to
have a non-zero (ie: one) value. On the other hand, if no index is common then all the δ’s are
zero.

Like eq. (21.20) this demonstrates an orthonormal selection behavior like the reciprocal frame
vector. It has the action:

(ai ∧ a j) · (av ∧ au) = δi j,uv (21.62)

This means that we can write buv directly in terms of a bivector dot product

buv = B · (av ∧ au) (21.63)

and thus proves eq. (21.59). Proof of the general result also follows from the determinant
expansion of the respective blade dot products.

21.5.2 Direct expansion of bivector in terms of reciprocal frame vectors

Looking at linear operators I realized that the result for bivectors above can follow more easily
from direct expansion of a bivector written in terms of vector factors:

a∧ b =
∑

(a · uiui)∧ (b · u ju j)

=
∑
i< j

(a · uib · u j − a · u jb · ui) ui ∧ u j

=
∑
i< j

∣∣∣∣∣∣∣a · ui a · u j

b · ui b · u j

∣∣∣∣∣∣∣ ui ∧ u j

(21.64)
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When the set of vectors ui = ui are orthonormal we have already calculated this result when
looking at the wedge product in a differential forms context:

a∧ b =
∑
i< j

∣∣∣∣∣∣∣ai a j

bi b j

∣∣∣∣∣∣∣ ui ∧ u j (21.65)

For this general case for possibly non-orthonormal frames, this determinant of dot products
can be recognized as the dot product of two blades

(a∧ b) · (u j ∧ ui) = a · (b · (u j ∧ ui))

= a · (b · u jui − b · uiu j)

= b · u ja · ui − b · uia · u j

(21.66)

Thus we have a decomposition of the bivector directly into a sum of components for the
reciprocal frame bivectors:

a∧ b =
∑
i< j

((a∧ b) · (u j ∧ ui)) ui ∧ u j (21.67)





22
M AT R I X R E V I E W

22.1 motivation

My initial intention for subset of notes was to get a feel for the similarities and differences
between GA and matrix approaches to solution of projection. Attempting to write up that com-
parison I found gaps in my understanding of the matrix algebra. In particular the topic of pro-
jection as well as the related ideas of pseudoinverses and SVD were not adequately covered in
my university courses, nor my texts from those courses. Here is my attempt to write up what I
understand of these subjects and explore the gaps in my knowledge.

Particularly helpful was Gilbert Strang’s excellent MIT lecture on subspace projection (avail-
able on the MIT opencourseware website). Much of the notes below are probably detailed in
his course textbook.

There is some GA content here, but the focus in this chapter is not neccessarily GA.

22.2 subspace projection in matrix notation

22.2.1 Projection onto line

The simplest sort of projection to compute is projection onto a line. Given a direction vector b,
and a line with direction vector u as in fig. 22.1.

The projection onto u is some value:

p = αu (22.1)

and we can write

b = p + e (22.2)

where e is the component perpendicular to the line u.
Expressed in terms of the dot product this relationship is described by:

(b − p) · a = 0 (22.3)

169
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Figure 22.1: Projection onto line

Or,

b · a = αa · a (22.4)

and solving for α and substituting we have:

p = a
a · b
a · a

(22.5)

In matrix notation that is:

p = a
(
aTb
aTa

)
(22.6)

Following Gilbert Strang’s MIT lecture on subspace projection, the parenthesis can be moved
to directly express this as a projection matrix operating on b.

p =

(
aaT

aTa

)
b = Pb (22.7)
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Figure 22.2: Projection onto plane

22.2.2 Projection onto plane (or subspace)

Calculation of the projection matrix to project onto a plane is similar. The variables to solve for
are p, and e in as fig. 22.2.

For projection onto a plane (or hyperplane) the idea is the same, splitting the vector into
a component in the plane and an perpendicular component. Since the idea is the same for any
dimensional subspace, explicit specification of the summation range is omitted here so the result
is good for higher dimensional subspaces as well as the plane:

b − p = e (22.8)

p =
∑

αiui (22.9)

however, we get a set of equations, one for each direction vector in the plane

(b − p) · ui = 0 (22.10)
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Expanding p explicitly and rearranging we have the following set of equations:

b · ui = (
∑

s

αsus) · ui (22.11)

putting this in matrix form

[b · ui]i =
[
(
∑

s αus) · ui

]
i

(22.12)

Writing U =
[
u1 u2 · · ·

]

uT

1

uT
2
...

 b =
[
(
∑

s αsus) · ui

]

=
[
ui · u j

]
i j


α1

α2
...


(22.13)

Solving for the vector of unknown coefficients α = [αi]i we have

α =
[
ui · u j

]
i j

−1
UTb (22.14)

And

p = Uα = U
[
ui · u j

]
i j

−1
UTb (22.15)

However, this matrix in the middle is just UTU:


uT

1

uT
2
...


[
u1 u2 . . .

]
=


uT

1 u1 uT
1 u2 . . .

uT
2 u1 uT

2 u2 . . .
...


=

[
uT

i u j

]
i j

=
[
ui · u j

]
i j

(22.16)

This provides the final result:

ProjU (b) = U(UTU)−1UTb (22.17)
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22.2.3 Simplifying case. Orthonormal basis for column space

To evaluate eq. (22.17) we need only full column rank for U, but this will be messy in general
due to the matrix inversion required for the center product. That can be avoided by picking an
orthonormal basis for the vector space that we are projecting on. With an orthonormal column
basis that central product term to invert is:

UTU = [uT
i u j]i j = [δi j]i j = Ir,r (22.18)

Therefore, the projection matrix can be expressed using the two exterior terms alone:

ProjU = U(UTU)−1UT = UUT (22.19)

22.2.4 Numerical expansion of left pseudoscalar matrix with matrix

Numerically expanding the projection matrix A(ATA)−1AT is not something that we want to do,
but the simpler projection matrix of equation eq. (22.19) that we get with an orthonormal basis
makes this not so daunting.

Let us do this to get a feel for things.

22.2.4.1 R4 plane projection example

Take a simple projection onto the plane spanned by the following two orthonormal vectors

u1 =

√
2

4


1

2
√

3

0


(22.20)

u2 =

√
2

4


−
√

3

0

1

2


(22.21)
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Thus the projection matrix is:

P =
[
u1 u2

] uT
1

uT
2

 =
1
8


1 −

√
3

2 0
√

3 1

0 2


 1 2

√
3 0

−
√

3 0 1 2

 (22.22)

=⇒ P =
1
8


4 2 0 −2

√
3

2 4 2
√

3 0

0 2
√

3 4 2

−2
√

3 0 2 4


=


1/2 1/4 0 −

√
3/4

1/4 1/2
√

3/4 0

0
√

3/4 1/2 1/4

−
√

3/4 0 1/4 1/2


(22.23)

What can be said about this just by looking at the matrix itself?

1. One can verify by inspection that Pu1 = u1 and Pu2 = u2. This is what we expected so
this validates all the math performed so far. Good!

2. It is symmetric. Analytically, we know to expect this, since for a a full column rank matrix
A the transpose of the projection matrix is:

PT =

(
A

1
ATA

AT
)T

= P. (22.24)

3. In this particular case columns 2,4 and columns 1,3 are each pairs of perpendicular vec-
tors. Is something like this to be expected in general for projection matrices?

4. We expect this to be a rank two matrix, so the null space has dimension two. This can be
verified.

22.2.5 Return to analytic treatment

Let us look at the matrix for projection onto an orthonormal basis in a bit more detail. This
simpler form allows for some observations that are a bit harder in the general form.

Suppose we have a vector n that is perpendicular to all the orthonormal vectors ui that span
the subspace. We can then write:

ui · n = 0 (22.25)
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Or,

uT
i n = 0 (22.26)

In block matrix form for all ui that is:

[uT
i n]i = [uT

i ]in = UTn = 0 (22.27)

This is all we need to verify that our projection matrix indeed produces a zero for any vector
completely outside of the subspace:

ProjU(n) = U(UTn) = U0 = 0 (22.28)

Now we have seen numerically that UUT is not an identity matrix despite operating as one
on any vector that lies completely in the subspace.

Having seen the action of this matrix on vectors in the null space, we can now directly exam-
ine the action of this matrix on any vector that lies in the span of the set {ui}. By linearity it is
sufficient to do this calculation for a particular ui:

UUTui = U


uT

1 ui

uT
2 ui
...

uT
r ui


=

[
u1 u2 · · · ur

] [
δsi

]
s

=

r∑
k=1

ukδki

= ui

(22.29)

This now completes the validation of the properties of this matrix (in its simpler form with
an orthonormal basis for the subspace).

22.3 matrix projection vs . geometric algebra

I found it pretty interesting how similar the projection product is to the projection matrix above
from traditional matrix algebra. It is worthwhile to write this out and point out the similarities
and differences.
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22.3.1 General projection matrix

We have shown above, provided a matrix A is of full column rank, a projection onto its columns
can be written:

ProjA(x) =

(
A

1
ATA

AT
)

x (22.30)

Now contrast this with the projection written in terms of a vector dot product with a non-null
blade

ProjA(x) = A
(

1
A
· x

)
= A

1
A†A

(
A† · x

)
(22.31)

This is a curious correspondence and naive comparison could lead one to think that perhaps
there the concepts of matrix transposition and blade reversal are equivalent.

This is not actually the case since the matrix transposition actually corresponds to the adjoint
operation of a linear transformation for blades. Be that as it may, there appears to be other
situations other than projections where matrix operations of the form BTA end up with GA
equivalents in the form B†A. An example is the rigid body equations where the body angular
velocity bivector corresponding to a rotor R is of the form Ω = R′R†, whereas the matrix form
for a rotation matrix R is of the form Ω = R′R†.

22.3.2 Projection matrix full column rank requirement

The projection matrix derivations above required full column rank. A reformulation in terms
of a generalized matrix (Moore-Penrose) inverse, or SVD can eliminate this full column rank
requirement for the formulation of the projection matrix.

We will get to this later, but we never really proved that full column rank implies ATA inverta-
bility.

If one writes out the matrix ATA in full
Now, if A = [ai]i, the matrix

ATA =


a1 · a1 a1 · a2 . . .

a2 · a1 a2 · a2 . . .
...

 . (22.32)

This is an invertible matrix provided {ai}i is a linearly independent set of vectors. For full
column rank to imply invertability, it would be sufficient to prove that the determinant of this
matrix was non-zero.
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I am not sure how to show that this is true with just matrix algebra, however one can identify
the determinant of the matrix of eq. (22.32), after an adjustment of sign for reversion, as the GA
dot product of a k-blade:

(−1)k(k−1)/2(a1 ∧ · · · ∧ ak) · (a1 ∧ · · · ∧ ak). (22.33)

Linear independence means that this wedge product is non-zero, and therefore the dot prod-
uct, and thus original determinant is also non-zero.

When the ATA matrix of eq. (22.32) is invertible that inverse can be written using a cofactor
matrix (adjoint expansion):

Let us write this out, where Ci j are the cofactor matrices of ATA, we have:

1
ATA

=
1∣∣∣ATA

∣∣∣ [Ci j]T (22.34)

Observe that the denominator here is exactly the determinant of eq. (22.33). This illustrates
the motivation of Hestenes to label the explicit alternating vector-vector dot product expansion
of a blade-vector dot product the “generalized Laplace expansion”.

22.3.3 Projection onto orthonormal columns

When the columns of the matrix A are orthonormal, the projection matrix is reduced to:

ProjA(x) =
(
AAT

)
x. (22.35)

The corresponding GA entity is a projection onto a unit magnitude blade. With that scaling
the inverse term also drops out leaving:

ProjA(x) = A
(
A† · x

)
(22.36)

This helps point out the similarity between the matrix inverse 1
ATA

and the blade product
inverse 1

A†A is only on the surface, since this blade product is only a scalar.
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22.4 proof of omitted details and auxiliary stuff

22.4.1 That we can remove parenthesis to form projection matrix in line projection equation

Remove the parenthesis in some of these expressions may not always be correct, so it is worth
demonstrating that this is okay as done to calculate the projection matrix P in eq. (22.7). We
only need to look at the numerator since the denominator is a scalar in this case.

(aaT)b = [aia j]i j[bi]i

=
[∑

k aiakbk

]
i

=
[
ai

∑
k akbk

]
i

= [ai]iaTb

= a(aTb)

(22.37)

22.4.2 Any invertible scaling of column space basis vectors does not change the projection

Suppose that one introduces an alternate basis for the column space

vi =
∑

αikuk (22.38)

This can be expressed in matrix form as:

V = UE (22.39)

or

UE−1 = V (22.40)
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We should expect that the projection onto the plane expressed with this alternate basis should
be identical to the original. Verification is straightforward:

ProjV = V
(
VTV

)−1
VT

=
(
UE−1

) ((
UE−1

)T (
UE−1

))−1 (
UE−1

)T

=
(
UE−1

) (
E−1T

UTUE−1
)−1 (

UE−1
)T

=
(
UE−1

)
E

(
UTU

)−1
ET

(
UE−1

)T

= U
(
UTU

)−1
ETE−1T

UT

= U
(
UTU

)−1
UT

= ProjU

(22.41)





23
O B L I Q U E P RO J E C T I O N A N D R E C I P RO C A L F R A M E V E C T O R S

23.1 motivation

Followup on wikipedia projection article’s description of an oblique projection. Calculate this
myself.

23.2 using ga . oblique projection onto a line

INSERT DIAGRAM.
Problem is to project a vector x onto a line with direction p̂, along a direction vector d̂.
Write:

x + αd̂ = βp̂ (23.1)

and solve for p = βp̂. Wedging with d̂ provides the solution:

x∧ d̂ + α d̂∧ d̂

= 0

= βp̂∧ d̂ (23.2)

=⇒ β =
x∧ d̂
p̂∧ d̂

(23.3)

So the “oblique” projection onto this line (using direction d̂) is:

Projd̂→p̂(x) =
x∧ d̂
p̂∧ d̂

p̂ (23.4)

This also shows that we do not need unit vectors for this sort of projection operation, since
we can scale these two vectors by any quantity since they are in both the numerator and denom-
inator.

181
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Let D, and P be vectors in the directions of d̂, and p̂ respectively. Then the projection can
also be written:

ProjD→P(x) =
x∧D
P∧D

P (23.5)

It is interesting to see projection expressed here without any sort of dot product when all our
previous projection calculations had intrinsic requirements for a metric.

Now, let us compare this to the matrix forms of projection that we have become familiar with.
For the matrix result we need a metric, but because this result is intrinsically non-metric, we
can introduce one if convenient and express this result with that too. Such an expansion is:

x∧D
P∧D

P = x∧D
D∧ P
D∧ P

1
P∧D

P

= (x∧D) · (D∧ P)
1

|P∧D|2
P

= ((x∧D) ·D) · P
1

|P∧D|2
P

= (xD2 − x ·DD) · P
1

|P∧D|2
P

=
x · PD2 − x ·DD · P

P2D2 − (P ·D)2 P

(23.6)

This gives us the projection explicitly:

ProjD→P(x) =

(
x ·

PD2 −DD · P
P2D2 − (P ·D)2

)
P (23.7)

It sure does not simplify things to expand things out, but we now have things prepared to
express in matrix form.

Assuming a euclidean metric, and a bit of playing shows that the denominator can be written
more simply as:

P2D2 − (P ·D)2 =
∣∣∣∣UTU

∣∣∣∣ (23.8)

where:

U =
[
P D

]
(23.9)
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Similarly the numerator can be written:

x · PD2 − x ·DD · P = DTU

0 −1

1 0

 UTx. (23.10)

Combining these yields a projection matrix:

ProjD→P(x) =

P 1∣∣∣∣UTU
∣∣∣∣DTU

0 −1

1 0

 UT

 x. (23.11)

The alternation above suggests that this is related to the matrix inverse of something. Let us
try to calculate this directly instead.

23.3 oblique projection onto a line using matrices

Let us start at the same place as in eq. (23.1), except that we know we can discard the unit
vectors and work with any vectors in the projection directions:

x + αD = βP (23.12)

Assuming an inner product, we have two sets of results:

〈P, x〉 + α〈P,D〉 = β〈P,P〉
〈D, x〉 + α〈D,D〉 = β〈D,P〉

(23.13)

and can solve this for α, and β.

〈P,D〉 〈P,P〉
〈D,D〉 〈D,P〉


−α
β

 =

〈P, x〉
〈D, x〉

 (23.14)

If our inner product is defined by 〈u, v〉 = u∗Av, we have:

〈P,D〉 〈P,P〉
〈D,D〉 〈D,P〉

 =

P∗AD P∗AP
D∗AD D∗AP


=

[
P D

]∗
A

[
D P

] (23.15)
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Thus the solution to eq. (23.14) is

−α
β

 =

 1[
P D

]∗
A

[
D P

] [P D
]∗

A

 x (23.16)

Again writing U =
[
P D

]
, this is:

−α
β

 =


1

U∗AU

0 1

1 0


U∗A


x

=


0 1

1 0

 1
U∗AU

U∗A

 x

(23.17)

Since we only care about solution for β to find the projection, we have to discard half the
inversion work, and just select that part of the solution (suggests that a Cramer’s rule method is
more efficient than matrix inversion in this case) :

β =
[
0 1

] −α
β

 (23.18)

Thus the solution of this oblique projection problem in terms of matrices is:

ProjD→P(x) =

P [
0 1

] 0 1

1 0

 1
U∗AU

U∗A

 x (23.19)

Which is:

ProjD→P(x) =

(
P

[
1 0

] 1
U∗AU

U∗A
)

x (23.20)

Explicit expansion can be done easily enough to show that this is identical to eq. (23.7), so
the question of what we were implicitly inverting in eq. (23.11) is answered.
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23.4 oblique projection onto hyperplane

Now that we have got this directed projection problem solved for a line in both GA and matrix
form, the next logical step is a k-dimensional hyperplane projection. The equation to solve is
now:

x + αD =
∑

βiPi (23.21)

23.4.1 Non metric solution using wedge products

For x with some component not in the hyperplane, we can wedge with P = P1 ∧ P2 ∧ · · · ∧ Pk

x∧ P + αD∧ P =

k∑
i=1

βi Pi ∧ P

= 0

Thus the projection onto the hyperplane spanned by P is going from x along D is x + αD:

ProjD→P(x) = x −
x∧ P
D∧ P

D (23.22)

23.4.1.1 Q: reduction of this

When P is a single vector we can reduce this to our previous result:

ProjD→P(x) = x −
x∧ P
D∧ P

D

=
1

D∧ P
((D∧ P)x − (x∧ P)D)

=
1

D∧ P
((D∧ P) · x − (x∧ P) ·D)

=
1

D∧ P
(DP · x − PD · x − xP ·D + Px ·D)

=
1

D∧ P
(DP · x − xP ·D)

(23.23)

Which is:

ProjD→P(x) =
1

P∧D
P · (D∧ x). (23.24)
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A result that is equivalent to our original eq. (23.5). Can we similarly reduce the general
result to something of this form. Initially I wrote:

ProjD→P(x) = x −
x∧ P
D∧ P

D

=
D∧ P
D∧ P

x −
x∧ P
D∧ P

D

=
1

D∧ P
((D∧ P)x − (x∧ P)D)

=
1

D∧ P
((D∧ P) · x − (x∧ P) ·D)

=
1

D∧ P
(DP · x − PD · x − xP ·D + Px ·D)

=
1

D∧ P
(DP · x − xP ·D)

= −
1

D∧ P
P · (D∧ x)

(23.25)

However, I am not sure that about the manipulations done on the last few lines where P has
grade greater than 1 (ie: the triple product expansion and recollection later).

23.4.2 hyperplane directed projection using matrices

To solve eq. (23.21) using matrices, we can take a set of inner products:

〈D, x〉 + α〈D,D〉 =

k∑
u=1

βu〈D,Pu〉

〈Pi, x〉 + α〈Pi,D〉 =

k∑
u=1

βu〈Pi,Pu〉

(23.26)

Write D = Pk+1, and α = −βk+1 for symmetry, which reduces this to:

〈Pk+1, x〉 =

k∑
u=1

βu〈Pk+1,Pu〉 + βk+1〈Pk+1,Pk+1〉

〈Pi, x〉 =

k∑
u=1

βu〈Pi,Pu〉 + βk+1〈Pi,Pk+1〉

(23.27)
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That is the following set of equations:

〈Pi, x〉 =

k+1∑
u=1

βu〈Pi,Pu〉 (23.28)

Which we can now express as a single matrix equation (for i, j ∈ [1, k + 1]) :

[
〈Pi, x〉

]
i
=

[
〈Pi,P j〉

]
i j

[
βi

]
i

(23.29)

Solving for β =
[
βi

]
i
, gives:

β =
1[

〈Pi,P j〉
]

i j

[
〈Pi, x〉

]
i

(23.30)

The projective components of interest are
∑k

i=1 βiPi. In matrix form that is:

[
P1 P2 · · · Pk

]

β1

β2
...

βk


=

[
P1 P2 · · · Pk

] [
Ik,k 0k,1

]
β (23.31)

Therefore the directed projection is:

ProjD→P(x) =
[
P1 P2 · · · Pk

] [
Ik,k 0k,1

] 1[
〈Pi,P j〉

]
i j

[
〈Pi, x〉

]
i

(23.32)

As before writing U =
[
P1 P2 · · · Pk D

]
, and write 〈u, v〉 = u∗Av. The directed projec-

tion is now:

ProjD→P(x) =

U
 Ik,k

01,k

 [Ik,k 0k,1

] 1
U∗AU

U∗A

 x

=

U
 Ik,k 0k,1

01,k 01,1

 1
U∗AU

U∗A

 x (23.33)
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23.5 projection using reciprocal frame vectors

In a sense the projection operation is essentially a calculation of components of vectors that
span a given subspace. We can also calculate these components using a reciprocal frame. To
start with consider just orthogonal projection, where the equation to solve is:

x = e +
∑

β jP j (23.34)

and e · Pi = 0.
Introduce a reciprocal frame {P j} that also spans the space of {P j}, and is defined by:

Pi · P j = δi j (23.35)

With this we have:

x · Pi = e · Pi

= 0

+
∑

β jP j · Pi

=
∑

β jδi j

= βi

(23.36)

x = e +
∑

P j(P j · x)

For a Euclidean metric the projection part of this is:

ProjP(x) =
(∑

P j(P j)T
)

x (23.37)

Note that there is a freedom to remove the dot product that was employed to form the matrix
representation of eq. (23.37) that may not be obvious. I did not find that this was obvious,
when seen in Prof. Gilbert Strang’s MIT OCW lectures, and had to prove it for myself. That
proof is available at the end of 22 comparing the geometric and matrix projection operations ,
in the ’That we can remove parenthesis to form projection matrix in line projection equation.’
subsection.

Writing P =
[
P1 P2 · · · Pk

]
and for the reciprocal frame vectors: Q =

[
P1 P2 · · · Pk

]
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We now have the following simple calculation for the projection matrix onto a set of linearly
independent vectors (columns of P):

ProjP(x) = PQTx. (23.38)

Compare to the general projection matrix previously calculated when the columns of P weare
not orthonormal:

ProjP(x) = P
1

PTP
PTx (23.39)

With orthonormal columns the PT P becomes identity and the inverse term drops out, and we
get something similar with reciprocal frames. As a side effect this shows us how to calculate
without GA the reciprocal frame vectors. Those vectors are thus the columns of

Q = P
1

PTP
(23.40)

We are thus able to get a specific understanding of some of the interior terms of the general
orthogonal projection matrix.

Also note that the orthonormality of these columns is confirmed by observing that QTP =
1

PTP
PTP = I.

23.5.1 example/verification

As an example to see that this works write:

P =


1 1

1 0

0 1

 (23.41)

PTP =

1 1 0

1 0 1



1 1

1 0

0 1

 =

2 1

1 2

 (23.42)

1
PTP

=
1
3

 2 −1

−1 2

 (23.43)
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Q = P
1

PTP
=

1
3


1 1

1 0

0 1


 2 −1

−1 2

 =
1
3


1 1

2 1

−1 2

 (23.44)

By inspection these columns have the desired properties.

23.6 directed projection in terms of reciprocal frames

Suppose that one has a set of vectors {Pi} that span the subspace that contains the vector to be
projected x. If one wants to project onto a subset of those Pk, say, the first k of l of these vectors,
and wants the projection directed along components of the remaining l− k of these vectors, then
solution of the following is required:

x =

l∑
j=1

β jP j

This (affine?) projection is then just the
∑k

j=1 β jP j components of this vector.
Given a reciprocal frame for the space, the solution follows immediately.

Pi · x =
∑

β jPi · P j = βi (23.45)

βi = Pi · x (23.46)

Or,

ProjPk
(x) =

k∑
j=1

P jP j · x (23.47)

In matrix form, with inner product u · v = u∗Av, and writing P =
[
P1 P2 · · · Pl

]
, and

Q =
[
P1 P2 · · · Pl

]
, this is:

ProjPk
(x) =

P

Ik 0

0 0

 Q∗A

 x (23.48)
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Observe that the reciprocal frame vectors can be expressed as the rows of the matrix

Q∗A =
1

P∗AP
P∗A

Assuming the matrix of dot product is invertible, the reciprocal frame vectors are the columns
of:

Q = P
1

P∗A∗P
(23.49)

I had expect that the matrix of most dot product forms would also have
A = A∗ (ie: Hermitian symmetric).
That is certainly true for all the vector dot products I am interested in utilizing. ie: the standard

euclidean dot product, Minkowski space time metrics, and complex field vector space inner
products (all of those are not only real symmetric, but are also all diagonal). For completeness,
exploring this form for a more generalized form of inner product was also explored in E.

23.6.1 Calculation efficiency

It would be interesting to compare the computational complexity for a set of reciprocal frame
vectors calculated with the GA method (where overhat indicates omission) :

Pi = (−1)i−1P1 ∧ · · · P̂i · · · ∧ Pk
1

P1 ∧ P2 ∧ · · · ∧ Pk
(23.50)

The wedge in the denominator can be done just once for all the frame vectors. Is there a way
to use that for the numerator too (dividing out the wedge product with the vector in question)?

Calculation of the 1
PTP

term could be avoided by using SVD.
Writing P = UΣVT, the reciprocal frame vectors will be Q = UΣ 1

ΣTΣ
VT.

Would that be any more efficient, or perhaps more importantly, for larger degree vectors is
that a more numerically stable calculation?

23.7 followup

Review: Have questionable GA algebra reduction earlier for grade > 1 (following eq. (23.24)).
Q: Can a directed frame vector projection be defined in terms of an “oblique” dot product.
Q: What applications would a non-diagonal bilinear form have?
Editorial: I have defined the inner product in matrix form with:

〈u, v〉 = u∗Av (23.51)
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This is slightly irregular since it is the conjugate of the normal complex inner product, so in
retrospect I would have been better to express things as:

〈u, v〉 = uTAv (23.52)

Editorial: I have used the term oblique projection. In retrospect I think I have really been
describing what is closer to an affine (non-metric) projection so that would probably have been
better to use.



24
P RO J E C T I O N A N D M O O R E - P E N RO S E V E C T O R I N V E R S E

24.1 projection and moore-penrose vector inverse

One can observe that the Moore Penrose left vector inverse v+ shows up in the projection matrix
for a projection onto a line with a direction vector v:

Projv(x) = v
1

vTv
vT

v+

x (24.1)

I do not know of any other “application” of this Moore-Penrose vector inverse in traditional
matrix algebra. As stated it is an interesting mathematical curiosity that yes one can define a
vector inverse, however what would you do with it?

In geometric algebra we also have a vector inverse, but it plays a much more fundamental
role, and does not have the restriction of only acting from the left and producing a scalar result.
As an example consider the projection, and rejection decomposition of a vector:

x = v
1
v

x

= v
(
1
v
· x

)
+ v

(
1
v
∧ x

)
= v

( v
v2 · x

)
+ v

( v
v2 ∧ x

) (24.2)

In the above, v
v2 · =

vT

vTv
= v+. We can therefore describe the Moore Penrose vector left inverse

as the matrix of the GA linear transformation 1
v ·.

Unlike the GA vector inverse, whos associativity allowed for the projection/rejection deriva-
tion above, this Moore-Penrose vector inverse has only left action, so in the above, you can not
further write:

vv+ = 1 (24.3)

(ie: vv+ is a projection matrix not scalar or matrix unity).
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24.1.1 matrix of wedge project transformation?

Q: What is the matrix of the linear transformation 1
v∧?

In rigid body dynamics we see the matrix of the linear transformation Tv(x) = (v×)(x). This
is the completely antisymmetric matrix as follows:

v × x =


0 −v3 v2

v3 0 −v1

−v2 v1 0



x1

x2

x3

 (24.4)

In order to specify the matrix of a vector-vector wedge product linear transformation we must
introduce bivector coordinate vectors. For the matrix of the cross product linear transformation
the standard vector basis was the obvious choice.

Let us pick the following orthonormal basis:

σ = {σi j = ei ∧ e j}i< j (24.5)

and construct the matrix of the wedge project Tv : RN →
∧2

Tv(x) = v∧ x =
∑

µ=i j,i< j

∣∣∣∣∣∣∣vi v j

xi x j

∣∣∣∣∣∣∣σµ (24.6)

=⇒ Tv(ek) ·σi j
† =

∑
k∈i j,i< j

∣∣∣∣∣∣∣vi v j

xi x j

∣∣∣∣∣∣∣ = viδk j − v jδki (24.7)

Since k cannot be simultaneously equal to both i, and j, this is:

Tv(ek) ·σi j
† =


vi k = j

−v j k = i

0 k , i, j

 (24.8)

Unlike the left Moore-Penrose vector inverse that we find as the matrix of the linear trans-
formation v · (·), except for R3 where we have the cross product, I do not recognize this as the
matrix of any common linear transformation.
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A N G L E B E T W E E N G E O M E T R I C E L E M E N T S

Have the calculation for the angle between bivectors done elsewhere

cos θ = −
A ·B
|A||B|

(25.1)

For θ ∈ [0, π].
The vector/vector result is well known and also works fine in RN

cos θ =
u · v
|u||v|

(25.2)

25.1 calculation for a line and a plane

Given a line with unit direction vector u, and plane with unit direction bivector A, the compo-
nent of that vector in the plane is:

−u ·AA. (25.3)

So the direction cosine is available immediately

cos θ = u ·
−u ·AA
|u ·AA|

(25.4)

However, this can be reduced significantly. Start with the denominator

|u ·AA|2 = (u ·AA)(AA · u)

= (u ·A)2.
(25.5)
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And in the numerator we have:

u · (u ·AA) =
1
2

(u(u ·AA) + (u ·AA)u)

=
1
2

((uu ·A)A + (u ·A)Au)

=
1
2

((A · uu)A − (A · u)Au)

= (A · u)
1
2

(uA −Au)

= −(A · u)2.

(25.6)

Putting things back together

cos θ =
(A · u)2

|u ·A|
= |u ·A|

The strictly positive value here is consistent with the fact that theta as calculated is in the
[0, π/2] range.

Restated for consistency with equations eq. (25.2) and eq. (25.1) in terms of not necessarily
unit vector and bivectors u and A, we have

cos θ =
|u ·A|
|u||A|

(25.7)
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O RT H O G O NA L D E C O M P O S I T I O N TA K E I I

26.1 lemma . orthogonal decomposition

To do so we first need to be able to express a vector x in terms of components parallel and
perpendicular to the blade A ∈ ∧k.

x = xA
1
A

= (x ·A + x∧A)
1
A

= (x ·A) ·
1
A

+
∑

i=3,5,···,2k−1

〈
(x ·A)

1
A

〉
i

+ (x∧A) ·
1
A

+
∑

i=3,5,···,2k−1

〈
(x∧A)

1
A

〉
i
+ (x∧A)∧

1
A

= 0

(26.1)

Since the LHS and RHS must both be vectors all the non-grade one terms are either zero or
cancel out. This can be observed directly since:

〈
x ·A

1
A

〉
i
=

〈
xA − (−1)kAx

2
1
A

〉
i

= −
(−1)k

2

〈
Ax

1
A

〉
i

(26.2)

and

〈
x∧A

1
A

〉
i
=

〈
xA + (−1)kAx

2
1
A

〉
i

= +
(−1)k

2

〈
Ax

1
A

〉
i

(26.3)

Thus all of the grade 3, · · · , 2k − 1 terms cancel each other out. Some terms like (x ·A) ∧ 1
A

are also independently zero.
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(This is a result I have got in other places, but I thought it is worth writing down since I
thought the direct cancellation is elegant).



27
M AT R I X O F G R A D E K M U LT I V E C T O R L I N E A R
T R A N S F O R M AT I O N S

27.1 motivation

The following shows explicitly the calculation required to form the matrix of a linear transfor-
mation between two grade k multivector subspaces (is there a name for a multivector of fixed
grade that is not neccessarily a blade?). This is nothing fancy or original, but just helpful to
have written out showing naturally how one generates this matrix from a consideration of the
two sets of basis vectors. After so much exposure to linear transformations only in matrix form
it is good to write this out in a way so that it is clear exactly how the coordinate matrices come
in to the picture when and if they are introduced.

27.2 content

Given T , a linear transformation between two grade k multivector subspaces, let σ = {σi}
m
i=1 be

a basis for a grade k multivector subspace. For T (x) ∈ span{βi} (ie: image of T contained in this
span). Let β = {βi}

n
i=1 be a basis for this (possibly different) grade k multivector subspace.

Additionally introduce a set of respective reciprocal frames {σi}, and {βi}. Define the recip-
rocal frame with respect to the dot product for the space. For a linearly independent, but not
necessary orthogonal (or orthonormal), set of vectors {ui} this set has as its defining property:

ui · u j = δi j (27.1)

I have chosen to use this covariant, contravariant coordinate notation since that works well for
both vectors (not necessarily orthogonal or orthonormal), as well as higher grade vectors. When
the basis is orthonormal these reciprocal frame grade k multivectors can be computed with just
reversion. For example, suppose that {βi} is an orthonormal bivector basis for the image of T ,
then the reciprocal frame bivectors are just βi = βi

†.
With this we can decompose the linear transformation into components generated by each of

the σi grade k multivectors:

T (x) = T (
∑

x ·σ jσ
j) =

∑
x jT (σ j) (27.2)
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This we can write as a matrix equation:

T (x) =
[
T (σ1) T (σ1) · · · T (σn)

]

x1

x2
...

xn


(27.3)

Now, decompose the T (σ j) in terms of the basis β:

T (σ j) =
∑

T (σ j) · βiβi (27.4)

This we can also write as a matrix equation

T (σ j) =
[
β1 β2 · · · βm

]

T (σ j) · β1

T (σ j) · β2

...

T (σ j) · βm



=
[
β1 β2 · · · βm

]

β1 · T (σ j)

β2 · T (σ j)
...

βm · T (σ j)



(27.5)

These two sets of matrix equations, can be combined into a single equation:

T (x) =


β1

β2
...

βm



T 
β1 · T (σ1) β1 · T (σ2) · · · β1 · T (σn)

β2 · T (σ1) β2 · T (σ2) · · · β2 · T (σn)
... · · ·

. . .
...

βm · T (σ1) βm · T (σ2) · · · βm · T (σn)




x1

x2
...

xn


(27.6)

Here the matrix (x1, x2, · · · , xn) is a coordinate vector with respect to basis σ, but the vector
(β1, β2, · · · , βn) is matrix of the basis vectors βi ∈ β. This makes sense since the end result has
not been defined in terms of a coordinate vector space, but the space of T itself.

This can all be written more compactly as

T (x) =
[
βi

]T [
βi · T (σ j)

] [
xi

]
(27.7)
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We can also recover the original result from this by direct expansion and then regrouping:

[
βi

]T [∑
j β

i · T (σ j)x j

]
=

[∑
k j βkβ

k · T (σ j)x j

]
=

∑
k j

βkβ
k · T (σ j)x j

=
∑

k

βkβ
k · T (

∑
j

σ jx j)

=
∑

k

βkβ
k · T (x)

= T (x)

(27.8)

Observe that this demonstrates that we can write the coordinate vector [T ]β as the two left
most matrices above

[T (x)]β =
[
βi · T (x)

]
i

=
[∑

j β
i · T (σ j)x j

]
i

=
[
βi · T (σ j)

] [
xi

] (27.9)

Looking at the above I found it interesting that eq. (27.6) which embeds the coordinate vector
of T (x) has the structure of a bilinear form, so in a sense one can view the matrix of a linear
transformation:

[T ]βσ =
[
βi · T (σ j)

]
(27.10)

as a bilinear form that can act as a mapping from the generating basis to the image basis.





28
V E C T O R F O R M O F J U L I A F R AC TA L

28.1 motivation

As outlined in [8], 2-D and N-D Julia fractals can be computed using the geometric product,
instead of complex numbers. Explore a couple of details related to that here.

28.2 guts

Fractal patterns like the Mandelbrot and Julia sets are typically using iterative computations in
the complex plane. For the Julia set, our iteration has the form

Z → Zp + C (28.1)

where p is an integer constant, and Z, and C are complex numbers. For p = 2 I believe we
obtain the Mandelbrot set. Given the isomorphism between complex numbers and vectors using
the geometric product, we can use write

Z = xn̂
C = cn̂,

(28.2)

and re-express the Julia iterator as

x→ (xn̂)pn̂ + c (28.3)

It is not obvious that the RHS of this equation is a vector and not a multivector, especially
when the vector x lies in R3 or higher dimensional space. To get a feel for this, let us start by
write this out in components for n̂ = e1 and p = 2. We obtain for the product term

(xn̂)pn̂ = xn̂xn̂n̂
= xn̂x
= (x1e1 + x2e2)e1(x1e1 + x2e2)

= (x1 + x2e2e1)(x1e1 + x2e2)

= (x2
1 − x2

2)e1 + 2x1x2e2

(28.4)
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Looking at the same square in coordinate representation for the Rn case (using summation
notation unless otherwise specified), we have

xn̂x = xkeke1xmem

=

x1 +
∑
k>1

xkeke1

 xmem

= x1xmem +
∑
k>1

xkxmeke1em

= x1xmem +
∑
k>1

xkx1ek +
∑

k>1,m>1

xkxmeke1em

=

x2
1 −

∑
k>1

x2
k

 e1 + 2
∑
k>1

x1xkek +
∑

1<k<m,1<m<k

xkxmeke1em

(28.5)

This last term is zero since eke1em = −eme1ek, and we are left with

xn̂x =

x2
1 −

∑
k>1

x2
k

 e1 + 2
∑
k>1

x1xkek, (28.6)

a vector, even for non-planar vectors. How about for an arbitrary orientation of the unit vector
in Rn? For that we get

xn̂x = (x · n̂n̂ + x∧ n̂n̂)n̂x
= (x · n̂ + x∧ n̂)(x · n̂n̂ + x∧ n̂n̂)

= ((x · n̂)2 + (x∧ n̂)2)n̂ + 2(x · n̂)(x∧ n̂)n̂
(28.7)

We can read eq. (28.6) off of this result by inspection for the n̂ = e1 case.
It is now straightforward to show that the product (xn̂)pn̂ is a vector for integer p ≥ 2. We

have covered the p = 2 case, justifying an assumption that this product has the following form

(xn̂)p−1n̂ = an̂ + b(x∧ n̂)n̂, (28.8)

for scalars a and b. The induction test becomes

(xn̂)pn̂ = (xn̂)p−1(xn̂)n̂
= (xn̂)p−1x
= (a + b(x∧ n̂))((x · n̂)n̂ + (x∧ n̂)n̂)

= (a(x · n̂)2 − b(x∧ n̂)2)n̂ + (a + b(x · n̂))(x∧ n̂)n̂.

(28.9)
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Again we have a vector split nicely into projective and rejective components, so for any
integer power of p our iterator eq. (28.3) employing the geometric product is a mapping from
vectors to vectors.

There is a striking image in the text of such a Julia set for such a 3D iterator, and an exercise
left for the adventurous reader to attempt to code that based on the 2D p = 2 sample code they
provide.





Part III

ROTAT I O N





29
ROT O R N OT E S

29.1 rotations strictly in a plane

For a plane rotation, a rotation does not have to be expressed in terms of left and right half angle
rotations, as is the case with complex numbers. Starting with this “natural” one sided rotation
we will see why the half angle double sided Rotor formula works.

29.1.1 Identifying a plane with a bivector. Justification

Given a bivector B, we can say this defines the orientation of a plane (through the origin) since
for any vector in the plane we have B∧ x = 0, or any vector strictly normal to the plane B · x = 0.

Note that this naturally compares to the equation of a line (through the origin) expressed in
terms of a direction vector b, where b ∧ x = 0 if x lies on the line, and b · x = 0 if x is normal
to the line.

Given this it is not unreasonable to identify the plane with its bivector. This will be done
below, and it should be clear that loose language such as “the plane B”, should really be inter-
preted as “the plane with direction bivector B”, where the direction bivector has the wedge and
dot product properties noted above.

29.1.2 Components of a vector in and out of a plane

To calculate the components of a vector in and out of a plane, we can form the product

x = xB
1
B

= x ·B
1
B

+ x∧B
1
B

(29.1)

This is an orthogonal decomposition of the vector x where the first part is the projective term
onto the plane B, and the second is the rejective term, the component not in the plane. Let us
verify this.

Write x = x‖ + x⊥, where x‖, and x⊥ are the components of x parallel and perpendicular to
the plane. Also write B = b1 ∧ b2, where bi are non-colinear vectors in the plane B.

If x = x‖, a vector entirely in the plane B, then one can write

x = a1b1 + a2b2 (29.2)

209
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and the wedge product term is zero

x∧B = (a1b1 + a2b2) ∧ b1 ∧ b2

= a1(b1 ∧ b1)∧ b2 − a2(b2 ∧ b2)∧ b1

= 0

(29.3)

Thus the component parallel to the plane is composed strictly of the dot product term

x‖ = x ·B
1
B

(29.4)

Or for a general vector not necessarily in the plane the component of that vector in the plane,
its projection onto the plane is,

ProjB(x) = x ·B
1
B

=
1
|B|2

(B · x)B = (B̂ · x)B̂ (29.5)

Now, for a vector that lies completely perpendicular to the plane x = x⊥, the dot product term
with the plane is zero. To verify this observe

x⊥ ·B = x⊥ · (b1 ∧ b2)

= (x⊥ · b1)b2 − (x⊥ · b2)b1
(29.6)

Each of these dot products are zero since x has no components that lie in the plane (those
components if they existed could be expressed as linear combinations of bi).

Thus only the component perpendicular to the plane is composed strictly of the wedge prod-
uct term

x⊥ = x∧B
1
B

(29.7)

And again for a general vector the component that lies out of the plane as, the rejection of the
plane from the vector is

RejB(x) = x∧B
1
B

= −
1
|B|2

x∧BB = −x∧ B̂B̂ (29.8)



29.2 rotation around normal to arbitrarily oriented plane through origin 211

Figure 29.1: Rotation of Vector

29.2 rotation around normal to arbitrarily oriented plane through origin

Having established the preliminaries, we can now express a rotation around the normal to a
plane (with the plane and that normal through the origin).

Such a rotation is illustrated in fig. 29.1 preserves all components of the vector that are
perpendicular to the plane, and operates only on the components parallel to the plane.

Expressed in terms of exponentials and the projective and rejective decompositions above,
this is

Rθ(x) = x∧B
1
B

+

(
x ·B

1
B

)
eB̂θ

= x∧B
1
B

+ e−B̂θ
(
x ·B

1
B

) (29.9)

Where we have made explicit note that a plane rotation does not commute with a vector in a
plane (its reverse is required).
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To demonstrate this write i = e2e1, a unit bivector in some plane with unit vectors ei also in
the plane. If a vector lies in that plane we can write the rotation

xeiθ = (a1e1 + a2e2) (cos θ + i sin θ)

= cos θ (a1e1 + a2e2) + (a1e1 + a2e2) (e2e1 sin θ)

= cos θ (a1e1 + a2e2) + sin θ (−a1e2 + a2e1)

= cos θ (a1e1 + a2e2) − e2e1 sin θ (a1e1 + a2e2)

= e−iθx

(29.10)

Similarly for a vector that lies outside of the plane we can write

xeiθ = (
∑
j,1,2

a je j)(cos θ + e2e1 sin θ)

= (cos θ + e2e1 sin θ)(
∑
j,1,2

a je j)

= eiθx

(29.11)

The multivector for a rotation in a plane perpendicular to a vector commutes with that vector.
The properties of the exponential allow us to factor a rotation

R(θ) = R(αθ)R((1 − α)θ) (29.12)

where α <= 1, and in particular we can set α = 1/2, and write

Rθ(x) = x∧B
1
B

+

(
x ·B

1
B

)
eB̂θ

=

(
x∧B

1
B

)
e−B̂θ/2eB̂θ/2 +

(
x ·B

1
B

)
eB̂θ/2eB̂θ/2

= e−B̂θ/2
(
x∧B

1
B

)
eB̂θ/2 + e−B̂θ/2

(
x ·B

1
B

)
eB̂θ/2

= e−B̂θ/2 (x∧B + x ·B)
1
B

eB̂θ/2

= e−B̂θ/2
(
xB

1
B

)
eB̂θ/2

(29.13)

This takes us full circle from dot and wedge products back to x, and allows us to express the
rotated vector as:

Rθ(x) = e−B̂θ/2xeB̂θ/2 (29.14)
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Only when the vector lies in the plane (x = x‖, or x∧B = 0) can be written using the familiar
left or right “full angle” rotation exponential that we are used to from complex arithmetic:

Rθ(x) = e−B̂θx = xeB̂θ (29.15)

29.3 rotor equation in terms of normal to plane

The rotor equation above is valid for any number of dimensions. For R3 we can alternatively
parametrize the plane in terms of a unit normal n:

B = kin (29.16)

Here i is the R3 pseudoscalar e1e2e3.
Thus we can write

B̂ = in (29.17)

and expressing eq. (29.14) in terms of the unit normal becomes trivial

Rθ(x) = e−inθ/2xeinθ/2 (29.18)

Expressing this in terms of components and the unit normal is a bit harder

Rθ(x) = x∧B
1
B

+

(
x ·B

1
B

)
eB̂θ

= x∧ (in)
1
in

+

(
x · (in)

1
in

)
einθ

(29.19)

Now,

x∧ (in) =
1
2

(xin + inx)

=
i
2

(xn + nx)

= (x · n)i

(29.20)
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And

1
in

=
1
in

1
ni

ni

= −in
(29.21)

So the rejective term becomes

x∧B
1
B

= x∧ (in)
1
in

= x∧ (in)
1
in

= (x · n)i(−i)n
= (x · n)n
= Projn(x)

(29.22)

Now, for the dot product with the plane term, we have

x ·B = x · (in)

=
1
2

(xin − inx)

= (x∧ n)i

(29.23)

Putting it all together we have

Rθ(x) = (x · n)n + (x∧ n)neinθ (29.24)

In terms of explicit sine and cosine terms this is (observe that (in)2 = −1),

Rθ(x) = (x · n) n + (x∧ n) n (cos θ + in sin θ) (29.25)

Rθ(x) = (x · n) n + (x∧ n) n cos θ + (x∧ n)i sin θ (29.26)

This triplet of mutually orthogonal direction vectors, n, (x ∧ n)n, and (x ∧ n)i are illustrated
in fig. 29.2. The component of the vector in the direction of the normal Projn(x) = x · nn is
unaltered by the rotation. The rotation is applied to the remaining component of x, Rejn(x) =

(x∧ n)n, and we rotate in the direction (x∧ n)i
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Figure 29.2: Direction vectors associated with rotation

29.3.1 Vector rotation in terms of dot and cross products only

Expression of this rotation formula eq. (29.26) in terms of “vector” relations is also possible, by
removing the wedge products and the pseudoscalar references.

First the rejective term

(x∧ n)n = ((x × n)i)n
= ((x × n)i) · n

=
1
2

(((x × n)i)n − n((x × n)i))

=
i
2

((x × n)n − n(x × n))

= i((x × n)∧ n)

= i2((x × n) × n)

= n × (x × n)

(29.27)

The next term expressed in terms of the cross product is

(x∧ n)i = (x × n)i2

= n × x
(29.28)
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And putting it all together we have

Rθ(x) = (x · n) n + (n × x) × n cos θ + n × x sin θ (29.29)

Compare eq. (29.29) to eq. (29.26) and eq. (29.24), and then back to eq. (29.14).

29.4 giving a meaning to the sign of the bivector

For a rotation between two vectors in the plane containing those vectors, we can write the
rotation in terms of the exponential as either a left or right rotation operator:

b = aeiθ = e−iθa (29.30)

b = ejθa = ae−jθ/2 (29.31)

Here both i and j = −i are unit bivectors with the property i2 = j2 = −1. Thus in order to
write a rotation in exponential form a meaning must be assigned to the sign of the unit bivector
that describes the plane and the orientation of the rotation.

Consider for example the case of a rotation by π/2. For this is the exponential is:

eiπ/2 = cos(π/2) + i sin(π/2) = i (29.32)

Thus for perpendicular unit vectors u and v, if we wish i to act as a π/2 rotation left acting
operator on u towards v its value must be:

i = u∧ v (29.33)

ui = uu∧ v = uuv = v (29.34)

For that same rotation if the bivector is employed as a right acting operator, the reverse is
required:

j = v∧ u (29.35)
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Figure 29.3: Orientation of unit imaginary

ju = v∧ u = vuu = v (29.36)

In general, for any two vectors, one can find an angle θ in the range 0 ≤ θ ≤ π between
those vectors. If one lets that angle define the orientation of the rotation between the vectors,
and implicitly define a sort of “imaginary axis” for that plane, that imaginary axis will have
direction

1
a

a∧ b = b∧ a
1
a
. (29.37)

This is illustrated in fig. 29.3.
Thus the bivector

i =
a∧ b
|a∧ b|

(29.38)

When acting as an operator to the left (ai) with a vector in the plane can be interpreted as
acting as a rotation by π/2 towards b.
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Similarly the bivector

j = i† = −i =
b∧ a
|b∧ a|

(29.39)

also applied to a vector in the plane produces the same rotation when acting as an operator to
the right. Thus, in general we can write a rotation by theta in the plane containing non-colinear
vectors a and b in the direction of minimal angle from a towards b in one of the three forms:

Rθ:a→b(a) = ae
a∧b
|a∧b| θ = e

b∧a
|b∧a| θa (29.40)

Or,

Rθ:a→b(x) = e
b∧a
|b∧a| θ/2xe

a∧b
|a∧b| θ/2 (29.41)

This last (writing x instead of a since it also applies to vectors that lie outside of the a ∧ b
plane), is our rotor formula eq. (29.14), reexpressed in a way that removes the sign ambiguity
of the bivector i in that equation.

29.5 rotation between two unit vectors

As illustrated in fig. 29.4, when the angle between two vectors is less than π the fact that the
sum of two arbitrarily oriented unit vectors bisects those vectors provides a convenient way to
compute the half angle rotation exponential.

Thus we can write

a + b
|a + b|

= aeiθ/2 = ejθ/2a

Where i = j† are unit bivectors of appropriate sign. Multiplication through by a gives

eiθ/2 =
1 + ab
|a + b|

Or,

ejθ/2 =
1 + ba
|a + b|

Thus we can write the total rotation from a to b as
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Figure 29.4: Sum of unit vectors bisects angle between

b = e−iθ/2aeiθ/2 = ejθ/2ae−jθ/2 =

(
1 + ba
|a + b|

)
a
(
1 + ab
|a + b|

)
For the case where the rotation is through an angle θ where π < θ < 2π, again employing a

left acting exponential operator we have

a + b
|a + b|

= bei(2π−θ)/2

= beiπe−iθ/2

= −be−iθ/2

(29.42)

Or,

e−iθ/2 = −
ba + 1
|a + b|

(29.43)

Thus

b = e−iθ/2aeiθ/2 =

(
−

1 + ba
|a + b|

)
a
(
−

1 + ab
|a + b|

)
(29.44)
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Note that the two negatives cancel, giving the same result as in the θ < π case. Thus
eq. (29.44) is valid for all vectors a , −b (this can be verified by direct multiplication.)

These half angle exponentials are called rotors, writing the rotor as

R =
1 + ab
|a + b|

(29.45)

and the rotation in terms of rotors is:

b = R†aR (29.46)

The angle associated with this rotor R is the minimal angle between the two vectors (0 < θ <
π), and is directed from a to b. Inverting the rotor will not change the net effect of the rotation,
but has the geometric meaning that the rotation from a to b rotates in the opposite direction
through the larger angle (π < θ < 2π) between the vectors.

29.6 eigenvalues , vectors and coordinate vector and matrix of the rotation lin-
ear transformation

Given the plane containing two orthogonal vectors u and v, we can form a unit bivector for the
plane

B = uv (29.47)

A normal to this plane is n = vuI.
The rotation operator for a rotation around n in that plane (directed from u towards v) is

Rθ(x) = evuθ/2xeuvθ/2 (29.48)

To form the matrix of this linear transformation assume an orthonormal basis σ = {ei}.
In terms of these basis vectors we can write

Rθ(e j) = e−vuθ/2e jeuvθ/2 =
∑

i

(
e−vuθ/2e jeuvθ/2

)
· eiei (29.49)

Thus the coordinate vector for this basis is

[
Rθ(e j)

]
σ

=


(
e−vuθ/2e jeuvθ/2

)
· e1

...(
e−vuθ/2e jeuvθ/2

)
· en

 (29.50)
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We can use this to form the matrix for the linear operator that takes coordinate vectors from
the basis σ to σ:

[
Rθ(x)

]
σ

=
[
Rθ

]σ
σ

[
x
]
σ

(29.51)

Where[
Rθ

]σ
σ

=

[[
Rθ(e1)

]
σ
. . .

[
Rθ(en)

]
σ

]
=

[(
e−vuθ/2e jeuvθ/2

)
· ei

]
i j

(29.52)

If one uses the plane and its normal to form an alternate orthonormal basis α = {u, v,n}.
The transformation matrix for coordinate vectors in this basis is

[
Rθ

]α
α

=


(
ueuvθ

)
· u

(
veuvθ

)
· u 0(

ueuvθ
)
· v

(
veuvθ

)
· v 0

0 0 n · n

 =


cos θ − sin θ 0

sin θ cos θ 0

0 0 1

 (29.53)

This matrix has eigenvalues eiθ, e−iθ, 1, with (coordinate) eigenvectors

1
√

2


1

−i

0

 , 1
√

2


1

i

0

 ,

0

0

1

 (29.54)

Its interesting to observe that without introducing coordinate vectors an eigensolution is pos-
sible directly from the linear transformation itself.

The rotation linear operator has right and left eigenvalues euvθ, evuθ (respectively), where the
eigenvectors for these are any vectors in the plane. There is also a scalar eigenvalue 1 (both left
and right eigenvalue), for the eigenvector n:

Rθ(u) = evuθx = xeuvθ

Rθ(u) = evuθx = xeuvθ

Rθ(n) = n(1)

(29.55)

Observe that the eigenvalues here are not all scalars, which is likely related to the fact that
the coordinate matrix was not diagonalizable with real vectors.
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the matrix of the linear transformation. Given this, one can write:

[
Rθ(u) Rθ(v) Rθ(n)

]
=

[
u v n

] 
euvθ 0 0

0 euvθ 0

0 0 1


=


evuθ 0 0

0 evuθ 0

0 0 1


[
u v n

] (29.56)

But neither of these can be used to diagonalize the matrix of the transformation. To do that
we require dot products that span the matrix product to form the coordinate vector columns.

Observe that interestingly enough the left and right eigenvalues of the operator in the plane
are of complex exponential form (e±nIθ) just as the eigenvalues for coordinate vectors restricted
to the plane are complex exponentials (e±iθ).

29.7 matrix for rotation linear transformation

Let us expand the terms in eq. (29.52) to calculate explicitly the rotation matrix for an arbitrary
rotation. Also, as before, write n = vuI, and parametrize the Rotor as follows:

R = enIθ/2 = cos θ/2 + nI sin θ/2 = α + Iβ (29.57)

Thus the i j terms in the matrix are:

ei ·
(
e−nIθ/2e jenIθ/2

)
= 〈ei(α − Iβ)e j(α + Iβ)〉

= 〈ei(e jα − Iβe j)(α + Iβ)〉

= 〈ei
(
e jα

2 − Iα(βe j − e jβ) + βe jβ
)
〉

= δi jα
2 + 〈ei (−2Iα(β∧ e j) + βe jβ)〉

= δi jα
2 + 2αei · (β × e j) + 〈eiβe jβ〉

(29.58)

Lets expand the last term separately:

〈eiβe jβ〉 = 〈(ei · β + ei ∧ β)(e j · β + e j ∧ β)〉

= (ei · β)(e j · β) + 〈(ei ∧ β)(e j ∧ β)〉
(29.59)
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And once more considering first the i = j case (writing s , i , t).

〈(ei ∧ β)2〉 =

∑
k,i

eikβk

2

= (eisβs + eitβt)(eisβs + eitβt)

= −β2
s − β

2
t − estβsβt + etsβtβs

= −β2
s − β

2
t

= −β2 + β2
i

(29.60)

For the i , j term, writing i , j , k

〈(ei ∧ β)(e j ∧ β)〉 = 〈
∑
s,i

eisβs

∑
t,i

eitβt〉

= 〈(ei jβ j + eikβk)(e jiβi + e jkβk)〉

= βiβ j + 〈e jiβ
2
k + eikβ jβk + ek jβkβi〉

= βiβ j

(29.61)

Thus

〈(ei ∧ β)(e j ∧ β)〉 = δi j(−β2 + β2
i ) + (1 − δi j)βiβ j = βiβ j − δi jβ

2 (29.62)

And putting it all back together

ei ·
(
e−nIθ/2e jenIθ/2

)
= δi j(α2 − β2) + 2αei · (β × e j) + 2βiβ j (29.63)

The α and β terms can be expanded in terms of θ. we see that The δi j coefficient is

α2 − β2 = 2cos2θ − 1 = cos θ. (29.64)

The triple product ei · (β × e j) is zero along the diagonal where i = j since an e j = ei cross
has no ei component, so for k , i , j, the triple product term is

2αei · (β × e j) = 2αβkei · (ek × e j)

= 2αβk sgn πik j

= 2nk cos(θ/2) sin(θ/2) sgn πik j

= nk sin θ sgn πik j

(29.65)
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The last term is:

2βiβ j = 2nin jsin2(θ/2) = nin j(1 − cos θ) (29.66)

Thus we can alternatively write eq. (29.63)

ei ·
(
e−nIθ/2e jenIθ/2

)
= δi j cos θ + nk sin θεik j + nin j(1 − cos θ) (29.67)

This is enough to easily and explicitly write out the complete rotation matrix for a rotation
about unit vector n = (n1, n2, n3): (with basis σ = {ei}):

[Rθ]σσ =


cos θ(1 − n2

1) + n2
1 n1n2(1 − cos θ) − n3 sin θ n1n3(1 − cos θ) + n2 sin θ

n1n2(1 − cos θ) + n3 sin θ cos θ(1 − n2
2) + n2

2 n2n3(1 − cos θ) − n1 sin θ

n1n3(1 − cos θ) − n2 sin θ n2n3(1 − cos θ) + n1 sin θ cos θ(1 − n2
3) + n2

3


(29.68)

Note also that the ni terms are the direction cosines of the unit normal for the rotation, so
all the terms above are really strictly sums of sine and cosine products, so we have the rotation
matrix completely described in terms of four angles. Also observe how much additional com-
plexity we have to express a rotation in terms of the matrix. This representation also does not
work for plane rotations, just vectors (whereas that is not the case for the rotor form).

It is actually somewhat simpler looking to leave things in terms of the α, and β parameters.
We can rewrite eq. (29.63) as:

ei ·
(
e−nIθ/2e jenIθ/2

)
= δi j(2α2 − 1) + 2αβkεik j + 2βiβ j (29.69)

and the rotation matrix:

[Rθ]σσ = 2


α2 − 1

2 + β2
1 β1β2 − β3α β1β3 + β2α

β1β2 + β3α α2 − 1
2 + β2

2 β2β3 − β1α

β1β3 − β2α β2β3 + β1α α2 − 1
2 + β2

3

 (29.70)

Not really that much simpler, but a bit. The trade off is that the similarity to the standard 2x2
rotation matrix is not obvious.



30
E U L E R A N G L E N OT E S

30.1 removing the rotors from the exponentials

In [7] section 2.7.5 the Euler angle formula is developed for {z, x′, z′′} axis rotations by {φ, θ, ψ}
respectively.

Other than a few details the derivation is pretty straightforward. Equation 2.153 would be
clearer with a series expansion hint like

exp(RαiR†) =
∑

k

1
k!

(RαiR†)k

=
∑

k

1
k!

R(αi)kR†

= R exp(αi)R†

(30.1)

where i is a bivector, and R is a rotor (RR† = 1).
The first rotation is straightforward, by an angle φ around the z axis

Rφ(x) = exp(−Ie3φ/2)x exp(Ie3φ/2) = RφxR†φ (30.2)

The next rotation is around the transformed x axis, for which the rotational plane is

IRφe1R†φ = RφIe1R†φ (30.3)

So the rotor for this plane by angle θ is

Rθ = exp(RφIe1R†φ)

= Rφ exp(Ie1θ/2)R†φ,
(30.4)

resulting in the composite rotor

Rθφ = RθRφ

= Rφ exp(Ie1θ/2)R†φRφ

= Rφ exp(Ie1θ/2)

= exp (−Ie3φ/2) exp(−Ie1θ/2)

(30.5)

225



226 euler angle notes

The composition of the simple rotation around the e3 axis, followed by the rotation around
the e′1 axis ends up as a product of rotors around the original e1 and e3 axis, but curiously enough
in inverted order.

30.2 expanding the rotor product

Completing the calculation outlined above follows in the same fashion. The end result is that
the composite Euler rotations has the following rotor form

R(x) = RxR†

R = exp(−e12φ/2) exp(−e23θ/2) exp(−e12ψ/2)
(30.6)

Then there are notes saying this is easier to visualize and work with than the equivalent matrix
formula. Let us see what the equivalent matrix formula is. First calculate the rotor action on e1

Re1R† = e−e12φ/2e−e23θ/2e−e12ψ/2e1ee12ψ/2ee23θ/2ee12φ/2

= e−e12φ/2e−e23θ/2e1ee12ψee23θ/2ee12φ/2

= e−e12φ/2e−e23θ/2(e1Cψ + e2S ψ)ee23θ/2ee12φ/2

= e−e12φ/2(e1Cψ + e2S ψee23θ)ee12φ/2

= e−e12φ/2(e1Cψ + e2S ψCθ + e3S ψS θ)ee12φ/2

= (e1Cψ + e2S ψCθ)ee12φ + e3S ψS θ

= e1(CψCφ − S ψCθS φ) + e2(CψS φ + S ψCθCφ) + e3S ψS θ

(30.7)

Now e2:

Re2R† = e−e12φ/2e−e23θ/2e−e12ψ/2e2ee12ψ/2ee23θ/2ee12φ/2

= e−e12φ/2e−e23θ/2(e2Cψ − e1S ψ)ee23θ/2ee12φ/2

= (e2CψCθ − e1S ψ)ee12φ + e3CψS θ

= e1(−CψCθS φ − S ψCφ) + e2(−S ψS φ + CψCθCφ) + e3CψS θ

(30.8)

And finally e3

Re3R† = e−e12φ/2e−e23θ/2e−e12ψ/2e3ee12ψ/2ee23θ/2ee12φ/2

= e−e12φ/2e3ee23θee12φ/2

= e−e12φ/2(e3Cθ − e2S θ)ee12φ/2

= −e2S θee12φ + e3Cθ

= e1S θS φ − e2S θCφ + e3Cθ

(30.9)
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This can now be assembled into matrix form
R(x) · e1

R(x) · e2

R(x) · e3

 =


(Re1R†) · e1 (Re2R†) · e1 (Re3R†) · e1

(Re1R†) · e2 (Re2R†) · e2 (Re3R†) · e2

(Re1R†) · e3 (Re2R†) · e3 (Re3R†) · e3



x1

x2

x3

 = Rx (30.10)

Therefore we have the composite matrix form for the Euler angle rotations

R =


CψCφ − S ψCθS φ −S ψCφ −CψCθS φ S θS φ

CψS φ + S ψCθCφ −S ψS φ + CψCθCφ −S θCφ

S ψS θ CψS θ Cθ

 (30.11)

Lots of opportunity to make sign errors here. Let us check with matrix multiplication, which
should give the same result

30.3 with composition of rotation matrices (done wrong , but with discussion
and required correction)

R(x) = Rx
= Rψe3Rθe1Rφe3x

(30.12)

Now, that first rotation is

Rφ(x) = e−e12φ/2(eixi)ee12φ/2

= (e1x1 + e2x2)ee12φ + e3x3

= x1(e1 cos φ + e2 sin φ) + x2(e2 cos φ − e1 sin φ) + x3e3

= e1(x1 cos φ − x2 sin φ) + e2(x1 sin φ + x2 cos φ) + e3x3

(30.13)

Which has the expected matrix form

Rφe3x =


cos φ − sin φ 0

sin φ cos φ 0

0 0 1



x1

x2

x3

 (30.14)
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Using Cx = cos(x), and S x = sin(x) for brevity, the composite rotation is

Rψe3Rθe1Rφe3 =


Cψ −S ψ 0

S ψ Cψ 0

0 0 1



1 0 0

0 Cθ −S θ

0 S θ Cθ



Cφ −S φ 0

S φ Cφ 0

0 0 1


=


Cψ −S ψCθ S ψS θ

S ψ CψCθ −CψS θ

0 S θ Cθ



Cφ −S φ 0

S φ Cφ 0

0 0 1


=


CψCφ − S ψCθS φ −CψS φ − S ψCθCφ S ψS θ

S ψCφ + CψCθS φ −S ψS φ + CψCθCφ −CψS θ

S θS φ S θCφ Cθ



(30.15)

This is different from the rotor generated result above, although with a φ, and ψ interchange
things appear to match?


CφCψ − S φCθS ψ −S φCψ −CφCθS ψ S θS ψ

CφS ψ + S φCθCψ −S φS ψ + CφCθCψ −S θCψ

S φS θ CφS θ Cθ

 (30.16)

Where is the mistake? I suspect it is in the matrix formulation, where the plain old rotations
for the axis were multiplied. Because the rotations need to be along the transformed axis I bet
there is a reversion of matrix products as there was an reversion of rotors? How would one show
if this is the case?
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What is needed is more careful treatment of the rotation about the transformed axis. Consid-
ering the first, for a rotation around the e′1 = (Cφ, S φ, 0) axis. From 29 we have the rotation
matrix for a θ rotation about an arbitrary normal n = (n1, n2, n3)

Rθ =


Cθ(1 − n2

1) + n2
1 n1n2(1 −Cθ) − n3S θ n1n3(1 −Cθ) + n2S θ

n1n2(1 −Cθ) + n3S θ Cθ(1 − n2
2) + n2

2 n2n3(1 −Cθ) − n1S θ

n1n3(1 −Cθ) − n2S θ n2n3(1 −Cθ) + n1S θ Cθ(1 − n2
3) + n2

3


=


Cθ(1 −Cφ

2) + Cφ
2 CφS φ(1 −Cθ) S φS θ

CφS φ(1 −Cθ) Cθ(1 − S φ
2) + S φ

2 −CφS θ

−S φS θ CφS θ Cθ


=


Cθ(S φ

2) + Cφ
2 CφS φ(1 −Cθ) S φS θ

CφS φ(1 −Cθ) Cθ(Cφ
2) + S φ

2 −CφS θ

−S φS θ CφS θ Cθ



(30.17)

Now the composite rotation for the sequence of φ, and θ rotations about the z, and x′ axis is

Rφe3,θe′1 =


Cθ(S φ

2) + Cφ
2 CφS φ(1 −Cθ) S φS θ

CφS φ(1 −Cθ) Cθ(Cφ
2) + S φ

2 −CφS θ

−S φS θ CφS θ Cθ



Cφ −S φ 0

S φ Cφ 0

0 0 1


=


Cφ −CθS φ S φS θ

S φ CθCφ −CφS θ

0 S θ Cθ


=


Cφ −S φ 0

S φ Cφ 0

0 0 1



1 0 0

0 Cθ −S θ

0 S θ Cθ


= Rφe3Rθe1

(30.18)

Wow, sure enough the composite rotation matrix is the result of the inverted order product
of the two elementary rotation matrices. The algebra here is fairly messy, so it would not be
terribly fun to go one step further using just matrices that the final triple rotation is not the
product of eq. (30.12), but instead requires the matrix product

R(x) = Rx
= Rφe3Rθe1Rψe3x

(30.19)
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Assuming that this is true, the swapping of angles to match the rotor expression is fully
accounted for, and it is understood how to correctly do the same calculation in matrix form.

30.4 relation to cayley-klein parameters

Exercise 2.9 from [7] is to relate the rotation matrix expressed in terms of Cayley-Klein param-
eters back to the rotor formulation. That matrix has the look of something that involves the half
angles. Use of software to expressing the rotation in terms of the half angle signs and cosines,
plus some manually factoring (which could be carried further), produces the following mess

R11 = S 2
φS 2

ψ −C2
ψS 2

φ −C2
φS 2

ψ + C2
φC

2
ψ − 4CφS φCψS ψ(C2

θ − S 2
θ)

R21 = 2CψS ψ(C2
φ − S 2

φ)(C2
θ − S 2

θ) + 2CφS φ(C2
ψ − S 2

ψ)

R31 = 4CψCθS ψS θ

R12 = −2CφS φ(C2
ψ − S 2

ψ)(C2
θ − S 2

θ) − 2CψS ψ(C2
φ − S 2

φ)

R22 = (C2
θ − S 2

θ)(−S 2
φ + C2

φ)(C2
ψ − S 2

ψ) − 4CφS φCψS ψ

R32 = 2CθS θ(C2
ψ − S 2

ψ)

R13 = 4CφCθS φS θ

R23 = −2CθS θ(C2
φ − S 2

φ)

R33 = +C2
θS 2

φ − S 2
ψS 2

θ −C2
ψS 2

θ + C2
φC

2
θ

(30.20)

It kind of looks like the terms CθS φ may be related to these parameters. error prone. A Google
search for Cayley Klein also verifies that those parameters are expressed in terms of half angle
relations, but even with the hint, I was not successful getting something tidy out of all this.

An alternate approach is to just expand the rotor, so terms may be grouped before that rotor
and its reverse is applied to the object to be rotated. Again in terms of half angle signs and
cosines this is

R = exp(−e12φ/2) exp(−e23θ/2) exp(−e12ψ/2)

= (CφCψ − S φS ψ)Cθ − (CψS φ + CφS ψ)Cθe12

+ (CφS ψ −CψS φ)S θe31 − (S φS ψ + CφCψ)S θe23

(30.21)

Grouping terms produces

R = cos
(
θ

2

)
exp

(
−e12

2
(ψ + φ)

)
+ sin

(
θ

2

)
exp

(e12

2
(ψ − φ)

)
e32 (30.22)

Okay... now I see how you naturally get four parameters out of this. Also see why it was hard
to get there from the fully expanded rotation product ... it would first be required to group all
the φ and ψ terms just right in terms of sums and differences.
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With

R = α + δe12 + βe23 + γe31

α = cos
(
θ

2

)
cos

(
1
2
(ψ + φ)

)
δ = − cos

(
θ

2

)
sin

(
1
2
(ψ + φ)

)
β = − sin

(
θ

2

)
cos

(
1
2
(ψ − φ)

)
γ = sin

(
θ

2

)
sin

(
1
2
(ψ − φ)

)
(30.23)

By inspection, these have the required property α2 + β2 + γ2 + δ2 = 1, and multiplying out
the rotors yields the rotation matrix

U =


−γ2 + β2 − δ2 + α2 +2βγ + 2αδ +2δβ − 2αγ

+2βγ − 2αδ +γ2 − β2 − δ2 + α2 +2δγ + 2αβ

+2δβ + 2αγ +2δγ − 2αβ −γ2 − β2 + δ2 + α2

 (30.24)

Now that particular choice of sign and permutation of the α, β, γ, and δ is not at all obvious,
and is also arbitrary. Of the 120 different sign and permutation variations that can be tried, this
one results in the particular desired matrix U from the problem. The process of performing the
multiplications was well suited to a symbolic GA calculator and one was written with this and
other problems in mind.

[12] also treats these Cayley-Klein parametrizations, but does so considerably differently. He
has complex parametrizations and quaternion matrix representations, and it will probably be
worthwhile to reconcile all of these.
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30.5 omitted details

30.5.1 Cayley Klein details

Equation (30.22) was obtained with the following manipulations

R = (CφCψ − S φS ψ)Cθ − (CψS φ + CφS ψ)Cθe12

+ (CφS ψ −CψS φ)S θe31 − (S φS ψ + CφCψ)S θe23

= cos
(
1
2

(φ + ψ)
)

Cθ − sin
(
1
2

(φ + ψ)
)

Cθe12

− sin
(
1
2

(φ − ψ)
)

S θe31 − cos
(
1
2

(φ − ψ)
)

S θe23

= cos
(
1
2

(ψ + φ)
)

Cθ − sin
(
1
2

(ψ + φ)
)

Cθe12

+ sin
(
1
2

(ψ − φ)
)

S θe31 − cos
(
1
2

(ψ − φ)
)

S θe23

= Cθ

(
cos

(
1
2

(ψ + φ)
)
− sin

(
1
2

(ψ + φ)
)

e12

)
+ S θ

(
sin

(
1
2

(ψ − φ)
)

e31 − cos
(
1
2

(ψ − φ)
)

e23

)
= Cθ exp

(
−e12

2
(ψ + φ)

)
+ S θe3

(
sin

(
1
2

(ψ − φ)
)

e1 + cos
(
1
2

(ψ − φ)
)

e2

)
= Cθ exp

(
−e12

2
(ψ + φ)

)
+ S θ exp

(e12

2
(ψ − φ)

)
e32

(30.25)

In that last step an arbitrary but convenient decision to write the complex number i as e12 was
employed.



31
S P H E R I C A L P O L A R C O O R D I NAT E S

31.1 motivation

Reading the math intro of [32], I found the statement that the gradient in spherical polar form
is:

∇ = r̂
∂

∂r
+ θ̂

1
r
∂

∂θ
+ φ̂

1
r sin θ

∂

∂φ
(31.1)

There was no picture or description showing the conventions for measurement of the angles
or directions. To clarify things and leave a margin note I decided to derive the coordinates
and unit vector transformation relationships, gradient, divergence and curl in spherical polar
coordinates.

Although details for this particular result can be found in many texts, including the excel-
lent review article [11], the exercise of personally working out the details was thought to be
a worthwhile learning exercise. Additionally, some related ideas about rotating frame systems
seem worth exploring, and that will be done here.

31.2 notes

31.2.1 Conventions

Figure 31.1 illustrates the conventions used in these notes. By inspection, the coordinates can
be read off the diagram.

u = r cos φ

x = u cos θ = r cos φ cos θ

y = u sin θ = r cos φ sin θ

z = r sin φ

(31.2)
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Figure 31.1: Angles and lengths in spherical polar coordinates

31.2.2 The unit vectors

To calculate the unit vectors r̂, θ̂, φ̂ in the spherical polar frame we need to apply two sets of
rotations. The first is a rotation in the x, y plane, and the second in the x′, z plane.

For the intermediate frame after just the x, y plane rotation we have

Rθ = exp(−e12θ/2)

e′i = RθeiR
†

θ

(31.3)

Now for the rotational plane for the φ rotation is

e′1 ∧ e3 = (Rθe1R†θ)∧ e3

=
1
2

(Rθe1R†θe3 − e3Rθe1R†θ)
(31.4)

The rotor (or quaternion) Rθ has scalar and e12 components, so it commutes with e3 leaving

e′1 ∧ e3 = Rθ
1
2

(e1e3 − e3e1)R†θ

= Rθe1 ∧ e3R†θ

(31.5)
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Therefore the rotor for the second stage rotation is

Rφ = exp(−Rθe1 ∧ e3R†θφ/2)

=
∑ 1

k!

(
−Rθe1 ∧ e3R†θφ/2

)k

= Rθ
∑ 1

k!
(−e1 ∧ e3φ/2)kR†θ

= Rθ exp(−e13φ/2)R†θ

(31.6)

Composing both sets of rotations one has

R(x) = Rθ exp(−e13φ/2)R†θRθxR†θRθ exp(e13φ/2)R†θ
= exp(−e12θ/2) exp(−e13φ/2)x exp(e13φ/2) exp(e12θ/2)

(31.7)

Or, more compactly

R(x) = RxR†

R = RθRφ
Rφ = exp(−e13φ/2)

Rθ = exp(−e12θ/2)

(31.8)

Application of these to the {ei} basis produces the {r̂, θ̂, φ̂} basis. First application of Rφ yields
the basis vectors for the intermediate rotation.

Rφe1Rφ† = e1(cos φ + e13 sin φ) = e1 cos φ + e3 sin φ

Rφe2Rφ† = e2RφRφ† = e2

Rφe3Rφ† = e3(cos φ + e13 sin φ) = e3 cos φ − e1 sin φ

(31.9)
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Applying the second rotation to Rφ(ei) we have

r̂ = Rθ(e1 cos φ + e3 sin φ)Rθ†

= e1 cos φ(cos θ + e12 sin θ) + e3 sin φ

= e1 cos φ cos θ + e2 cos φ sin θ + e3 sin φ

θ̂ = Rθ(e2)Rθ†

= e2(cos θ + e12 sin θ)

= −e1 sin θ + e2 cos θ

φ̂ = Rθ(e3 cos φ − e1 sin φ)Rθ†

= e3 cos φ − e1 sin φ(cos θ + e12 sin θ)

= −e1 sin φ cos θ − e2 sin φ sin θ + e3 cos φ

(31.10)

In summary these are

r̂ = e1 cos φ cos θ + e2 cos φ sin θ + e3 sin φ

θ̂ = −e1 sin θ + e2 cos θ

φ̂ = −e1 sin φ cos θ − e2 sin φ sin θ + e3 cos φ

(31.11)

31.2.3 An alternate pictorial derivation of the unit vectors

Somewhat more directly, r̂ can be calculated from the coordinate expression of eq. (31.2)

r̂ =
1
r

(x, y, z), (31.12)

which was found by inspection of the diagram.
For θ̂, again from the figure, observe that it lies in an latitudinal plane (ie: x, y plane), and is

perpendicular to the outwards radial vector in that plane. That is

θ̂ = (cos θe1 + sin θe2)e1e2 (31.13)

Lastly, φ̂ can be calculated from the dual of r̂∧ θ̂

φ̂ = −e1e2e3(r̂∧ θ̂) (31.14)
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Completing the algebra for the expressions above we have

r̂ = cos φ cos θe1 + cos φ sin θe2 + sin φe3

θ̂ = cos θe2 − sin θe1

r̂∧ θ̂ = sin φ sin θe1e3 + sin φ cos θe3e2 + cos φe1e2

φ̂ = − sin φ cos θe1 − sin φ sin θe2 + cos φe3

(31.15)

Sure enough this produces the same result as with the rotor logic.
The rotor approach was purely algebraically and does not have the same reliance on pictures.

That may have an additional advantage since one can then study any frame transformations
of the general form {e′i} = {ReiR†}, and produce results that apply to not only spherical polar
coordinate systems but others such as the cylindrical polar.

31.2.4 Tensor transformation

Considering a linear transformation providing a mapping from one basis to another of the fol-
lowing form

fi = L(ei) = LeiL−1 (31.16)

The coordinate representation, or Fourier decomposition, of the vectors in each of these
frames is

x = xiei = y j f j. (31.17)

Utilizing a reciprocal frame (ie: not yet requiring an orthonormal frame here), such that ei ·

e j = δi
j, then dot product provide the coordinate transformations

xkek · ek = y j f j · ek

y j f j · f i = xkek · f i

=⇒

xi = y j f j · ei

yi = x je j · f i

(31.18)
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The transformed reciprocal frame vectors can be expressed directly in terms of the initial
reciprocal frame f i = L(ei). Taking dot products confirms this

(LeiL−1) · (Le jL−1) =
〈
LeiL−1Le jL−1

〉
=

〈
Leie jL−1

〉
= ei · e j

〈
LL−1

〉
= ei · e j

(31.19)

This implies that the forward and inverse coordinate transformations may be summarized as

yi = x je j · L(ei)

xi = y jL(e j) · ei (31.20)

Or in matrix form

Λi
j = L(ei) · e j

{Λ−1}
i
j = L(e j) · ei

yi = Λi
jx j

xi = {Λ−1}
i
jy

j

(31.21)

The use of inverse notation is justified by the following

xi = {Λ−1}
i
kyk

= {Λ−1}
i
kΛk

jx j

=⇒

{Λ−1}
i
kΛk

j = δi
j

(31.22)

For the special case where the basis is orthonormal (ei · e j = δi
j), then it can be observed here

that the inverse must also be the transpose since the forward and reverse transformation tensors
then differ only be a swap of indices.

On notation. Some references such as [26] use Λi
j for both the forward and inverse transfor-

mations, with specific conventions about which index is varied to distinguish the two matrices.
I have found that confusing and have instead used the explicit inverse notation of [30].
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31.2.5 Gradient after change of coordinates

With the transformation matrices enumerated above we are now equipped to take the gradient
expressed in initial frame

∇ =
∑

ei ∂

∂xi , (31.23)

and express it in the transformed frame. The chain rule is required for the derivatives in terms
of the transformed coordinates

∂

∂xi =
∂y j

∂xi

∂

∂y j

= Λ j
i
∂

∂y j

= L(e j) · ei
∂

∂y j

= f j · ei
∂

∂y j

(31.24)

Therefore the gradient is

∇ =
∑

ei( f j · ei)
∂

∂y j

=
∑

f j ∂

∂y j

(31.25)

This gets us most of the way towards the desired result for the spherical polar gradient since
all that remains is a calculation of the ∂/∂y j values for each of the r̂, θ̂, and φ̂ directions.

It is also interesting to observe (as in [5]) that the gradient can also be written as

∇ =
1
f j

∂

∂y j (31.26)

Observe the similarity to the Fourier component decomposition of the vector itself x = fiyi.
Thus, roughly speaking, the differential operator parts of the gradient can be seen to be direc-
tional derivatives along the directions of each of the frame vectors.

This is sufficient to read the elements of distance in each of the directions off the figure

δx · r̂ = δr

δx · θ̂ = r cos φδθ

δx · φ̂ = rδθ

(31.27)
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Therefore the gradient is just

∇ = r̂
∂

∂r
+ θ̂

1
r cos φ

∂

∂θ
+ φ̂

1
r
∂

∂φ
(31.28)

Although this last bit has been derived graphically, and not analytically, it does clarify the
original question of exactly angle and unit vector conventions were intended in the text (polar
angle measured from the North pole, not equator, and θ, and φ reversed).

This was the long way to that particular result, but this has been an exploratory treatment of
frame rotation concepts that I personally felt the need to clarity for myself.

There are still some additional details that I will explore before concluding (including an
analytic treatment of the above).

31.3 transformation of frame vectors vs . coordinates

To avoid confusion it is worth noting how the frame vectors vs. the components themselves
differ under rotational transformation.

31.3.1 Example. Two dimensional plane rotation

Consideration of the example of a pair of orthonormal unit vectors for the plane illustrates this

e′1 = e1 exp(e12θ) = e1 cos θ + e2 sin θ

e′2 = e2 exp(e12θ) = e2 cos θ − e1 sin θ
(31.29)

Forming a matrix for the transformation of these unit vectors we havee′1e′2

 =

 cos θ sin θ

− sin θ cos θ


e1

e2

 (31.30)

Now compare this to the transformation of a vector in its entirety

y1e′1 + y2e′2 = (x1e1 + x2e2) exp(e12θ)

= x1(e1 cos θ + e2 sin θ) + x2(e2 cos θ − e1 sin θ)
(31.31)

If one uses the standard basis to specify both the rotated point and the original, then taking
dot products with ei yields the equivalent matrix representation

y1

y2

 =

cos θ − sin θ

sin θ cos θ


x1

x2

 (31.32)
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Note how this inverts (transposes) the transformation matrix here compared to the matrix for
the transformation of the frame vectors.

31.3.2 Inverse relations for spherical polar transformations

The relations of eq. (31.11) can be summarized in matrix form


r̂
θ̂

φ̂

 =


cos φ cos θ cos φ sin θ sin φ

− sin θ cos θ 0

− sin φ cos θ − sin φ sin θ cos φ



e1

e2

e3

 (31.33)

Or, more compactly
r̂
θ̂

φ̂

 = U


e1

e2

e3

 (31.34)

This composite rotation can be inverted with a transpose operation, which becomes clear with
the factorization

U =


cos φ 0 sin φ

0 1 0

− sin φ 0 cos φ




cos θ sin θ 0

− sin θ cos θ 0

0 0 1

 (31.35)

Thus
e1

e2

e3

 =


cos φ cos θ − sin θ − sin φ cos θ

cos φ sin θ cos θ − sin φ sin θ

sin φ 0 cos φ



r̂
θ̂

φ̂

 (31.36)

31.3.3 Transformation of coordinate vector under spherical polar rotation

In eq. (31.32) the matrix for the rotation of a coordinate vector for the plane rotation was ob-
served to be the transpose of the matrix that transformed the frame vectors themselves. This
is also the case in this spherical polar case, as can be seen by forming a general vector and
applying equation eq. (31.33) to the standard basis vectors.

x1e1 → x1(cos φ cos θe1 + cos φ sin θe2 + sin φe3)

x2e2 → x2(− sin θe1 + cos θe2)

x3e3 → x3(− sin φ cos θe1 − sin φ sin θe2 + cos φe3)

(31.37)
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Summing this and regrouping (ie: a transpose operation) one has:

xiei → yiei

e1(x1 cos φ cos θ − x2 sin θ − x3 sin φ cos θ)

+ e2(x1 cos φ sin θ + x2 cos θ − x3 sin φ sin θ)

+ e3(x1 sin φ + x3 cos φ)

(31.38)

taking dot products with ei produces the matrix form
y1

y2

y3

 =


cos φ cos θ − sin θ − sin φ cos θ

cos φ sin θ cos θ − sin φ sin θ

sin φ 0 cos φ



x1

x2

x3


=


cos θ − sin θ 0

sin θ cos θ 0

0 0 1



cos φ 0 − sin φ

0 1 0

sin φ 0 cos φ



x1

x2

x3


(31.39)

As observed in 30 the matrix for this transformation of the coordinate vector under the com-
posite x, y rotation followed by an x′, z rotation ends up expressed as the product of the elemen-
tary rotations, but applied in reverse order!
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ROT O R I N T E R P O L AT I O N C A L C U L AT I O N

The aim is to compute the interpolating rotor r that takes an object from one position to another
in n steps. Here the initial and final positions are given by two rotors R1, and R2 like so

X1 = R1XR1
†

X2 = R2XR2
† = rnR1XR1

†rn†
(32.1)

So, writing

a = rn = R2
1

R1
=

R2R1
†

R1R1
†

= cos θ + I sin θ (32.2)

So,

〈a〉2
〈a〉

=
〈a〉2
|〈a〉2|

|〈a〉2|
〈a〉

= I tan θ
(32.3)

Therefore the interpolating rotor is:

I =
〈a〉2
|〈a〉2|

θ = atan2 (|〈a〉2|, 〈a〉)

r = cos(θ/n) + I sin(θ/n)

(32.4)

In [8], equation 10.15, they have got something like this for a fractional angle, but then say
that they do not use that in software, instead using r directly, with a comment about designing
more sophisticated algorithms (bivector splines). That spline comment in particular sounds in-
teresting. Sounds like the details on that are to be found in the journals mentioned in Further
Reading section of chapter 10.
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33
E X P O N E N T I A L O F A B L A D E

33.1 motivation

Exponentials of bivectors and complex numbers are useful as generators of rotations, and expo-
nentials of square matrices can be used in linear differential equation solution.

How about exponentials of vectors?
Because any power of a vector can be calculated it should be perfectly well defined to use the

exponential infinite series with k-vector parameters. An exponential function of this form will
be expanded explicitly and compared to the real number result. The first derivative will also be
calculated to examine its form.

In addition for completeness, the bivector and quaternion exponential forms will be exam-
ined.

33.2 vector exponential

The infinite series representation of the exponential defines a function for any x that can be
repeatedly multiplied with it self.

ex =

∞∑
k=0

xk

k!
(33.1)

Depending on the type of the parameter x this may or may not have properties consistent with
the real number exponential function. For a vector x = x̂|x|, after splitting the sum into even and
odd terms this infinite series takes the following form:

e±x =

∞∑
k=0

x2k

(2k)!
±

∞∑
k=0

|x|2k|x|x̂
(2k + 1)!

=⇒ e±x = cosh|x| ± x̂ sinh|x| (33.2)
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One can also employ symmetric and antisymmetric sums to write the hyperbolic functions in
terms of the vector exponentials:

cosh|x| =
ex + e−x

2
(33.3)

sinh|x| =
ex − e−x

2x̂
(33.4)

33.2.1 Vector Exponential derivative

One of the defining properties of the exponential is that its derivative is related to itself

dex

du
=

dx
du

ex = ex dx
du

(33.5)

For a vector parameter x one should not generally expect that. Let us expand this to see the
form of this derivative:

dex

du
=

d
du

(cosh|x| + x̂ sinh|x|)

= (sinh|x| + x̂ cosh|x|)
d|x|
du

+
dx̂
du

sinh|x|
(33.6)

Can calculate d|x|
du with the usual trick:

d|x|2

du
= 2|x|

d|x|
du

=
dx
du

x + x
dx
du

= 2
dx
du
· x (33.7)

=⇒
d|x|
du

=
dx
du
· x̂ (33.8)
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Calculation of dx̂
du uses this result:

dx̂
du

=
d
du

x
|x|

=
dx
du

1
|x|
−

x
|x|2

d|x|
du

=
dx
du

1
|x|
−

x
|x|2

dx
du
· x̂

=
1
|x|

(
dx
du
− x̂

(
dx
du
· x̂

))
=

x̂
|x|

(
x̂∧

dx
du

)
=

1
|x|

Rejx̂

(
dx
du

)

(33.9)

Putting these together one write the derivative in a few ways:

dex

du
=

(
dx
du
· x̂

)
x̂(x̂ sinh|x| + cosh|x|) +

x̂
|x|

(
x̂∧

dx
du

)
sinh|x|

= x̂
(
dx
du
· x̂

)
ex +

x̂
|x|

(
x̂∧

dx
du

)
sinh|x|

= Projx̂

(
dx
du

)
ex +

1
|x|

Rejx̂

(
dx
du

)
sinh|x|

(33.10)

This is considerably different from the real number case. Only when the vector x and all its
variation dx

du are colinear does dx
du = Projx̂

(
dx
du

)
for the real number like result:

dex

du
=

dx
du

ex = ex dx
du

(33.11)

Note that the sinh term can be explicitly removed

dex

du
=

(
x̂
(
dx
du
· x̂

)
−

1
2|x|

(
x̂∧

dx
du

))
ex −

1
2|x|

(
x̂∧

dx
du

)
e−x (33.12)

, but without a Rejx̂
(

dx
du

)
= 0 constraint, there will always be a term that is not proportional

to ex.
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33.3 bivector exponential

The bivector exponential can be expanded utilizing its complex number equivalence:

eB = eB̂|B|

= cos |B| + B̂ sin |B|
(33.13)

So, taking the derivative we have

(eB)′ =
(
− sin|B| + B̂ cos|B|

)
|B|′ + B̂′ sin|B|

= B̂
(
B̂ sin|B| + cos|B|

)
|B|′ + B̂′ sin|B|

= B̂eB|B|′ + B̂′ sin|B|
= eBB̂|B|′ + B̂′ sin|B|

(33.14)

33.3.1 bivector magnitude derivative

As with the vector case we have got a couple helper derivatives required. Here is the first:

(|B|2)′ = 2|B||B|′ = −(BB′ + B′B)

=⇒

|B|′ = −
B̂B′ + B′B̂

2

(33.15)

Unlike the vector case this last expression is not a bivector dot product = −B̂ ·B′ since there
could be a 〈〉4 term that this symmetric sum would also include. That wedge term would be zero
for example if B = x∧ k for a constant vector k.
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33.3.2 Unit bivector derivative

Now calculate B̂′:

B̂′ =
B′

|B|
−

B
|B|2
|B|′

=
1
|B|

(
B′ + B̂

B̂B′ + B′B̂
2

)
=

1
2|B|

(
B′ + B̂B′B̂

)
=

B̂
|B|
−B̂B′ + B′B̂

2

(33.16)

Thus, the derivative is a scaled bivector rejection:

B̂′ =
1
B

〈
B̂B′

〉
2

(33.17)

Although this appears different from a unit vector derivative, a slight adjustment highlights
the similarities:

r̂′ =
r̂
|r|

r̂∧ r′

=
1
r
〈
r̂r′

〉
2

(33.18)

Note however the sign inversion that is built into the bivector inversion.

33.3.3 combining results

Putting the individual results back together we have:

(eB)′ =
1
B̂

B̂B′ + B′B̂
2

eB +
1
B

〈
B̂B′

〉
2

sin|B| (33.19)

In general with bivectors we can have two sorts of perpendicularity. The first is perpendicular
but intersecting (generated by the grade 2 term of the product), and perpendicular with no
common line (generated by the grade 4 term). In R3 we have only the first sort.
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With a restriction that the derivative only changes the bivector enough to introduce the first
term, this exponential derivative is reduced to:

(eB)′ =
1
B̂

B̂ ·B′eB +
1
B

〈
B̂B′

〉
2

sin|B|

= ProjB̂(B′)eB +
1
|B|

RejB̂(B′) sin|B|
(33.20)

Only if the bivector variation is in the same plane as the bivector itself can the 〈〉2 term be
dropped in which case, since the derivative will equal its projection one has:

(eB)′ = B′eB = eBB′ (33.21)

33.4 quaternion exponential derivative

Using the phrase somewhat loosely a quaternion, or complex number is a multivector of the
form

α + B (33.22)

Where α is a scalar, and B is a bivector.
Using the results above, the derivative of a quaternion exponential (ie: a rotation operator)

will be

(eα+B)′ = (eα)′eB + eα(eB)′

= α′eα+B + eα
1
B̂

B̂B′ + B′B̂
2

eB +
1
B

〈
B̂B′

〉
2
eα sin|B|

(33.23)

For the total derivative:

(eα+B)′ =

(
α′ +

1
B̂

B̂B′ + B′B̂
2

)
eα+B +

1
B

〈
B̂B′

〉
2
eα sin|B| (33.24)

As with the bivector case, the two restrictions
〈
B̂B′

〉
2

= 0, and
〈
B̂B′

〉
4

= 0 are required to
get a real number like exponential derivative:

(eα+B)′ = (α + B)′ eα+B = eα+B (α + B)′ (33.25)

Note that both of these are true for the important class of multivectors, the complex number.
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33.4.1 bivector with only one degree of freedom

For a bivector that includes a constant vector such as B = x∧ k there will be no 〈〉4 term.

〈
B̂B′

〉
4
∝

〈
x∧ kx′ ∧ k

〉
4 = x∧ k∧ x′ ∧ k = 0 (33.26)

Suppose α+ B = xk = x ·k + x∧k. In this case this quaternion exponential derivative reduces
to

(exk)′ =

(
x′ · k +

1
x∧ k

(x∧ k) · (x′ ∧ k)
)

exk

+
1

x∧ k

〈
x∧ k
|x∧ k|

x′ ∧ k
〉

2
ex·k sin|x∧ k|

(33.27)

It is only with the addition restriction that all the bivector variation lies in the plane i = x∧k
|x∧k| .

ie:

〈
x∧ kx′ ∧ k

〉
2 = 0 (33.28)

does one have:

(exk)′ = (x′ · k + Proji(x
′ ∧ k)) exk

= (x′ · k + x′ ∧ k) exk (33.29)

Thus with these two restrictions to the variation of the bivector term we have:

(exk)′ = x′kexk = exkx′k (33.30)





34
G E N E R AT O R O F ROTAT I O N S I N A R B I T R A RY D I M E N S I O N S

34.1 motivation

Eli in his recent blog post on angular momentum operators used an exponential operator to
generate rotations

R∆θ = e∆θn̂·(x×∇) (34.1)

This is something I hhad not seen before, but is comparable to the vector shift operator
expressed in terms of directional derivatives x ·∇

f (x + a) = ea·∇ f (x) (34.2)

The translation operator of eq. (34.2) translates easily to higher dimensions. Of particular
interest is the Minkowski metric 4D spacetime case, where we can use the four gradient ∇ =

γµ∂µ, and a vector spacetime translation of x = xµγµ → (xµ + aµ)γµ to translate “trivially”
translate this

f (x + a) = ea·∇ f (x) (34.3)

Since we do not have a cross product of two vectors in a 4D space, re-expressing eq. (34.1) in
a form that is not tied to three dimensions is desirable. A duality transformation with n̂ = ie1e2e3

accomplishes this, where i is a unit bivector for the plane perpendicular to n̂ (i.e. product of two
perpendicular unit vectors in the plane). That duality transformation, expressing the rotation
direction using an oriented plane instead of the normal to the plane gives us

n̂ · (x ×∇) = 〈n̂(x ×∇)〉

= 〈(ie1e2e3)(−e1e2e3)(x∧∇)〉

= 〈i(x∧∇)〉

(34.4)

This is just i · (x∧∇), so the generator of the rotation in 3D is

R∆θ = e∆θi·(x∧∇) (34.5)
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It is reasonable to guess then that we could substitute the spacetime gradient and allow i to
be any 4D unit spacetime bivector, where a spacelike product pair will generate rotations and
a spacetime bivector will generate boosts. That is really just a notational shift, and we would
write

R∆θ = e∆θi·(x∧∇) (34.6)

This is very likely correct, but building up to this guess in a logical sequence from a known
point will be the aim of this particular exploration.

34.2 setup and conventions

Rather than expressing the rotation in terms of coordinates, here the rotation will be formulated
in terms of dual sided multivector operators (using Geometric Algebra) on vectors. Then em-
ploying the chain rule an examination of the differential change of a multivariable scalar valued
function on the underlying rotation will be made.

Following conventions of [7] vectors will be undecorated rather than boldface since we are
deriving results applicable to four vector (and higher) spaces, and not requiring an Euclidean
metric.

Figure 34.1: Rotating vector in the plane with bivector i
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The fig. 34.1 has a pair of vectors related by rotation, where the vector x(θ) is rotated to y(θ) =

x(θ + ∆θ). We choose here to express this rotation using a quaternion-ic operator R = α + ab,
where α is a scalar and a, and b are vectors.

y = R̃xR (34.7)

Required of R is an invertability property, but without loss of generality we can impose a
strictly unitary property R̃R = 1. Here R̃ denotes the multivector reverse of a Geometric product

(ab)̃ = b̃ã (34.8)

Where for individual vectors the reverse is itself ã = a. A singly parametrized rotation or
boost can be conveniently expressed using the half angle exponential form

R = eiθ/2 (34.9)

where i = ûv̂ is a unit bivector, a product of two perpendicular unit vectors (ûv̂ = −v̂û). For
rotations û, and v̂ are both spatial vectors, implying i2 = −1. For boosts i is the product of a unit
timelike vector and unit spatial vector, and with a Minkowski metric condition û2v̂2 = −1, we
have a positive square i2 = 1 for our spacetime rotation plane i.

A general Lorentz transformation, containing a composition of rotations and boosts can be
formed by application of successive transformations

L(x) = (Ũ(T̃ · · · (S̃ xS )T ) · · ·U) = ŨT̃ · · · S̃ xS T · · ·U (34.10)

The composition still has the unitary property (S T · · ·U )̃S T · · ·U = 1, so when the specifics
of the parametrization are not required we will allow the rotation operator R = S T · · ·U to be a
general composition of individual rotations and boosts.

We will have brief use of coordinates and employ a reciprocal basis pair {γµ} and {γν} where
γµ · γν = δµν. A vector, employing summation convention, is then denoted

x = xµγµ = xµγµ (34.11)

Where

xµ = x · γµ
xµ = x · γµ

(34.12)
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Shorthand for partials

∂µ ≡
∂

∂xµ

∂µ ≡
∂

∂xµ

(34.13)

will allow the gradient to be expressed as

∇ ≡ γµ∂µ = γµ∂
µ (34.14)

The perhaps unintuitive mix of upper and lower indices is required to make the indices in the
direction derivative come out right when expressed as a dot product

lim
τ→0

f (x + aτ) − f (x)
τ

= aµ∂µ f (x) = a · ∇ f (x) (34.15)

34.3 rotor examples

While not attempting to discuss the exponential rotor formulation in any depth, at least illustrat-
ing by example for a spatial rotation and Lorentz boost seems called for.

Application of either of these is most easily performed with a split of the vector into compo-
nents parallel and perpendicular to the “plane” of rotation i. For example suppose we decompose
a vector x = p + n where n is perpendicular to the rotation plane i (i.e. ni = in), and p is the
components in the plane (pi = −ip). A consequence is that n commutes with R and p induces a
conjugate effect in the rotor

R̃xR = e−iθ/2(p + n)eiθ/2

= peiθ/2eiθ/2 + ne−iθ/2eiθ/2 (34.16)

This is then just

R̃xR = peiθ + n (34.17)

To expand any further the metric details are required. The half angle rotors of eq. (34.9) can
be expanded in series, where the metric properties of the bivector dictate the behavior. In the
spatial bivector case, where i2 = −1 we have

R = eiθ/2 = cos(θ/2) + i sin(θ/2) (34.18)
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whereas when i2 = 1, the series expansion yields a hyperbolic pair

R = eiθ/2 = cosh(θ/2) + i sinh(θ/2) (34.19)

To make things more specific, and relate to the familiar, consider a rotation in the Euclidean
x, y plane where we pick i = e1e2, and rotate x = xe1 + ye2 + ze3. Applying eq. (34.17), and
eq. (34.18) we have

R̃xR = (xe1 + ye2)(cos θ + e1e2 sin θ) + ze3 (34.20)

We have e1
2 = e2

2 = 1 and e1e2 = −e1e2, so with some rearrangement

R̃xR = e1(x cos θ − y sin θ) + e2(x sin θ + y cos θ) + e3z (34.21)

This is the familiar x, y plane rotation up to a possible sign preference. Observe that we have
the flexibility to adjust the sign of the rotation by altering either θ or i (we could use i = e2e1 for
example). Because of this Hestenes [15] chooses to make the angle bivector valued, so instead
of iθ writes

R = eB (34.22)

where B is bivector valued, and thus contains the sign or direction of the rotation or boost as
well as the orientation.

For completeness lets also expand a rotor application for an x-axis boost in the spacetime
plane i = γ1γ0. Following [7], we use the (+,−,−,−) metric convention 1 = γ0

2 = −γ1
2 =

−γ2
2 = −γ3

2. Switching variable conventions to match the norm lets use α for the rapidity
angle, with x-axis boost rotor

R = eγ1γ0α/2 (34.23)

for the rapidity angle α. The rotor application then gives

L(x) = R̃(x0γ0 + x1γ1 + x2γ2 + x3γ3)R

= R̃(x0γ0 + x1γ1)R + x2γ2 + x3γ3

= (x0γ0 + x1γ1)(cosh(θ) + γ1γ0 sinh(θ/2)) + x2γ0 + x3γ3

(34.24)
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A final bit of rearrangement yields the familiar

L(x) = γ0(x0 cosh(θ) − x1 sinh(θ/2))

+ γ1(−x0 sinh(θ/2) + x1 cosh(θ)) + x2γ0 + x3γ3
(34.25)

Again observe the flexibility to adjust the sign as desired by either the bivector orientation or
the sign of the scalar rapidity angle.

34.4 the rotation operator

Moving on to the guts. From eq. (34.7) we can express x in terms of y using the inverse trans-
formation

x = RyR̃ (34.26)

Assuming R is parametrized by θ, and that both x and y are not directly dependent on θ, we
have

dx
dθ

=
dR
dθ

yR̃ + Ry
dR̃
dθ

=

(
dR
dθ

R̃
)

(RyR̃) + (RyR̃)
(
R

dR̃
dθ

)
=

(
dR
dθ

R̃
)

x + x
(
R

dR̃
dθ

) (34.27)

Since we also have RR̃ = 1, this product has zero derivative

0 =
d(RR̃)

dθ
=

dR
dθ

R̃ + R
dR̃
dθ

(34.28)

Labeling one of these, say

Ω ≡
dR
dθ

R̃ (34.29)

The multivector Ω must in fact be a bivector. As the product of a grade 0, 2 multivector
with another 0, 2 multivector, the product may have grades 0, 2, 4. Since reversing Ω negates
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it, this product can only have grade 2 components. In particular, employing the exponential
representation of R from eq. (34.9) for a simply parametrized rotation (or boost), we have

Ω =
i
2

eiθ/2e−iθ/2 =
i
2

(34.30)

With this definition we have a
complete description of the incremental (first order) rotational along the curve from x to y

induced by R via the commutator of this bivector Ω with the initial position vector x.

dx
dθ

= [Ω, x] =
1
2

(ix − xi) (34.31)

This commutator is in fact the generalize bivector-vector dot product [Ω, x] = i · x, and is
vector valued.

Now consider a scalar valued function f = f (x(θ)). Employing the chain rule, for the theta
derivative of f we have a contribution from each coordinate xµ. That is

d f
dθ

=
∑
µ

dxµ

dθ
∂ f
∂xµ

=
dxµ

dθ
∂µ f

=

(
dxµ

dθ
γµ

)
· (γν∂ν) f

(34.32)

But this is just

d f
dθ

=
dx
dθ
· ∇ f (34.33)

Or in operator form

d
dθ

= (i · x) · ∇ (34.34)

The complete Taylor expansion of f (θ) = f (x(θ)) is therefore

f (x(θ + ∆θ)) =

∞∑
k=0

1
k!

(
∆θ

d
dθ

)k

f (x(θ))

=

∞∑
k=0

1
k!

(∆θ(i · x) · ∇)k f (x(θ))

(34.35)
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Expressing this sum formally as an exponential we have

f (x(θ + ∆θ)) = e∆θ(i·x)·∇ f (x(θ)) (34.36)

In this form, the product (i · x) · ∇ does not look much like the cross or wedge product repre-
sentations of the angular momentum operator that was initially guessed at. Referring to fig. 34.2
let us make a couple observations about this particular form before translating back to the wedge
formulation.

Figure 34.2: Bivector dot product with vector

It is worth pointing out that any bivector has no unique vector factorization. For example any
of the following are equivalent

i = û∧ v̂
= (2û)∧ (v̂/2 + αû)

=
1

αb − βa
(αû + βv̂)∧ (aû + bv̂)

(34.37)

For this reason if we factor a bivector into two vectors within the plane we are free to pick one
of these in any direction we please and can pick the other in one of the perpendiculars within the
plane. In the figure exactly this was done, factoring the bivector into two perpendicular vectors
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i = ûv̂, where û was picked to be in the direction of the projection of the vector x onto the
plane spanned by {û, v̂}. Suppose that projection of x onto the plane is αû. We then have for the
bivector vector dot product

i · x = (ûv̂) · (αû)

= αûv̂û

= −α ûû

= 1

v̂ (34.38)

So we have for the dot product i · x = −αv̂, a rotation in the plane of the projection of
the vector x onto the plane by 90 degrees. The direction of the rotation is metric dependent,
and a spatially positive metric was used in this example. Observe that the action of a bivector
product on a vector, provided that vector is in the plane spanned by the factors of the bivector
is very much like the complex imaginary action. In both cases we have a 90 degree rotation.
This complex number correspondence is not entirely equivalent though, since we also have
i · x = −x · i, a negation on reversal of the product ordering, whereas we do not have to worry
about commuting the imaginary of complex arithmetic.

This shows how the bivector dot product naturally encodes a rotation. We could leave things
this way, but we also want to see how to put this in a more “standard” form. This is possible by
rewriting the scalar product using a scalar grade selection operator. Also employing the cyclic
reordering identity 〈abc〉 = 〈bca〉, we have

(i · x) · ∇ =
1
2
〈(ix − xi)∇〉

=
1
2
〈ix∇−∇xi〉

(34.39)

A pause is required to note that this reordering needs to be interpreted with x fixed with
respect to the gradient so that the gradient is acting only to the extreme right. Then we have

(i · x) · ∇ =
1
2
〈i(x · ∇) − (x · ∇)i〉 +

1
2
〈i(x ∧∇) + (x · ∇)i〉 (34.40)

The rightmost action of the gradient allows the gradient dot and wedge products to be re-
ordered (with interchange of sign for the wedge). The product in the first scalar selector has
only bivector terms, so we are left with

(i · x) · ∇ = i · (x ∧∇) (34.41)
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and the rotation operator takes the postulated form

f (x(θ + ∆θ)) = e∆θi·(x∧∇) f (x(θ)) (34.42)

While the cross product formulation of this is fine for 3D, this works in a plane when de-
sired, as well as higher dimensional spaces as well as optionally non-Euclidean spaces like the
Minkowski space required for electrodynamics and relativity.

34.5 coordinate expansion

We have seen the structure of the scalar angular momentum operator of eq. (34.41) in the context
of components of the cross product angular momentum operator in 3D spaces. For a more
general space what do we have?

Let i = γβγα, then we have

i · (x ∧∇) = (γβ ∧ γα) · (γµ ∧ γν)xµ∂ν
= (δβνδαµ − δβµδαν)xµ∂ν

(34.43)

which is

(γβ ∧ γα) · (x ∧∇) = xα∂β − xβ∂α (34.44)

In particular, in the four vector Minkowski space, when the pair α, β includes both space and
time indices we loose (or gain) negation in this operator sum. For example with i = γ1γ0, we
have

(γ1 ∧ γ0) · (x ∧∇) = x0 ∂

∂x1 + x1 ∂

∂x0
(34.45)

We can also generalize the coordinate expansion of eq. (34.44) to a more general plane of
rotation. Suppose that u and v are two perpendicular unit vectors in the plane of rotation. For
this rotational plane we have i = uv = u∧ v, and our expansion is

i · (x ∧∇) = (γβ ∧ γα) · (γµ ∧ γν)uβvαxµ∂ν
= (δβνδαµ − δβµδαν)uβvαxµ∂ν

(34.46)

So we have

i · (x ∧∇) = (uνvµ − uµvν)xµ∂ν (34.47)
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This scalar antisymmetric mixed index object is apparently called a vierbien (not a tensor)
and written

ενµ = (uνvµ − uµvν) (34.48)

It would be slightly prettier to raise the index on xµ (and correspondingly lower the µs in ε).
We then have a completely non Geometric Algebra representation of the angular momentum
operator for higher dimensions (and two dimensions) as well as for the Minkowski (and other
if desired) metrics.

i · (x ∧∇) = ενµxµ∂ν (34.49)

34.6 matrix treatment

It should be more accessible to do the same sort of treatment with matrices than the Geometric
Algebra approach. It did not occur to me to try it that way initially, and it is worthwhile to do a
comparative derivation. Setup should be similar

y = Rx
x = RTy

(34.50)

Taking derivatives we then have

dx
dθ

=
dRT

dθ
y

=
dRT

dθ
RRTy

=

(
dRT

dθ
R
)

x

(34.51)

Introducing an Ω = (dRT/dθ)R very much like before we can write this

dx
dθ

= Ωx (34.52)

For Euclidean spaces (where R−1 = RT as assumed above), we have RTR = 1, and thus

Ω =
dRT

dθ
R = −RT dR

dθ
(34.53)
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Transposition shows that this matrix Ω is completely antisymmetric since we have

ΩT = −Ω (34.54)

Now, is there a convenient formulation for a general plane rotation in matrix form, perhaps
like the Geometric exponential form? Probably can be done, but considering an x,y plane rota-
tion should give the rough idea.

Rθ =


cos θ − sin θ 0

sin θ cos θ 0

0 0 1

 (34.55)

After a bit of algebra we have

Ω =


0 1 0

−1 0 0

0 0 0

 (34.56)

In general we must have

Ω =


0 −c b

c 0 −a

b a 0

 (34.57)

For some a, b, c. This procedure is not intrinsically three dimension, but in the specific 3D
case, we can express this antisymetrization using the cross product. Writing n̂ = (a, b, c) for the
vector with these components, we have in the 3D case only

Ωx = n̂ × x (34.58)

The first order rotation of a function f (x(θ)) now follows from the chain rule as before

d f
dθ

=
dxm

dθ
∂ f
∂xm

=
dx
dθ
·∇ f

= (n × x) ·∇ f

(34.59)
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We have then for the first order rotation derivative operator in 3D

d
dθ

= n · (x ×∇) (34.60)

For higher (or 2D) spaces one cannot use the cross product so a more general expression of
the result eq. (34.60) would be

d
dθ

= (Ωx) ·∇ (34.61)

Now, in this outline was a fair amount of cheating. We know that n̂ is the unit normal to
the rotational plane, but that has not been shown here. Instead it was a constructed quantity
just pulled out of thin air knowing it would be required. If one were interested in pursuing a
treatment of the rotation generator operator strictly using matrix algebra, that would have to
be considered. More troublesome and non-obvious is how this would translate to other metric
spaces, where we do not necessarily have the transpose relationships to exploit.





35
S P H E R I C A L P O L A R U N I T V E C T O R S I N E X P O N E N T I A L F O R M

35.1 motivation

In [20] I blundered on a particularly concise exponential non-coordinate form for the unit vec-
tors in a spherical polar coordinate system. For future reference outside of a quantum mechani-
cal context here is a separate and more concise iteration of these results.

35.2 the rotation and notation

The spherical polar rotor is a composition of rotations, expressed as half angle exponentials.
Following the normal physics conventions we first apply a z, x plane rotation by angle theta,
then an x, y plane rotation by angle φ. This produces the rotor

R = ee31θ/2ee12φ/2 (35.1)

Our triplet of Cartesian unit vectors is therefore rotated as


r̂
θ̂

φ̂

 = R̃


e3

e1

e2

 R (35.2)

In the quantum mechanical context it was convenient to denote the x, y plane unit bivector
with the imaginary symbol

i = e1e2 (35.3)

reserving for the spatial pseudoscalar the capital

I = e1e2e3 = r̂θ̂φ̂ = ie3 (35.4)

Note the characteristic differences between these two “imaginaries”. The planar quantity i =

e1e2 commutes with e3, but anticommutes with either e1 or e2. On the other hand the spatial
pseudoscalar I commutes with any vector, bivector or trivector in the algebra.
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35.3 application of the rotor . the spherical polar unit vectors

Having fixed notation, lets apply the rotation to each of the unit vectors in sequence, starting
with the calculation for φ̂. This is

φ̂ = e−iφ/2e−e31θ/2(e2)ee31θ/2eiφ/2

= e2eiφ (35.5)

Here, since e2 commutes with the rotor bivector e3e1 the innermost exponentials cancel, leav-
ing just the iφ rotation. For r̂ it is a bit messier, and we have

r̂ = e−iφ/2e−e31θ/2(e3)ee31θ/2eiφ/2

= e−iφ/2e3ee31θeiφ/2

= e−iφ/2(e3 cos θ + e1 sin θ)eiφ/2

= e3 cos θ + e1 sin θeiφ

= e3 cos θ + e1e2 sin θe2eiφ

= e3 cos θ + i sin θφ̂

= e3(cos θ + e3i sin θφ̂)

= e3eIφ̂θ

(35.6)

Finally for θ̂, we have a similar messy expansion

θ̂ = e−iφ/2e−e31θ/2(e1)ee31θ/2eiφ/2

= e−iφ/2e1ee31θeiφ/2

= e−iφ/2(e1 cos θ − e3 sin θ)eiφ/2

= e1 cos θeiφ − e3 sin θ

= i cos θe2eiφ − e3 sin θ

= iφ̂ cos θ − e3 sin θ

= iφ̂(cos θ + φ̂ie3 sin θ)

= iφ̂eIφ̂θ

(35.7)

Summarizing the three of these relations we have for the rotated unit vectors

r̂ = e3eIφ̂θ

θ̂ = iφ̂eIφ̂θ

φ̂ = e2eiφ

(35.8)
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and in particular for the radial position vector from the origin, rotating from the polar axis,
we have

x = rr̂ = re3eIφ̂θ (35.9)

Compare this to the coordinate representation

x = r(sin θ cos φ, sin θ sin φ, cos θ) (35.10)

it is not initially obvious that these θ and φ rotations admit such a tidy factorization. In
retrospect, this does not seem so surprising, since we can form a quaternion product that acts
via multiplication to map a vector to a rotated position. In fact those quaternions, acting from
the right on the initial vectors are

e3 → r̂ = e3(eIφ̂θ)

e1 → θ̂ = e1(e2φ̂eIφ̂θ)

e2 → φ̂ = e2(eiφ)

(35.11)

FIXME: it should be possible to reduce the quaternion that rotates e1 → θ̂ to a single expo-
nential. What is it?

35.4 a consistency check

We expect that the dot product between a north pole oriented vector z = Ze3 and the spherically
polar rotated vector x = re3eIφ̂θ is just

x · z = Zr cos θ (35.12)

Lets verify this

x · z =
〈
Ze3e3reIφ̂θ

〉
= Zr

〈
cos θ + Iφ̂ sin θ

〉
= Zr cos θ

�

(35.13)
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35.5 area and volume elements

Let us use these results to compute the spherical polar volume element. Pictorially this can be
read off simply from a diagram. If one is less trusting of pictorial means (or want a method
more generally applicable), we can also do this particular calculation algebraically, expanding
the determinant of partials

∣∣∣∣∂x
∂r

∂x
∂θ

∂x
∂φ

∣∣∣∣ drdθdφ =

∣∣∣∣∣∣∣∣∣∣∣
sin θ cos φ cos θ cos φ − sin θ sin φ

sin θ sin φ cos θ sin φ sin θ cos φ

cos θ − sin θ 0

∣∣∣∣∣∣∣∣∣∣∣ r
2drdθdφ (35.14)

One can chug through the trig reduction for this determinant with not too much trouble, but
it is not particularly fun.

Now compare to the same calculation proceeding directly with the exponential form. We do
still need to compute the partials

∂x
∂r

= r̂ (35.15)

∂x
∂θ

= re3
∂

∂θ
eIφ̂θ

= rr̂Iφ̂

= rr̂(r̂θ̂φ̂)φ̂

= rθ̂

(35.16)

∂x
∂φ

= re3
∂

∂φ
(cos θ + Iφ̂ sin θ)

= −re3Iiφ̂ sin θ

= rφ̂ sin θ

(35.17)

So the area element, the oriented area of the parallelogram between the two vectors dθ∂x/∂θ,
and dφ∂x/∂φ on the spherical surface at radius r is

dS =

(
dθ
∂x
∂θ

)
∧

(
dφ
∂x
∂φ

)
= r2θ̂φ̂ sin θdθdφ (35.18)

and the volume element in trivector form is just the product

dV =

(
dr
∂x
∂r

)
∧ dS = r2 sin θIdrdθdφ (35.19)
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35.6 line element

The line element for the particle moving on a spherical surface can be calculated by calculating
the derivative of the spherical polar unit vector r̂

dr̂
dt

=
∂r̂
∂φ

dφ
dt

+
∂r̂
∂θ

dθ
dt

(35.20)

than taking the magnitude of this vector. We can start either in coordinate form

r̂ = e3 cos θ + e1 sin θ cos φ + e2 sin θ sin φ (35.21)

or, instead do it the fun way, first grouping this into a complex exponential form. This factor-
ization was done above, but starting over allows this to be done a bit more effectively for this
particular problem. As above, writing i = e1e2, the first factorization is

r̂ = e3 cos θ + e1 sin θeiφ (35.22)

The unit vector ρ = e1eiφ lies in the x, y plane perpendicular to e3, so we can form the unit
bivector e3ρ and further factor the unit vector terms into a cos +i sin form

r̂ = e3 cos θ + e1 sin θeiφ

= e3(cos θ + e3ρ sin θ)
(35.23)

This allows the spherical polar unit vector to be expressed in complex exponential form
(really a vector-quaternion product)

r̂ = e3ee3ρθ = e−e3ρθe3 (35.24)

Now, calculating the unit vector velocity, we get

dr̂
dt

= e3e3ρee3ρθθ̇ + e1e1e2 sin θeiφφ̇

= ρee3ρθ
(
θ̇ + e−e3ρθρ sin θe−iφe2φ̇

)
=

(
θ̇ + e2 sin θeiφφ̇ρee3ρθ

)
e−e3ρθρ

(35.25)
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The last two lines above factor the ρ vector and the ee3ρθ quaternion to the left and to the right
in preparation for squaring this to calculate the magnitude.

(
dr̂
dt

)2

=

〈(
dr̂
dt

)2〉
=

〈(
θ̇ + e2 sin θeiφφ̇ρee3ρθ

) (
θ̇ + e−e3ρθρ sin θe−iφe2φ̇

)〉
= θ̇2 + sin2 θφ̇2 + sin θφ̇θ̇

〈
e2eiφρee3ρθ + e−e3ρθρe−iφe2

〉 (35.26)

This last term (∈ span{ρe1, ρe2, e1e3, e2e3}) has only grade two components, so the scalar part
is zero. We are left with the line element

(
d(rr̂)

dt

)2

= r2
(
θ̇2 + sin2 θφ̇2

)
(35.27)

In retrospect, at least once one sees the answer, it seems obvious. Keeping θ constant the
length increment moving in the plane is ds = sin θdφ, and keeping φ constant, we have ds = dθ.
Since these are perpendicular directions we can add the lengths using the Pythagorean theorem.

35.6.1 Line element using an angle and unit bivector parameterization

Parameterizing using scalar angles is not the only approach that we can take to calculate the line
element on the unit sphere. Proceding directly with a alternate polar representation, utilizing a
unit bivector j, and scalar angle θ is

x = re3e jθ (35.28)

For this product to be a vector j must contain e3 as a factor ( j = e3 ∧m for some vector m.)
Setting r = 1 for now, the deriviate of x is

ẋ = e3
d
dt

(cos θ + j sin θ)

= e3θ̇ (− sin θ + j cos θ) + e3
d j
dt

sin θ

= e3θ̇ j ( j sin θ + cos θ) + e3
d j
dt

sin θ

(35.29)

This is

ẋ = e3

(
dθ
dt

je jθ +
d j
dt

sin θ
)

(35.30)



35.6 line element 273

Alternately, we can take derivatives of x = re− jθe3, for
Or

ẋ = −

(
dθ
dt

je− jθ +
d j
dt

sin θ
)

e3 (35.31)

Together with eq. (35.30), the line element for position change on the unit sphere is then

ẋ2 =

〈
−

(
dθ
dt

je− jθ +
d j
dt

sin θ
)

e3e3

(
dθ
dt

je jθ +
d j
dt

sin θ
)〉

=

〈
−

(
dθ
dt

je− jθ +
d j
dt

sin θ
) (

dθ
dt

je jθ +
d j
dt

sin θ
)〉

=

(
dθ
dt

)2

−

(
d j
dt

)2

sin2 θ −
dθ
dt

sin θ
〈

d j
dt

je jθ + je− jθ d j
dt

〉 (35.32)

Starting with cyclic reordering of the last term, we get zero

〈
d j
dt

je jθ + je− jθ d j
dt

〉
=

〈
d j
dt

j
(
e jθ + e− jθ

)〉
=

〈
d j
dt

j2 j sin θ
〉

= −2 sin θ
d
dt
〈 j〉

= 0

(35.33)

The line element (for constant r) is therefore

ẋ2 = r2

θ̇2 −

(
d j
dt

)2

sin2 θ

 (35.34)

This is essentially the same result as we got starting with an explicit r, θ, φ. Repeating for
comparision that was

ẋ2 = r2
(
θ̇2 + sin2 θφ̇2

)
(35.35)

The bivector that we have used this time encodes the orientation of the plane of rotation
from the polar axis down to the position on the sphere corresponds to the angle φ in the scalar
parameterization. The negation in sign is expected due to the negative bivector square.
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Also comparing to previous results it is notable that we can explicitly express this bivector in
terms of the scalar angle if desired as

ρ = e1ee1e2φ = e1 cos φ + e2 sin φ

j = e3 ∧ ρ = e3ρ
(35.36)

The inverse mapping, expressing the scalar angle using the bivector representation is also
possible, but not unique. The principle angle for that inverse mapping is

φ = −e1e2 ln(e1e3 j) (35.37)

35.6.2 Allowing the magnitude to vary

Writing a vector in polar form

x = rr̂ (35.38)

and also allowing r to vary, we have

(
dx
dt

)2

=

(
dr
dt

r̂ + r
dr̂
dt

)2

=

(
dr
dt

)2

+ r2
(
dr̂
dt

)2

+ 2r
dr
dt

r̂ ·
dr̂
dt

(35.39)

The squared unit vector derivative was previously calculated to be

(
dr̂
dt

)2

= θ̇2 + sin2 θφ̇2 (35.40)

Picturing the geometry is enough to know that ˙̂r · r̂ = 0 since ˙̂r is always tangential to the
sphere. It should also be possible to algebraically show this, but without going through the effort
we at least now know the general line element

ẋ2 = ṙ2 + r2
(
θ̇2 + sin2 θφ̇2

)
(35.41)



36
I N F I N I T E S I M A L ROTAT I O N S

36.1 motivation

In a classical mechanics lecture (which I audited) Prof. Poppitz made the claim that an infinites-
imal rotation in direction n̂ of magnitude δφ has the form

x→ x + δφ × x, (36.1)

where

δφ = n̂δφ. (36.2)

I believe he expressed things in terms of the differential displacement

δx = δφ × x (36.3)

This was verified for the special case n̂ = ẑ and x = xx̂. Let us derive this in the general case
too.

36.2 with geometric algebra

Let us temporarily dispense with the normal notation and introduce two perpendicular unit
vectors û, and v̂ in the plane of the rotation. Relate these to the unit normal with

n̂ = û × v̂. (36.4)

A rotation through an angle φ (infinitesimal or otherwise) is then

x→ e−ûv̂φ/2xeûv̂φ/2. (36.5)
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276 infinitesimal rotations

Suppose that we decompose x into components in the plane and in the direction of the normal
n̂. We have

x = xuû + xvv̂ + xnn̂. (36.6)

The exponentials commute with the n̂ vector, and anticommute otherwise, leaving us with

x→ xnn̂ + (xuû + xvv̂)eûv̂φ

= xnn̂ + (xuû + xvv̂)(cos φ + ûv̂ sin φ)

= xnn̂ + û(xu cos φ − xv sin φ) + v̂(xv cos φ + xu sin φ).

(36.7)

In the last line we use û2 = 1 and ûv̂ = −v̂û. Making the angle infinitesimal φ→ δφ we have

x→ xnn̂ + û(xu − xvδφ) + v̂(xv + xuδφ)

= x + δφ(xuv̂ − xvû)
(36.8)

We have only to confirm that this matches the assumed cross product representation

n̂ × x =

∣∣∣∣∣∣∣∣∣∣∣
û v̂ n̂
0 0 1

xu xv xn

∣∣∣∣∣∣∣∣∣∣∣
= −ûxv + v̂xu

(36.9)

Taking the two last computations we find

δx = δφn̂ × x = δφ × x, (36.10)

as desired.
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36.3 without geometric algebra

We have also done the setup above to verify this result without GA. Here we wish to apply the
rotation to the coordinate vector of x in the {û, v̂, n̂} basis which gives us


xu

xv

xn

→

cos δφ − sin δφ 0

sin δφ cos δφ 0

0 0 1



xu

xv

xn


≈


1 −δφ 0

δφ 1 0

0 0 1



xu

xv

xn


=


xu

xv

xn

 +


0 −δφ 0

δφ 0 0

0 0 0



xu

xv

xn


=


xu

xv

xn

 + δφ


−xv

xu

0



(36.11)

But as we have shown, this last coordinate vector is just n̂ × x, and we get our desired result
using plain old fashioned matrix algebra as well.

Really the only difference between this and what was done in class is that there is no assump-
tion here that x = xx̂.
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37
D E V E L O P I N G S O M E I N T U I T I O N F O R M U LT I VA R I A B L E A N D
M U LT I V E C T O R TAY L O R S E R I E S

The book [7] uses Geometric Calculus heavily in its Lagrangian treatment. In particular it is
used in some incomprehensible seeming ways in the stress energy tensor treatment.

In the treatment of transformation of the dependent variables (not the field variables them-
selves) of field Lagrangians, there is one bit that appears to be the first order linear term from a
multivariable Taylor series expansion. Play with multivariable Taylor series here a bit to develop
some intuition with it.

37.1 single variable case , and generalization of it

For the single variable case, Taylor series takes the form

f (x) =
∑ xk

k!
dk f (x)

dxk

∣∣∣∣∣∣
x=0

(37.1)

or

f (x0 + ε) =
∑ εk

k!
dk f (x)

dxk

∣∣∣∣∣∣
x=x0

(37.2)

As pointed out in [3], this can (as they demonstrated for polynomials) be put into exponential
operator form

f (x0 + ε) = eεd/dx f (x)
∣∣∣
x=x0

(37.3)

Without proof, the multivector generalization of this is

f (x0 + ε) = eε·∇ f (x)
∣∣∣
x=x0

(37.4)

Or in full,

f (x0 + ε) =
∑ 1

k!
(ε · ∇)k f (x)

∣∣∣
x=x0

(37.5)

Let us work with this, and develop some comfort with what it means, then revisit the proof.
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37.2 directional derivatives

First a definition of directional derivative is required.
In standard two variable vector calculus the directional derivative is defined in one of the

following ways

∇u f (x, y) = lim
h→0

f (x + ah, y + bh) − f (x, y)
h

u = (a, b)
(37.6)

Or in a more general vector form as

∇u f (x) = lim
h→0

f (x + hu) − f (x)
h

(37.7)

Or in terms of the gradient as

∇u f (x) =
u
|u|
·∇ f (37.8)

Each of these was for a vector parametrized scalar function, although the wikipedia article
does mention a vector valued form that is identical to that use by [7]. Specifically, that is

(ε · ∇) f (x) = lim
h→0

f (x + hε) − f (x)
h

=
∂ f (x + hε)

∂h

∣∣∣∣∣
h=0

(37.9)

Observe that this definition as a limit avoids the requirement to define the gradient upfront.
That definition is not necessarily obvious especially for multivector valued functions.

Example 37.1: First order linear vector polynomial

Let

f (x) = a + x (37.10)

http://tutorial.math.lamar.edu/Classes/CalcIII/DirectionalDeriv.aspx
http://en.wikipedia.org/wiki/Directional_derivative
http://mathworld.wolfram.com/DirectionalDerivative.html
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For this simplest of vector valued vector parametrized functions we have

∂ f (x + hε)
∂h

=
∂

∂h
(a + x + hε)

= ε

= (ε · ∇) f

(37.11)

with no requirement to evaluate at h = 0 to complete the directional derivative computa-
tion.

The Taylor series expansion about 0 is thus

f (ε) = (ε · ∇)0 f
∣∣∣
x=0 + (ε · ∇)1 f

∣∣∣
x=0

= a + ε
(37.12)

Nothing else could be expected.

Example 37.2: Second order vector parametrized multivector polynomial

Now, step up the complexity slightly, and introduce a multivector valued second degree
polynomial, say,

f (x) = α + a + xy + wx + cx2 + dxe + xgx (37.13)

Here α is a scalar, and all the other variables are vectors, so we have grades ≤ 3.
For the first order partial we have

∂ f (x + hε)
∂h

=
∂

∂h
(α + a + (x + hε)y + w(x + hε) + c(x + hε)2 + d(x + hε)e + (x + hε)g(x + hε))

= εy + wε + cε(x + hε) + c(x + hε)ε + cε + dεe + εg(x + hε) + (x + hε)gε
(37.14)

Evaluation at h = 0 we have

(ε · ∇) f = εy + wε + cεx + cxε + cε + dεe + εgx + xgε (37.15)
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By inspection we have

(ε · ∇)2 f = +2cε2 + 2εgε (37.16)

Combining things forming the Taylor series expansion about the origin we should re-
cover our function

f (ε) =
1
0!

(ε · ∇)0 f
∣∣∣
x=0 +

1
1!

(ε · ∇)1 f
∣∣∣
x=0 +

1
2

(ε · ∇)2 f
∣∣∣
x=0

=
1
1

(α + a) +
1
1

(εy + wε + cε + dεe) +
1
2

(2cε2 + 2εgε)

= α + a + εy + wε + cε + dεe + cε2 + εgε

(37.17)

This should match eq. (37.13), with an x = ε substitution, and does. With the vector fac-
tors in these functions commutativity assumptions could not be made. These calculations
help provide a small verification that this form of Taylor series does in fact work out fine
with such non-commutative variables.

Observe as well that there was really no requirement in this example that x or any of
the other factors to be vectors. If they were all bivectors or trivectors or some mix the
calculations would have had the same results.

37.3 proof of the multivector taylor expansion

A peek back into [15] shows that eq. (37.5) was in fact proved, but it was done in a very sneaky
and clever way. Rather than try to prove treat the multivector parameters explicitly, the following
scalar parametrized hybrid function was created

G(τ) = F(x0 + τa) (37.18)

The scalar parametrized function G(τ) can be Taylor expanded about the origin, and then
evaluated at 1 resulting in eq. (37.5) in terms of powers of (a · ∇). I will not reproduce or try to
enhance that proof for myself here since it is actually quite clear in the text. Obviously the trick
is non-intuitive enough that when thinking about how to prove this myself it did not occur to
me.
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37.4 explicit expansion for a scalar function

Now, despite the a · ∇ notation being unfamiliar seeming, the end result is not. Explicit expan-
sion of this for a vector to scalar mapping will show this. In fact this will also account for the
Hessian matrix, as in

y = f (x + ∆x) ≈ f (x) + J(x)∆x (37.19)

providing not only the background on where this comes from, but also the so often omitted
third order and higher generalizations (most often referred to as · · ·). Poking around a bit I see
that the wikipedia Taylor Series does explicitly define the higher order case, but if I had seen
that before the connection to the Hessian was not obvious.

Example 37.3: Two variable case

Rather than start with the general case, the expansion of the first few powers of (a ·∇) f for
the two variable case is enough to show the pattern. How to further generalize this scalar
function case will be clear from inspection.

Starting with the first order term, writing a = (a, b) we have

(a ·∇) f (x, y) =
∂

∂τ
f (x + aτ, y + bτ)

∣∣∣∣∣
τ=0

=

(
∂

∂x + aτ
f (x + aτ, y + bτ)

∂(x + aτ)
∂τ

)∣∣∣∣∣∣
τ=0

+

(
∂

∂y + bτ
f (x + aτ, y + bτ)

∂(y + bτ)
∂τ

)∣∣∣∣∣∣
τ=0

= a
∂ f
∂x

+ b
∂ f
∂y

= a · (∇ f )

(37.20)

For the second derivative operation we have

(a ·∇)2 f (x, y) = (a ·∇) ((a ·∇) f (x, y))

= (a ·∇)
(
a
∂ f
∂x

+ b
∂ f
∂y

)
=

∂

∂τ

(
a
∂ f
∂x

(x + aτ, y + bτ) + b
∂ f
∂y

(x + aτ, y + bτ)
)∣∣∣∣∣∣
τ=0

(37.21)

http://en.wikipedia.org/wiki/Hessian_matrix
http://en.wikipedia.org/wiki/Taylor_expansion
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Especially if one makes a temporary substitution of the partials for some other named
variables, it is clear this follows as before, and one gets

(a ·∇)2 f (x, y) = a2 ∂
2 f
∂x2 + ba

∂2 f
∂y∂x

+ ab
∂2 f
∂x∂y

+ b2 ∂
2 f
∂y2

(37.22)

Similarly the third order derivative operator gives us

(a ·∇)3 f (x, y) = aaa
∂

∂x
∂

∂x
∂

∂x
f + aba

∂

∂x
∂

∂y
∂

∂x
f

+ aab
∂

∂x
∂

∂y
∂

∂x
f + abb

∂

∂x
∂

∂y
∂

∂y
f

+ baa
∂

∂y
∂

∂x
∂

∂x
f + bba

∂

∂y
∂

∂y
∂

∂x
f

+ bab
∂

∂y
∂

∂y
∂

∂x
f + bbb

∂

∂y
∂

∂y
∂

∂y
f

= a3 ∂
3 f
∂x3 + 3a2b

∂2

∂x2

∂ f
∂y

+ 3ab2 ∂

∂x
∂2 f
∂y2 + b3 ∂

3 f
∂y3

(37.23)

We no longer have the notational nicety of being able to use the gradient notation as was
done for the first derivative term. For the first and second order derivative operations, one
has the option of using the gradient and Hessian matrix notations

(a ·∇) f (x, y) = aT

 fx

fy


(a ·∇)2 f (x, y) = aT

 fxx fxy

fyx fyy

 a

(37.24)

But this will not be helpful past the second derivative.
Additionally, if we continue to restrict oneself to the two variable case, it is clear that

we have

(a ·∇)n f (x, y) =

n∑
k=0

(
n
k

)
an−kbk

(
∂

∂x

)n−k (
∂

∂y

)k

f (x, y) (37.25)
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But it is also clear that if we switch to more than two variables, a binomial series ex-
pansion of derivative powers in this fashion will no longer work. For example for three (or
more) variables, writing for example a = (a1, a2, a3), we have

(a ·∇) f (x) =
∑

i

(
ai
∂

∂xi

)
f (x)

(a ·∇)2 f (x) =
∑

i j

(
ai
∂

∂xi

) (
a j

∂

∂x j

)
f (x)

(a ·∇)3 f (x) =
∑
i jk

(
ai
∂

∂xi

) (
a j

∂

∂x j

) (
ak

∂

∂xk

)
f (x)

(37.26)

If the partials are all collected into a single indexed object, one really has a tensor. For
the first and second orders we can represent this tensor in matrix form (as the gradient and
Hessian respectively)

37.5 gradient with non-euclidean basis

The directional derivative has been calculated above for a scalar function. There is nothing
intrinsic to that argument that requires an orthonormal basis.

Suppose we have a basis {γµ}, and a reciprocal frame {γµ}. Let

x = xµγµ = xµγµ

a = aµγµ = aµγµ
(37.27)

The first order directional derivative is then

(a · ∇) f (x) =
∂ f
∂τ

(x + τa)
∣∣∣∣∣
τ=0

(37.28)

This is

(a · ∇) f (x) =
∑
µ

aµ
∂ f
∂xµ

(x) (37.29)

Now, we are used to ∇ as a standalone object, and want that operator defined such that we
can also write eq. (37.29) as

a · (∇ f (x)) = (aµγµ) · (∇ f (x)) (37.30)
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Comparing these we see that our partials in eq. (37.29) do the job provided that we form the
vector operator

∇ =
∑
µ

γµ
∂

∂xµ (37.31)

The text [7] defines ∇ in this fashion, but has no logical motivation of this idea. One sees
quickly enough that this definition works, and is the required form, but building up to the con-
struction in a way that builds on previously established ideas is still desirable. We see here
that this reciprocal frame definition of the gradient follows inevitably from the definition of
the directional derivative. Additionally this is a definition with how the directional derivative is
defined in a standard Euclidean space with an orthonormal basis.

37.6 work out gradient for a few specific multivector spaces

The directional derivative result expressed in eq. (37.29) holds for arbitrarily parametrized mul-
tivector spaces, and the image space can also be a generalized one. However, the corresponding
result eq. (37.31) for the gradient itself is good only when the parameters are vectors. These
vector parameters may be non-orthonormal, and the function this is applied to does not have to
be a scalar function.

If we switch to functions parametrized by multivector spaces the vector dot gradient notation
also becomes misleading. The natural generalization of the Taylor expansion for such a function,
instead of eq. (37.4), or eq. (37.5) should instead be

f (x0 + ε) = e〈ε∇〉 f (x)
∣∣∣
x=x0

(37.32)

Or in full,

f (x0 + ε) =
∑ 1

k!
〈ε∇〉k f (x)

∣∣∣
x=x0

(37.33)

One could alternately express this in a notationally less different form using the scalar product
operator instead of grade selection, if one writes

ε∗∇ ≡ 〈ε∇〉 (37.34)

However, regardless of the notation used, the fundamental definition is still going to be the
same (and the same as in the vector case), which operationally is

ε∗∇ f (x) = 〈ε∇〉 f (x) =
∂ f (x + hε)

∂h

∣∣∣∣∣
h=0

(37.35)
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Example 37.4: Complex numbers

The simplest grade mixed multivector space is that of the complex numbers. Let us write
out the directional derivative and gradient in this space explicitly. Writing

z0 = u + iv

z = x + iy
(37.36)

So we have

〈z0∇〉 f (z) = u
∂ f
∂x

+ v
∂ f
∂y

= u
∂ f
∂x

+ iv
1
i
∂ f
∂y

=

〈
z0

(
∂

∂x
+

1
i
∂

∂y

)〉
f (z)

(37.37)

and we can therefore identify the gradient operator as

∇0,2 =
∂

∂x
+

1
i
∂

∂y
(37.38)

Observe the similarity here between the vector gradient for a 2D Euclidean space, where
we can form complex numbers by (left) factoring out a unit vector, as in

x = e1x + e2y

= e1(x + e1e2y)

= e1(x + iy)

= e1z

(37.39)

It appears that we can form this complex gradient, by (right) factoring out of the same
unit vector from the vector gradient

e1
∂

∂x
+ e2

∂

∂y
=

(
∂

∂x
+ e2e1

∂

∂y

)
e1

=

(
∂

∂x
+

1
i
∂

∂y

)
e1

= ∇0,2e1

(37.40)
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So, if we write ∇ as the R2 vector gradient, with x = e1x + e2y = e1z as above, we have

∇x = ∇0,2e1e1z

= ∇0,2z
(37.41)

This is a rather curious equivalence between 2D vectors and complex numbers.

Comparison of contour integral and directional derivative Taylor series Having a com-
plex gradient is not familiar from standard complex variable theory. Then again, neither is
a non-contour integral formulation of complex Taylor series. The two of these ought to be
equivalent, which seems to imply there is a contour integral representation of the gradient
in a complex number space too (one of the Hestenes paper’s mentioned this but I did not
understand the notation).

Let us do an initial comparison of the two. We need a reminder of the contour inte-
gral form of the complex derivative. For a function f (z) and its derivatives regular in a
neighborhood of a point z0, we can evaluate

�
f (z)dz

(z − z0)k = −
1

k − 1

�
f (z)dz

(
1

(z − z0)k−1

)′
=

1
k − 1

�
f ′(z)dz

(
1

(z − z0)k−1

)
=

1
(k − 1)(k − 2)

�
f 2(z)dz

(
1

(z − z0)k−2

)
=

1
(k − 1)(k − 2) · · · (k − n)

�
f n(z)dz

(
1

(z − z0)k−n

)
=

1
(k − 1)(k − 2) · · · (1)

�
f k−1(z)dz

z − z0

=
2πi

(k − 1)!
f k−1(z0)

(37.42)

So we have

dk

dzk f (z)

∣∣∣∣∣∣
z0

=
k!

2πi

�
f (z)dz

(z − z0)k+1 (37.43)
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Given this we now have a few alternate forms of complex Taylor series

f (z0 + ε) =
∑ 1

k!
〈ε∇〉k f (z)

∣∣∣
z=z0

=
∑ 1

k!
εk dk

dzk f (z)

∣∣∣∣∣∣
z0

=
1

2πi

∑
εk

�
f (z)dz

(z − z0)k+1

(37.44)

Observe that the the 0, 2 subscript for the gradient has been dropped above (ie: this is
the complex gradient, not the vector form).

Complex gradient compared to the derivative A gradient operator has been identified
by factoring it out of the directional derivative. Let us compare this to a plain old complex
derivative.

f ′(z0) = lim
z→z0

f (z) − f (z0)
z − z0

(37.45)

In particular, evaluating this limit for z = z0 + h, approaching z0 along the x-axis, we
have

f ′(z0) = lim
z→z0

f (z) − f (z0)
z − z0

= lim
h→0

f (z0 + h) − f (z0)
h

=
∂ f
∂x

(z0)

(37.46)

Evaluating this limit for z = z0 + ih, approaching z0 along the y-axis, we have

f ′(z0) = lim
h→0

f (z0 + ih) − f (z0)
ih

= −i
∂ f
∂y

(z0)
(37.47)
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We have the Cauchy equations by equating these, and if the derivative exists (ie: inde-
pendent of path) we require at least

∂ f
∂x

(z0) = −i
∂ f
∂y

(z0) (37.48)

Or

0 =
∂ f
∂x

(z0) + i
∂ f
∂y

(z0)

= ∇̃ f (z0)
(37.49)

Premultiplying by ∇ produces the harmonic equation

∇∇̃ f =

(
∂2

∂x2 +
∂2

∂y2

)
f (37.50)

First order expansion around a point The above, while interesting or curious, does not
provide a way to express the differential operator directly in terms of the gradient.

We can write

〈ε∇〉 f (z)|z0
=

ε

2πi

�
f (z)dz

(z − z0)2

= ε f ′(z0)
(37.51)

One can probably integrate this in some circumstances (perhaps when f(z) is regular
along the straight path from z0 to z = z0 + ε). If so, then we have

ε

∫ z

s=z0

f ′(s)ds =

∫ z

s=z0

〈ε∇〉 f (z)|z=s ds (37.52)

Or

f (z) = f (z0) +

∫ z

s=z0

1
ε
〈ε∇〉 f (z)

∣∣∣∣∣
z=s

ds (37.53)

Is there any validity to doing this? The idea here is to play with some circumstances
where we could see where the multivector gradient may show up. Much more play is
required, some of which for discovery and the rest to do things more rigorously.
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Example 37.5: 4D scalar plus bivector space

Suppose we form a scalar, bivector space by factoring out the unit time vector in a Dirac
vector representation

x = xµγµ

=
(
x0 + xkγkγ0

)
γ0

=
(
x0 + xkσk

)
γ0

= qγ0

(37.54)

This q has the structure of a quaternion-like object (scalar, plus bivector), but the bivec-
tors all have positive square. Our directional derivative, for multivector direction Q =

Q0 + Qkσk is

〈Q∇〉 f (q) = Q0 ∂ f
∂x0 +

∑
k

Qk ∂ f
∂xk (37.55)

So, we can write

∇ =
∂

∂x0 +
∑

k

σk
∂

∂xk (37.56)

We can do something similar for an Euclidean four vector space

x = xµeµ

=
(
x0 + xkeke0

)
e0

=
(
x0 + xkik

)
e0

= qe0

(37.57)

Here each of the bivectors ik have a negative square, much more quaternion-like (and
could easily be defined in an isomorphic fashion). This time we have

∇ =
∂

∂x0 +
∑

k

1
ik

∂

∂xk (37.58)
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E X T E R I O R D E R I VAT I V E A N D C H A I N RU L E C O M P O N E N T S O F T H E
G R A D I E N T

38.1 gradient formulation in terms of reciprocal frames

We have seen how to calculate reciprocal frames as a method to find components of a vector
with respect to an arbitrary basis (does not have to be orthogonal).

This can be applied to any vector:

x =
∑

ai(ai · x) =
∑

ai(ai · x) (38.1)

so why not the gradient operator too.

∇ =
∑

ai(ai · ∇) =
∑

ai(ai · ∇) (38.2)

The dot product part:

(a · ∇) f (u) = lim
τ→0

f (u + aτ) − f (u)
τ

(38.3)

we know how to calculate explicitly (from NFCM) and is the direction derivative.
So this gives us an explicit factorization of the gradient into components in some arbitrary

set of directions, all weighted appropriately.

38.2 allowing the basis to vary according to a parametrization

Now, if one allows the vector basis ai to vary along a curve, it is interesting to observe the con-
sequences of this to the gradient expressed as a component along the curve and perpendicular
components.

Suppose that one has a parametrization φ(u1, u2, · · · , un−1) ∈ Rn, defining a generalized sur-
face of degree one less than the space.

Provided these surface direction vectors are linearly independent and non zero, we can writ-
ing φui =

∂φ
∂ui

, and form a basis for the space by extension with a reciprocal frame vector:

{φu1 ,φu2 , · · · ,φun−1 , (φu1 ∧ φu2 · · · ∧ φun−1)
1
In
} (38.4)
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Example 38.1: Try it with the simplest case

Let us calculate ∇ in this basis. Intuition says this will produce something like the exterior
derivative from differential forms for the component that is normal to the surface.

To make things easy, consider the absolutely simplest case, a curve in R2, with parametriza-
tion r = φ(t). The basis associated with this curve at some point is

{a1, a2} = {φt, Iφt} (38.5)

with a reciprocal basis of:

{a1, a2} =

{
1
φt
,−

1
φt

I
}

(38.6)

In terms of this components, the gradient along the curve at the specified point is:

∇ f =
(
a1a1 · ∇ + a2a2 · ∇

)
f

=

(
1
φt
φt · ∇ +

(
I

1
φt

)
(Iφt) · ∇

)
f

=
1
φt

(φt · ∇ − I (I · φt) · ∇) f

=
1
φt

(φt · ∇ − I (I · (φt ∧∇))) f

=
1
φt

(φt · ∇ − I (I (φt ∧∇))) f

=
1
φt

(φt · ∇ + φt ∧∇) f

(38.7)

Lo and behold, we come full circle through a mass of identities back to the geometric
product. As with many things in math, knowing the answer we can be clever and start
from the answer going backwards. This would have allowed the standard factorization of
the gradient vector into orthogonal components in the usual fashion:

∇ =
1
φt

(φt∇) =
1
φt

(φt · ∇ + φt ∧∇) (38.8)
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Let us continue writing φ(t) = x(t)e1 + y(t)e2. Then

φ′ = x′e1 + y′e2 (38.9)

φ′ · ∇ =
dx
dt

∂

∂x
+

dy
dt

∂

∂y
(38.10)

φ′ ∧∇ = I
(
dx
dt

∂

∂y
−

dy
dt

∂

∂x

)
(38.11)

Combining these and inserting back into eq. (38.8) we have

∇ =
φ′

(φ′)2 (φ′ · ∇ + φ′ ∧∇)

=
1

(x′)2 + (y′)2 (x′, y′)
(
dx
dt

∂

∂x
+

dy
dt

∂

∂y

)
+ (−y′, x′)

(
dx
dt

∂

∂y
−

dy
dt

∂

∂x

) (38.12)

Now, here it is worth pointing out that the choice of the parametrization can break some
of the assumptions made. In particular the curve can be completely continuous, but the
parametrization could allow it to be zero for some interval since (x(t), y(t)) can be picked
to be constant for a “time” before continuing.

This problem is eliminated by picking an arc length parametrization. Provided the curve
is not degenerate (ie: a point), then we have at least one of dx/ds , 0, or dy/ds , 0. Addi-
tionally, by parametrization using arc length we have (dx/ds)2 + (dy/ds)2 = (ds/ds)2 = 1.
This eliminates the denominator leaving the following decomposition of the R2 gradient

∇ = (x′, y′)

Unit tangent vector(
dx
ds

∂

∂x
+

dy
ds

∂

∂y

)
Chain Rule in operator form.

+ (−y′, x′)

Unit normal vector(
dx
ds

∂

∂y
−

dy
ds

∂

∂x

)
Exterior derivative operator.

(38.13)
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Thus, loosely speaking we have the chain rule as the scalar component of the unit tangent
vector along a parametrized curve, and we have the exterior derivative as the component of
the gradient that lies colinear to a unit normal to the curve (believe this is the unit normal
that points inwards to the curvature if there is any).

Example 38.2: Extension to higher dimensional curves

In R3 or above we can perform the same calculation. The result is similar and straightfor-
ward to derive:

∇ =

(
dx1

ds
,

dx2

ds
, · · · ,

dxn

ds

)Unit tangent.
n∑

i=1

dxi

ds
∂

∂xi
+

∑
1≤i< j≤n

(
e j

dxi

ds
− ei

dx j

ds

)Normal to unit tangent.(
dxi

ds
∂

∂x j
−

dx j

ds
∂

∂xi

)
(38.14)

Here we have a set of normals to the unit tangent. For R3, we have i j = {12, 13, 23}. One
of these unit normals must be linearly dependent on the other two (or zero). The exterior
scalar factors here loose some of their resemblance to the exterior derivative here. Perhaps
a parametrized (hyper-)surface is required to get the familiar form for R3 or above.
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S P H E R I C A L A N D H Y P E R S P H E R I C A L PA R A M E T R I Z AT I O N

39.1 motivation

In [18] a 4D Fourier transform solution of Maxwell’s equation yielded a Green’s function of the
form

G(x) =

&
eikµxµ

kνkν
dk1dk2dk3dk4 (39.1)

To attempt to “evaluate” this integral, as done in [19] to produce the retarded time potentials,
a hypervolume equivalent to spherical polar coordinate parametrization is probably desirable.

Before attempting to tackle the problem of interest, the basic question of how to do volume
and weighted volume integrals over a hemispherical volumes must be considered. Doing this
for both Euclidean and Minkowski metrics will have to be covered.

39.2 euclidean n-volume

39.2.1 Parametrization

The wikipedia article on n-volumes gives a parametrization, which I will write out explicitly for
the first few dimensions

• 1-sphere (circle)

x1 = r cos φ1

x2 = r sin φ1
(39.2)

• 2-sphere (sphere)

x1 = r cos φ1

x2 = r sin φ1 cos φ2

x3 = r sin φ1 sin φ2

(39.3)
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• 3-sphere (hypersphere)

x1 = r cos φ1

x2 = r sin φ1 cos φ2

x3 = r sin φ1 sin φ2 cos φ3

x4 = r sin φ1 sin φ2 sin φ3

(39.4)

By inspection one can see that we have the desired r2 =
∑

i(xi)2 relation. Each of these can
be vectorized to produce a parametrized vector that can trace out all the possible points on the
volume

r = σkxk (39.5)

39.2.2 Volume elements

We can form a parallelogram area (or parallelepiped volume, ...) element for any parametrized
surface by taking wedge products, as in fig. 39.1. This can also be done for this spherical
parametrization too.

Figure 39.1: Tangent vector along curves of parametrized vector
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For example for the circle we have

dVR2 =
∂r
∂r
∧
∂r
∂φ1

drdφ1

=

(
∂

∂r
r(cos φ1, sin φ1)

)
∧

(
∂

∂φ1
r(cos φ1, sin φ1)

)
drdφ1

= (cos φ1, sin φ1)∧ (− sin φ1, cos φ1)rdrdφ1

= (cos2 φ1σ1σ2 − sin2 φ1σ2σ1)rdrdφ1

= rdrdφ1σ1σ2

(39.6)

And for the sphere

dVR3 =
∂r
∂r
∧
∂r
∂φ1
∧
∂r
∂φ2

drdφ1dφ2

= (cos φ1, sin φ1 cos φ2, sin φ1 sin φ2)

∧ (− sin φ1, cos φ1 cos φ2, cos φ1 sin φ2)

∧ (0,− sin φ1 sin φ2, sin φ1 cos φ2)r2drdφ1dφ2

=

∣∣∣∣∣∣∣∣∣∣∣
cos φ1 sin φ1 cos φ2 sin φ1 sin φ2

− sin φ1 cos φ1 cos φ2 cos φ1 sin φ2

0 − sin φ1 sin φ2 sin φ1 cos φ2

∣∣∣∣∣∣∣∣∣∣∣ r
2drdφ1dφ2σ1σ2σ3

= r2dr sin φ1dφ1dφ2σ1σ2σ3

(39.7)

And finally for the hypersphere

dVR4 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

cos φ1 sin φ1 cos φ2 sin φ1 sin φ2 cos φ3 sin φ1 sin φ2 sin φ3

− sin φ1 cos φ1 cos φ2 cos φ1 sin φ2 cos φ3 cos φ1 sin φ2 sin φ3

0 − sin φ1 sin φ2 sin φ1 cos φ2 cos φ3 sin φ1 cos φ2 sin φ3

0 0 − sin φ1 sin φ2 sin φ3 sin φ1 sin φ2 cos φ3

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
r3drdφ1dφ2dφ3σ1σ2σ3σ4

= r3dr sin2 φ1dφ1 sin φ2dφ2dφ3σ1σ2σ3σ4

(39.8)

Each of these is consistent with the result in the wiki page.

39.2.3 Some volume computations

Let us apply the above results to compute the corresponding n-volume’s.
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• 1-sphere (circle)

VR2 = 4
∫ R

0
rdr

∫ π/2

0
dφ1

= πR2
(39.9)

• 2-sphere (sphere)

VR3 = 8
∫ R

0
r2dr

∫ π/2

0
sin φ1dφ1

∫ π/2

0
dφ2

= 8
1
3

R3
(
− cos φ1|

π/2
0

) π
2

=
4πR3

3

(39.10)

Okay, so far so good.

• 3-sphere (hypersphere)

VR3 = 16
∫ R

0
r3dr

∫ π/2

0
sin2 φ1dφ1

∫ π/2

0
sin φ2dφ2

∫ π/2

0
dφ3

= 2πR4
∫ π/2

0
sin2 φ1dφ1

= πR4
(
φ1 − cos φ1 sin φ1|

π/2
0

)
=
π2R4

2

(39.11)

This is also consistent with the formula supplied in the wiki article.

39.2.4 Range determination

What I have done here though it integrate over only one of the quadrants, and multiply by 2n.
This avoided the more tricky issue of what exact range of angles is required for a complete and
non-overlapping cover of the surface.

The wiki article says that the range is [0, 2π] for the last angle and [0, π] for the others.
Reevaluating the integrals above shows that this does work, but that is a bit of a cheat, and it is
not obvious to me past R3 that this should be the case.

How can this be rationalized?
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• circle For the case of the circle what are the end points in each of the quadrants? These
are (with r = 1)

(cos φ1, sin φ1)φ1=0 = (1, 0) = σ1

(cos φ1, sin φ1)φ1=π/2 = (0, 1) = σ2

(cos φ1, sin φ1)φ1=π = (−1, 0) = −σ1

(cos φ1, sin φ1)φ1=3π/2 = (0,−1) = −σ2

(39.12)

As expected, each of the π/2 increments traces out the points in successive quadrants.

• sphere

Again with r = 1, some representative points on the circle are

φ1 φ2 (cos φ1, sin φ1 cos φ2, sin φ1 sin φ2) r
0 0 (1, 0, 0) σ1

0 π/2 (1, 0, 0) σ1

0 π (1, 0, 0) σ1

0 3π/2 (1, 0, 0) σ1

π/2 0 (0, 1, 0) σ2

π/2 π/2 (0, 0, 1) σ3

π/2 π (0,−1, 0) −σ2

π/2 3π/2 (0, 0,−1) −σ3

π 0 (−1, 0, 0) −σ1

π π/2 (−1, 0, 0) −σ1

π π (−1, 0, 0) −σ1

π 3π/2 (−1, 0, 0) −σ1

The most informative of these is for φ1 = π/2, where we had r = (0, cos φ2, sin φ2), and
our points trace out a path along the unit circle of the y, z plane. At φ1 = 0 our point
r = σ1 did not move, and at φ1 = π we are at the other end of the sphere, also fixed. A
reasonable guess is that at each φ1 we trace out a different circle in the y, z plane.

We can write, with σ23 = σ1 ∧σ2 = σ1σ2,

r = cos φ1σ1 + sin φ1(cos φ2σ2 + sin φ2σ3)

= cos φ1σ1 + sin φ1σ2(cos φ2 + sin φ2σ2σ3)
(39.13)
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Or, in exponential form

r = cos φ1σ1 + sin φ1σ2 exp(σ23φ2) (39.14)

Put this way the effects of the parametrization is clear. For each fixed φ1, the exponential
traces out a circle in the y, z plane, starting at the point r = cos φ1σ1 + sin φ1σ2. φ1 traces
out a semi-circle in the x, y plane.

FIXME: picture.

This would have been easy enough to understand if starting from a picture and construct-
ing the parametrization. Seeing what the geometry is from the algebra requires a bit more
(or different) work. Having done it, are we now prepared to understand the geometry of
the hypersphere parametrization.

• hypersphere.

The vector form in the spherical case was convenient for extracting geometric properties.
Can we do that here too?

r = σ1 cos φ1 +σ2 sin φ1 cos φ2 +σ3 sin φ1 sin φ2 cos φ3 +σ4 sin φ1 sin φ2 sin φ3

= σ1 cos φ1 +σ2 sin φ1 cos φ2 +σ3 sin φ1 sin φ2(cos φ3 +σ34 sin φ3)

= σ1 cos φ1 +σ2 sin φ1 cos φ2 +σ3 sin φ1 sin φ2 exp(σ34φ3)

= σ1 cos φ1 +σ2 sin φ1(cos φ2 +σ23 sin φ2 exp(σ34φ3))

(39.15)

Observe that if φ3 = 0 we have

r = σ1 cos φ1 +σ2 sin φ1 exp(σ23φ2) (39.16)

Which is exactly the parametrization of a half sphere (φ2 ∈ [0, π]). Contrast this to the
semi-circle that φ1 traced out in the spherical case.

In the spherical case, the points φ1 = π/2 were nicely representative. For the hypersphere
those points are

r = σ2 cos φ2 +σ3 sin φ2 exp(σ34φ3) (39.17)

We saw above that this is the parametrization of a sphere.
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Also like the spherical case, we have r = ±σ1 at φ1 = 0, and φ1 = π respectively.

The geometrical conclusion is that for each φ1 ∈ [0, π/2] range the points r trace out
increasingly larger spheres, and after that decreasing sized spheres until we get to a point
again at φ1 = π.

39.3 minkowski metric sphere

39.3.1 2D hyperbola

Our 1-sphere equation was all the points on the curve

x2 + y2 = r2 (39.18)

The hyperbolic equivalent to this is

x2 − y2 = r2 (39.19)

Although this is not a closed curve like the circle. To put this in a more natural physical
context, lets write (with c = 1)

r = γ0t + γ1x (39.20)

So the equation of the 1-hyperboloid becomes

r2 = t2 − x2 = r2 (39.21)

We can parametrize this with complex angles iφ

r = r(γ0 cosh φ + γ1 sinh φ) (39.22)

This gives us

r2 = r2(cosh2 φ − sinh2 φ) = r2 (39.23)

as desired. Like the circle, writing γ01 = γ0 ∧ γ1, an exponential form also works nicely

r = rγ0 exp(γ01φ) (39.24)
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Here the square is

r2 = r2γ0 exp(γ01φ)γ0 exp(γ01φ)

= r2 exp(−γ01φ)(γ0)2 exp(γ01φ)

= r2 exp(−γ01φ) exp(γ01φ)

= r2

(39.25)

Again as desired.

39.3.2 3D hyperbola

Unlike the circle, a pure hyperbolic parametrization does not work to construct a Minkowski
square signature. Consider for example

r = cosh φγ0 + γ1 sinh φ coshψ + γ2 sinh φ sinhψ (39.26)

Squaring this we have

r2 = cosh2 φ − sinh2 φ(cosh2 ψ + sinh2 ψ) (39.27)

We would get the desired result if we chop off the h in all the ψ hyperbolic functions. This
shows that an appropriate parametrization is instead

r = cosh φγ0 + γ1 sinh φ cosψ + γ2 sinh φ sinψ (39.28)

This now squares to 1. To see how to extend this to higher dimensions (of which we only
need one more) we can factor out a γ0

r = γ0(cosh φ − sinh φ( σ1 cosψ +σ2 sinψ

spatial vector parametrization of circle

))
(39.29)

Now to extend this to three dimensions we have just to substituted the spherical parametriza-
tion from eq. (39.14)

r = rγ0(cosh φ0 − sinh φ0(cos φ1σ1 + sin φ1σ2 exp(σ23φ2)))

= r(γ0 cosh φ0 + sinh φ0(cos φ1γ1 + sin φ1γ2 exp(γ32φ2)))
(39.30)
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39.3.3 Summarizing the hyperbolic vector parametrization

Our parametrization in two, three, and four dimensions, respectively, are

r2 = r(γ0 cosh φ0 + sinh φ0γ1)

r3 = r(γ0 cosh φ0 + sinh φ0γ1 exp(γ21φ1))

r4 = r(γ0 cosh φ0 + sinh φ0(cos φ1γ1 + sin φ1γ2 exp(γ32φ2)))

(39.31)

39.3.4 Volume elements

What are our volume elements using this parametrization can be calculated as above.

39.3.4.1 For one spatial dimension we have

dV2γ0γ1 =

∣∣∣∣∣∣∣cosh φ0 sinh φ0

sinh φ0 cosh φ0

∣∣∣∣∣∣∣ rdrdφ0

= rdrdφ0

(39.32)

39.3.4.2 For two spatial dimensions we have

r3 = r(γ0 cosh φ0 + γ1 sinh φ0 cos φ1 + γ2 sinh φ0 sin φ2) (39.33)

The derivatives are

∂r3

∂r
= γ0 cosh φ0 + γ1 sinh φ0 cos φ1 + γ2 sinh φ0 sin φ1

1
r
∂r3

∂φ0
= γ0 sinh φ0 + γ1 cosh φ0 cos φ1 + γ2 cosh φ0 sin φ1

1
r
∂r3

∂φ1
= −γ1 sinh φ0 sin φ1 + γ2 sinh φ0 cos φ1

(39.34)

Or

∂r3

∂r
= γ0 cosh φ0 + γ1 sinh φ0 exp(γ21φ1)

1
r
∂r3

∂φ0
= γ0 sinh φ0 + cosh φ0 exp(−γ21φ1)γ1

1
r
∂r3

∂φ1
= sinh φ0γ2 exp(γ21φ1)

(39.35)
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Multiplying this out, discarding non-grade three terms we have

(γ10 sinh2 φ0 exp(γ21φ1) + γ01 cosh2 φ0 exp(γ21φ1)) sinh φ0γ2 exp(γ21φ1)

= γ01 exp(γ21φ1) sinh φ0 exp(−γ21φ1)γ2

= γ01 sinh φ0γ2

(39.36)

This gives us

dV3 = r2 sinh φ0drdφ0dφ1 (39.37)

39.3.4.3 For three spatial dimensions we have

r4 = r(γ0 cosh φ0 + sinh φ0(cos φ1γ1 + sin φ1γ2 exp(γ32φ2))) (39.38)

So our derivatives are

∂r4

∂r
= γ0 cosh φ0 + sinh φ0(cos φ1γ1 + sin φ1γ2 exp(γ32φ2))

1
r
∂r4

∂φ0
= γ0 sinh φ0 + cosh φ0(cos φ1γ1 + sin φ1γ2 exp(γ32φ2))

1
r
∂r4

∂φ1
= sinh φ0(− sin φ1γ1 + cos φ1γ2 exp(γ32φ2))

1
r
∂r4

∂φ2
= sinh φ0 sin φ1γ3 exp(γ32φ2)

(39.39)

In shorthand, writing C and S for the trig and hyperbolic functions as appropriate, we have

γ0C0 + S 0C1γ1 + S 0S 1γ2 exp(γ32φ2)

γ0S 0 + C0C1γ1 + C0S 1γ2 exp(γ32φ2)

−S 0S 1γ1 + S 0C1γ2 exp(γ32φ2)

S 0S 1γ3 exp(γ32φ2)

(39.40)

Multiplying these out and dropping terms that will not contribute grade four bits is needed to
calculate the volume element. The full product for the first two derivatives is

γ0C0γ0S 0 + γ0C0C0C1γ1 + γ0C0C0S 1γ2 exp(γ32φ2)

+ S 0C1γ1γ0S 0 + S 0C1γ1C0C1γ1 + S 0C1γ1C0S 1γ2 exp(γ32φ2)

+ S 0S 1γ2 exp(γ32φ2)γ0S 0 + S 0S 1γ2 exp(γ32φ2)C0C1γ1 + S 0S 1γ2 exp(γ32φ2)C0S 1γ2 exp(γ32φ2)
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(39.41)

We can discard the scalar terms:

γ0C0γ0S 0 + S 0C1γ1C0C1γ1 + S 0S 1γ2 exp(γ32φ2)C0S 1 exp(−γ32φ2)γ2 (39.42)

Two of these terms cancel out

S 0C0C1S 1γ12 exp(γ32φ2) + S 0C0C1S 1γ21 exp(γ32φ2) (39.43)

and we are left with two bivector contributors to the eventual four-pseudoscalar

γ01C1 + γ02S 1 exp(γ32φ2) (39.44)

Multiplying out the last two derivatives we have

−S 2
0S 2

1γ13 exp(γ32φ2) + S 2
0C1S 1γ23 (39.45)

Almost there. A final multiplication of these sets of products gives

− γ01C1S 2
0S 2

1γ13 exp(γ32φ2) − γ02S 1 exp(γ32φ2)S 2
0S 2

1γ13 exp(γ32φ2)

+ γ01C1S 2
0C1S 1γ23 + γ02S 1 exp(γ32φ2)S 2

0C1S 1γ23

= γ03C1S 2
0S 2

1 exp(γ32φ2) − γ02 exp(γ32φ2)S 2
0S 3

1 exp(−γ32φ2)γ13

+ γ0123C2
1S 2

0S 1 − γ03 exp(γ32φ2)S 2
0C1S 2

1

= γ03C1S 2
0S 2

1 exp(γ32φ2) + γ0123S 2
0S 1(S 2

1 + C2
1) − γ03 exp(γ32φ2)S 2

0C1S 2
1

= γ03C1S 2
1(S 2

0 − S 2
0) exp(γ32φ2) + γ0123S 2

0S 1

(39.46)

Therefore our final result is

dV4 = sinh2 φ0 sin φ1r3drdφ0dφ1dφ2 (39.47)

39.4 summary

39.4.1 Vector parametrization

N-Spherical parametrization

r2 = σ1 exp(σ12φ1)

r3 = cos φ1σ1 + sin φ1σ2 exp(σ23φ2)

r4 = σ1 cos φ1 +σ2 sin φ1(cos φ2 +σ23 sin φ2 exp(σ34φ3))

(39.48)
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N-Hypersphere parametrization

r2 = r(γ0 cosh φ0 + sinh φ0γ1)

r3 = r(γ0 cosh φ0 + sinh φ0γ1 exp(γ21φ1))

r4 = r(γ0 cosh φ0 + sinh φ0(cos φ1γ1 + sin φ1γ2 exp(γ32φ2)))

(39.49)

39.4.2 Volume elements

To summarize the mess of algebra we have shown that our hyperbolic volume elements are
given by

dV2 = (rdr) dφ0

dV3 =
(
r2dr

)
(sinh φ0dφ0) dφ1

dV4 =
(
r3dr

) (
sinh2 φ0dφ0

)
(sin φ1dφ1) dφ2

(39.50)

Compare this to the volume elements for the n-spheres

dV2 = (rdr) dφ1

dV3 =
(
r2dr

)
(sin φ1dφ1) dφ2

dV4 =
(
r3dr

) (
sin2 φ1dφ1

)
(sin φ2dφ2) dφ3

(39.51)

Besides labeling variations the only difference in the form is a switch from trig to hyperbolic
functions for the first angle (which has an implied range difference as well).



40
V E C T O R D I F F E R E N T I A L I D E N T I T I E S

[9] electrodynamics ch. II lists a number of differential vector identities.

1. ∇ · (∇T ) = ∇2T = a scalar field

2. ∇ × (∇T ) = 0

3. ∇(∇ · h) = a vector field

4. ∇ · (∇ × h) = 0

5. ∇ × (∇ × h) = ∇(∇ · h) −∇2h

6. (∇ ·∇)h = a vector field

Let us see how all these translate to GA form.

40.1 divergence of a gradient

This one has the same form, but expanding it can be evaluated by grade selection

∇ · (∇T ) = 〈∇∇T 〉

= (∇2)T
(40.1)

A less sneaky expansion would be by coordinates

∇ · (∇T ) =
∑
k, j

(σk∂k) · (σ j∂ jT )

=

〈∑
k, j

(σk∂k)(σ j∂ jT )
〉

=

〈∑
k, j

σk∂kσ j∂ j

 T
〉

=
〈
∇

2T
〉

= ∇2T

(40.2)
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40.2 curl of a gradient is zero

The duality analogue of this is

∇ × (∇T ) = −i(∇∧ (∇T )) (40.3)

Let us verify that this bivector curl is zero. This can also be done by grade selection

∇∧ (∇T ) = 〈∇(∇T )〉2
= 〈(∇∇)T 〉2
= (∇∧∇)T

= 0

(40.4)

Again, this is sneaky and side steps the continuity requirement for mixed partial equality.
Again by coordinates is better

∇∧ (∇T ) =

〈∑
k, j

σk∂k(σ j∂ jT )
〉

2

=

〈∑
k< j

σkσ j(∂k∂ j − ∂ j∂k)T
〉

2

=
∑
k< j

σk ∧σ j(∂k∂ j − ∂ j∂k)T

(40.5)

So provided the mixed partials are zero the curl of a gradient is zero.

40.3 gradient of a divergence

Nothing more to say about this one.

40.4 divergence of curl

This one looks like it will have a dual form using bivectors.

∇ · (∇ × h) = ∇ · (−i(∇∧ h))

= 〈∇(−i(∇∧ h))〉

= 〈−i∇(∇∧ h)〉

= −(i∇) · (∇∧ h)

(40.6)
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Is this any better than the cross product relationship?
I do not really think so. They both say the same thing, and only possible value to this duality

form is if more than three dimensions are required (in which case the sign of the pseudoscalar
i has to be dealt with more carefully). Geometrically one has the dual of the gradient (a plane
normal to the vector itself) dotted with the plane formed by the gradient and the vector operated
on. The corresponding statement for the cross product form is that we have a dot product of a
vector with a vector normal to it, so also intuitively expect a zero. In either case, because we
are talking about operators here just saying this is zero because of geometrical arguments is not
necessarily convincing. Let us evaluate this explicitly in coordinates to verify

(i∇) · (∇∧ h) = 〈i∇(∇∧ h)〉

=

〈
i
∑
k, j,l

σk∂k
(
(σ j ∧σl)∂ jhl

)〉

= −i
∑

l

σl ∧

∑
k< j

(σk ∧σ j)(∂k∂ j − ∂ j∂k)hl


(40.7)

This inner quantity is zero, again by equality of mixed partials. While the dual form of this
identity was not really any better than the cross product form, there is nothing in this zero
equality proof that was tied to the dimension of the vectors involved, so we do have a more
general form than can be expressed by the cross product, which could be of value in Minkowski
space later.

40.5 curl of a curl

This will also have a dual form. That is

∇ × (∇ × h) = −i(∇∧ (∇ × h))

= −i(∇∧ (−i(∇∧ h)))

= −i〈∇(−i(∇∧ h))〉2
= i〈i∇(∇∧ h)〉2
= i2∇ · (∇∧ h)

= −∇ · (∇∧ h)

(40.8)

Now, let us expand this quantity

∇ · (∇∧ h) (40.9)
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If the gradient could be treated as a plain old vector we could just do

a · (a∧ h) = a2h − a(a · h) (40.10)

With the gradient substituted this is exactly the desired identity (with the expected sign dif-
ference)

∇ · (∇∧ h) = ∇2h −∇(∇ · h) (40.11)

A coordinate expansion to truly verify that this is valid is logically still required, but having
done the others above, it is clear how this would work out.

40.6 laplacian of a vector

This one is not interesting seeming.

40.7 zero curl implies gradient solution

This theorems is mentioned in the text without proof.
Theorem was

If ∇ ×A = 0

there is a ψ

such that A = ∇ψ

This appears to be half of an if and only if theorem. The unstated part is if one has a gradient
then the curl is zero

A = ∇ψ

=⇒

∇ ×A = ∇ ×∇ψ = 0

(40.12)

This last was proven above, and follows from the assumed mixed partial equality. Now, the
real problem here is to find ψ given A. First note that we can remove the three dimensionality
of the theorem by duality writing ∇×A = −i(∇∧A). In one sense changing the theorem to use
the wedge instead of cross makes the problem harder since the wedge product is defined not
just for R3. However, this also allows starting with the simpler R2 case, so let us do that one
first.
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Write

A = σ1A1 +σ2A2 = σ1(∂1ψ) +σ2(∂2ψ) (40.13)

The gradient is

∇ = σ1∂1 +σ2∂2 (40.14)

Our curl is then

(σ1∂1 +σ2∂2)∧ (σ1A1 +σ2A2) = (σ1 ∧σ2)(∂1A2 − ∂2A1) (40.15)

So we have

∂1A2 = ∂2A1 (40.16)

Now from eq. (40.13) this means we must have

∂1∂2ψ = ∂2∂1ψ (40.17)

This is just a statement of mixed partial equality, and does not look particularly useful for
solving for ψ. It really shows that the is redundancy in the problem, and instead of substituting
for both of A1 and A2 in eq. (40.16), we can use one or the other.

Doing so we have two equations, either of which we can solve for

∂2∂1ψ = ∂1A2

∂1∂2ψ = ∂2A1
(40.18)

Integrating once gives

∂1ψ =

∫
∂1A2dy + B(x)

∂2ψ =

∫
∂2A1dx + C(y)

(40.19)

And a second time produces solutions for ψ in terms of the vector coordinates

ψ =

"
∂A2

∂x
dydx +

∫
B(x)dx + D(y)

ψ =

"
∂A1

∂y
dxdy +

∫
C(y)dy + E(x)

(40.20)
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Is there a natural way to merge these so that ψ can be expressed more symmetrically in terms
of both coordinates? Looking at eq. (40.20) I am led to guess that its possible to combine these
into a single equation expressing ψ in terms of both A1 and A2. One way to do so is perhaps just
to average the two as in

ψ = α

"
∂A2

∂x
dydx + (1 − α)

"
∂A1

∂y
dxdy +

∫
C(y)dy + E(x) +

∫
B(x)dx + D(y)

(40.21)

But that seems pretty arbitrary. Perhaps that is the point?
FIXME: work some examples.
FIXME: look at more than the R2 case.

40.8 zero divergence implies curl solution

This theorems is mentioned in the text without proof.
Theorem was

If ∇ ·D = 0

there is a C
such that D = ∇ ×C

As above, if D = ∇ ×C, then we have

∇ ·D = ∇ · (∇ ×C) (40.22)

and this has already been shown to be zero. So the problem becomes find C given D.
Also, as before an equivalent generalized (or de-generalized) problem can be expressed.
That is

∇ ·D = 〈∇D〉
= 〈∇(∇ ×C)〉

= 〈∇ − i(∇∧C)〉

= −〈i∇ · (∇∧C)〉 − 〈i∇∧ (∇∧C)〉

= −〈i∇ · (∇∧C)〉

(40.23)

So if ∇ ·D it is also true that ∇ · (∇∧C) = 0
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Thus the (de)generalized theorem to prove is

If ∇ · D = 0

there is a C

such that D = ∇∧C

In the R3 case, to prove the original theorem we want a bivector D = −iD, and seek a vector
C such that D = ∇∧C (D = −i(∇∧C)).

∇ · D = ∇ · (∇∧C)

= (σk∂k) · (σi ∧σ j∂iC j)

= σk · (σi ∧σ j)∂k∂iC j

= (σ jδki −σiδk j)∂k∂iC j

= σ j∂i∂iC j −σ
i∂ j∂iC j

= σ j∂i(∂iC j − ∂ jCi)

(40.24)

If this is to equal zero we must have the following constraint on C

∂iiC j = ∂i jCi (40.25)

If the following equality was also true

∂iC j = ∂ jCi (40.26)

Then this would also work, but would also mean D equals zero so that is not an interesting
solution. So, we must go back to eq. (40.25) and solve for Ck in terms of D.

Suppose we have D explicitly in terms of coordinates

D = Di jσ
i ∧σ j

=
∑
i< j

(Di j − D ji)σi ∧σ j (40.27)

compare this to ∇∧C

C = (∂iC j)σi ∧σ j

=
∑
i< j

(∂iC j − ∂ jCi)σi ∧σ j (40.28)
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With the identity

∂iC j = Di j (40.29)

Equation (40.25) becomes

∂i jCi = ∂iDi j

=⇒

∂ jCi = Di j + αi j(xk,i)

(40.30)

Where αi j(xk,i) is some function of all the xk , xi.
Integrating once more we have

Ci =

∫ (
Di j + αi j(xk,i)

)
dx j + βi j(xk, j) (40.31)



41
WA S P RO F E S S O R D M I T R E V S K Y R I G H T A B O U T I N S I S T I N G T H E
L A P L AC I A N I S N OT G E N E R A L LY ∇ · ∇

41.1 dedication

To all tyrannical old Professors driven to cruelty by an unending barrage of increasingly ill
prepared students.

41.2 motivation

The text [3] has an excellent general derivation of a number of forms of the gradient, divergence,
curl and Laplacian.

This is actually done, not starting with the usual Cartesian forms, but more general defini-
tions.

(grad φ ) i = l i m
d s i→ 0

φ ( q i + d q i ) − φ ( q i )
d s i

div V = l i m
∆ τ→ 0

1
∆ τ

∫
σ

V · dσ

(curl V ) · n = l i m
∆σ→ 0

1
∆σ

∮
λ

V · d λ

Laplacian φ = div(grad φ ) .

(41.1)

These are then shown to imply the usual Cartesian definitions, plus provide the means to
calculate the general relationships in whatever coordinate system you like. All in all one can
not beat this approach, and I am not going to try to replicate it, because I can not improve it in
any way by doing so.

Given that, what do I have to say on this topic? Well, way way back in first year electricity
and magnetism, my dictator of a prof, the intimidating but diminutive Dmitrevsky, yelled at
us repeatedly that one cannot just dot the gradient to form the Laplacian. As far as he was
concerned one can only say

Laplacian φ = div(grad φ ) , (41.2)

319
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and never never never, the busted way

Laplacian φ = (∇ · ∇ )φ . (41.3)

Because “this only works in Cartesian coordinates”. He probably backed up this assertion
with a heartwarming and encouraging statement like “back in the days when University of
Toronto was a real school you would have learned this in kindergarten”.

This detail is actually something that has bugged me ever since, because my assumption was
that, provided one was careful, why would a change to an alternate coordinate system matter?
The gradient is still the gradient, so it seems to me that this ought to be a general way to calculate
things.

Here we explore the validity of the dictatorial comments of Prof Dmitrevsky. The key to
reconciling intuition and his statement turns out to lie with the fact that one has to let the
gradient operate on the unit vectors in the non Cartesian representation as well as the partials,
something that was not clear as a first year student. Provided that this is done, the plain old dot
product procedure yields the expected results.

This exploration will utilize a two dimensional space as a starting point, transforming from
Cartesian to polar form representation. I will also utilize a geometric algebra representation of
the polar unit vectors.

41.3 the gradient in polar form

Lets start off with a calculation of the gradient in polar form starting with the Cartesian form.
Writing ∂x = ∂/∂x, ∂y = ∂/∂y, ∂r = ∂/∂r, and ∂θ = ∂/∂θ, we want to map

∇ = e1∂1 + e2∂2 =
[
e1 e2

] ∂1

∂2

 , (41.4)

into the same form using r̂, θ̂, ∂r, and ∂θ. With i = e1e2 we have

e1

e2

 = eiθ

r̂
θ̂

 . (41.5)

Next we need to do a chain rule expansion of the partial operators to change variables. In
matrix form that is

 ∂∂x
∂
∂y

 =

 ∂r
∂x

∂θ
∂x

∂r
∂y

∂θ
∂y


 ∂∂r
∂
∂θ

 . (41.6)
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To calculate these partials we drop back to coordinates

x2 + y2 = r2

y
x

= tan θ
x
y

= cot θ.

(41.7)

From this we calculate

∂r
∂x

= cos θ

∂r
∂y

= sin θ

1
r cos θ

=
∂θ

∂y
1

cos2 θ

1
r sin θ

= −
∂θ

∂x
1

sin2 θ
,

(41.8)

for

 ∂∂x
∂
∂y

 =

cos θ − sin θ/r

sin θ cos θ/r


 ∂∂r
∂
∂θ

 . (41.9)

We can now write down the gradient in polar form, prior to final simplification

∇ = eiθ
[
r̂ θ̂

] cos θ − sin θ/r

sin θ cos θ/r


 ∂∂r
∂
∂θ

 . (41.10)

Observe that we can factor a unit vector

[
r̂ θ̂

]
= r̂

[
1 i

]
=

[
i 1

]
θ̂ (41.11)

so the 1, 1 element of the matrix product in the interior is

[
r̂ θ̂

] cos θ

sin θ

 = r̂eiθ = e−iθr̂. (41.12)
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Similarly, the 1, 2 element of the matrix product in the interior is

[
r̂ θ̂

] − sin θ/r

cos θ/r

 =
1
r

e−iθθ̂. (41.13)

The exponentials cancel nicely, leaving after a final multiplication with the polar form for the
gradient

∇ = r̂∂r + θ̂
1
r
∂θ (41.14)

That was a fun way to get the result, although we could have just looked it up. We want to
use this now to calculate the Laplacian.

41.4 polar form laplacian for the plane

We are now ready to look at the Laplacian. First let us do it the first year electricity and mag-
netism course way. We look up the formula for polar form divergence, the one we were supposed
to have memorized in kindergarten, and find it to be

div A = ∂rAr +
1
r

Ar +
1
r
∂θAθ (41.15)

We can now apply this to the gradient vector in polar form which has components ∇r = ∂r,
and ∇θ = (1/r)∂θ, and get

div grad = ∂rr +
1
r
∂r +

1
r
∂θθ (41.16)

This is the expected result, and what we should get by performing ∇ ·∇ in polar form. Now,
let us do it the wrong way, dotting our gradient with itself.

∇ ·∇ =

(
∂r,

1
r
∂θ

)
·

(
∂r,

1
r
∂θ

)
= ∂rr +

1
r
∂θ

(
1
r
∂θ

)
= ∂rr +

1
r2 ∂θθ

(41.17)
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This is wrong! So is Dmitrevsky right that this procedure is flawed, or do you spot the mis-
take? I have also cruelly written this out in a way that obscures the error and highlights the
source of the confusion.

The problem is that our unit vectors are functions, and they must also be included in the
application of our partials. Using the coordinate polar form without explicitly putting in the
unit vectors is how we go wrong. Here is the right way

∇ ·∇ =

(
r̂∂r + θ̂

1
r
∂θ

)
·

(
r̂∂r + θ̂

1
r
∂θ

)
= r̂ · ∂r (r̂∂r) + r̂ · ∂r

(
θ̂

1
r
∂θ

)
+ θ̂ ·

1
r
∂θ (r̂∂r) + θ̂ ·

1
r
∂θ

(
θ̂

1
r
∂θ

) (41.18)

Now we need the derivatives of our unit vectors. The ∂r derivatives are zero since these have
no radial dependence, but we do have θ partials

∂θr̂ = ∂θ
(
e1eiθ

)
= e1e1e2eiθ

= e2eiθ

= θ̂,

(41.19)

and

∂θθ̂ = ∂θ
(
e2eiθ

)
= e2e1e2eiθ

= −e1eiθ

= −r̂.

(41.20)

(One should be able to get the same results if these unit vectors were written out in full as
r̂ = e1 cos θ+ e2 sin θ, and θ̂ = e2 cos θ− e1 sin θ, instead of using the obscure geometric algebra
quaterionic rotation exponential operators.)

Having calculated these partials we now have

(∇ ·∇) = ∂rr +
1
r
∂r +

1
r2 ∂θθ (41.21)

Exactly what it should be, and what we got with the coordinate form of the divergence oper-
ator when applying the “Laplacian equals the divergence of the gradient” rule blindly. We see
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that the expectation that ∇ · ∇ is the Laplacian in more than the Cartesian coordinate system
is not invalid, but that care is required to apply the chain rule to all functions. We also see that
expressing a vector in coordinate form when the basis vectors are position dependent is also a
path to danger.

Is this anything that our electricity and magnetism prof did not know? Unlikely. Is this some-
thing that our prof felt that could not be explained to a mob of first year students? Probably.
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D E R I VAT I O N O F T H E S P H E R I C A L P O L A R L A P L AC I A N

42.1 motivation

In 41 was a Geometric Algebra derivation of the 2D polar Laplacian by squaring the gradient.
In 35 was a factorization of the spherical polar unit vectors in a tidy compact form. Here both
these ideas are utilized to derive the spherical polar form for the Laplacian, an operation that is
strictly algebraic (squaring the gradient) provided we operate on the unit vectors correctly.

42.2 our rotation multivector

Our starting point is a pair of rotations. We rotate first in the x, y plane by φ

x→ x′ = R̃φxRφ
i ≡ e1e2

Rφ = eiφ/2

(42.1a)

Then apply a rotation in the e3 ∧ (R̃φe1Rφ) = R̃φe3e1Rφ plane

x′ → x′′ = R̃θx′Rθ
Rθ = eR̃φe3e1Rφθ/2 = R̃φee3e1θ/2Rφ

(42.2a)

The composition of rotations now gives us

x→ x′′ = R̃θR̃φxRφRθ = R̃xR

R = RφRθ = ee3e1θ/2ee1e2φ/2.
(42.3)

42.3 expressions for the unit vectors

The unit vectors in the rotated frame can now be calculated. With I = e1e2e3 we can calculate

φ̂ = R̃e2R

r̂ = R̃e3R

θ̂ = R̃e1R

(42.4a)
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Performing these we get

φ̂ = e−e1e2φ/2e−e3e1θ/2e2ee3e1θ/2ee1e2φ/2

= e2eiφ,
(42.5)

and

r̂ = e−e1e2φ/2e−e3e1θ/2e3ee3e1θ/2ee1e2φ/2

= e−e1e2φ/2(e3 cos θ + e1 sin θ)ee1e2φ/2

= e3 cos θ + e1 sin θee1e2φ

= e3(cos θ + e3e1 sin θee1e2φ)

= e3eIφ̂θ,

(42.6)

and

θ̂ = e−e1e2φ/2e−e3e1θ/2e1ee3e1θ/2ee1e2φ/2

= e−e1e2φ/2(e1 cos θ − e3 sin θ)ee1e2φ/2

= e1 cos θee1e2φ/2 − e3 sin θ

= iφ̂ cos θ − e3 sin θ

= iφ̂(cos θ + φ̂ie3 sin θ)

= iφ̂eIφ̂θ.

(42.7)

Summarizing these are

φ̂ = e2eiφ

r̂ = e3eIφ̂θ

θ̂ = iφ̂eIφ̂θ.

(42.8a)
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42.4 derivatives of the unit vectors

We will need the partials. Most of these can be computed from eq. (42.8) by inspection, and are

∂rφ̂ = 0

∂rr̂ = 0

∂rθ̂ = 0

∂θφ̂ = 0

∂θr̂ = r̂Iφ̂

∂θθ̂ = θ̂Iφ̂

∂φφ̂ = φ̂i

∂φr̂ = φ̂ sin θ

∂φθ̂ = φ̂ cos θ

(42.9a)

42.5 expanding the laplacian

We note that the line element is ds = dr + rdθ + r sin θdφ, so our gradient in spherical coordi-
nates is

∇ = r̂∂r +
θ̂

r
∂θ +

φ̂

r sin θ
∂φ. (42.10)

We can now evaluate the Laplacian

∇
2 =

(
r̂∂r +

θ̂

r
∂θ +

φ̂

r sin θ
∂φ

)
·

(
r̂∂r +

θ̂

r
∂θ +

φ̂

r sin θ
∂φ

)
. (42.11)

Evaluating these one set at a time we have

r̂∂r ·

(
r̂∂r +

θ̂

r
∂θ +

φ̂

r sin θ
∂φ

)
= ∂rr, (42.12)

and

1
r
θ̂∂θ ·

(
r̂∂r +

θ̂

r
∂θ +

φ̂

r sin θ
∂φ

)
=

1
r

〈
θ̂

(
r̂Iφ̂∂r + r̂∂θr +

θ̂

r
∂θθ +

1
r
θ̂Iφ̂∂θ + φ̂∂θ

1
r sin θ

∂φ

)〉
=

1
r
∂r +

1
r2 ∂θθ,
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(42.13)

and

φ̂

r sin θ
∂φ ·

(
r̂∂r +

θ̂

r
∂θ +

φ̂

r sin θ
∂φ

)
=

1
r sin θ

〈
φ̂

(
φ̂ sin θ∂r + r̂∂φr + φ̂ cos θ

1
r
∂θ +

θ̂

r
∂φθ + φ̂i

1
r sin θ

∂φ + φ̂
1

r sin θ
∂φφ

)〉
=

1
r
∂r +

cot θ
r2 ∂θ +

1
r2 sin2 θ

∂φφ

(42.14)

Summing these we have

∇
2 = ∂rr +

2
r
∂r +

1
r2 ∂θθ +

cot θ
r2 ∂θ +

1
r2 sin2 θ

∂φφ (42.15)

This is often written with a chain rule trick to consolidate the r and θ partials

∇
2Ψ =

1
r
∂rr(rΨ) +

1
r2 sin θ

∂θ (sin θ∂θΨ) +
1

r2 sin2 θ
∂ψψΨ (42.16)

It is simple to verify that this is identical to eq. (42.15).



43
TA N G E N T P L A N E S A N D N O R M A L S I N T H R E E A N D F O U R
D I M E N S I O N S

43.1 motivation

I was reviewing the method of Lagrange in my old first year calculus book [27] and found that
I needed a review of some of the geometry ideas associated with the gradient (that it is normal
to the surface). The approach in the text used 3D level surfaces f (x, y, z) = c, which is general
but not the most intuitive.

If we define a surface in the simpler explicit form z = f (x, y), then how would you show this
normal property? Here we explore this in 3D and 4D, using geometric and wedge products to
express the tangent planes and tangent volumes respectively.

In the 4D approach, with a vector x defined by coordinates xµ and basis {γµ} so that

(43.1)x = γµxµ,

the reciprocal basis γµ is defined implicitly by the dot product relations

(43.2)γµ · γν = δµν.

Assuming such a basis makes the result general enough that the 4D (or a trivial generalization
to N dimensions) holds for both Euclidean spaces as well as mixed metric (i.e. Minkowski)
spaces, and avoids having to detail the specific metric in question.

43.2 3d surface

We start by considering fig. 43.1. We wish to determine the bivector for the tangent plane in the
neighborhood of the point p

(43.3)p = (x, y, f (x, y)),

then using a duality transformation (multiplication by the pseudoscalar for the space) deter-
mine the normal vector to that plane at this point. Holding either of the two free parameters
constant, we find the tangent vectors on that surface to be

(43.4a)
p1 =

(
dx, 0,

∂ f
∂x

dx
)

∝

(
1, 0,

∂ f
∂x

)
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Figure 43.1: A portion of a surface in 3D

(43.4b)
p2 =

(
0, dy,

∂ f
∂y

dy
)

∝

(
0, 1,

∂ f
∂y

)
The tangent plane is then

(43.5)

p1 ∧ p2 =

(
1, 0,

∂ f
∂x

)
∧

(
0, 1,

∂ f
∂y

)
=

(
e1 + e3

∂ f
∂x

)
∧

(
e2 + e3

∂ f
∂y

)
= e1e2 + e1e3

∂ f
∂y

+ e3e2
∂ f
∂x
.

We can factor out the pseudoscalar 3D volume element I = e1e2e3, assuming a Euclidean
space for which e2

k = 1. That is

(43.6)p1 ∧ p2 = e1e2e3

(
e3 − e2

∂ f
∂y
− e1

∂ f
∂x

)
Multiplying through by the volume element I we find that the normal to the surface at this

point is

(43.7)
n ∝ −I(p1 ∧ p2)

= e3 − e1
∂ f
∂x
− e2

∂ f
∂y
.
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Observe that we can write this as

n = ∇(z − f (x, y)). (43.8)

Let’s see how this works in 4D, so that we know how to handle the Minkowski spaces we
find in special relativity.

43.3 4d surface

Now, let’s move up to one additional direction, with

(43.9)x3 = f (x0, x1, x2).

the differential of this is

dx3 =

2∑
k=0

∂ f
∂xk dxk =

2∑
k=0

∂k f dxk. (43.10)

We are going to look at the 3-surface in the neighborhood of the point

p =
(
x0, x1, x2, x3

)
, (43.11)

so that the tangent vectors in the neighborhood of this point are in the span of

dp =

x0, x1, x2,

2∑
k=0

∂kdxk

 . (43.12)

In particular, in each of the directions we have

p0 ∝ (1, 0, 0, d0 f ) (43.13a)

p1 ∝ (0, 1, 0, d1 f ) (43.13b)

p2 ∝ (0, 0, 1, d2 f ) (43.13c)
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Our tangent volume in this neighborhood is

(43.14)
p0 ∧ p1 ∧ p2 = (γ0 + γ3∂0 f ) ∧ (γ1 + γ3∂1 f ) ∧ (γ2 + γ3∂2 f )

= (γ0γ1 + γ0γ3∂1 f + γ3γ1∂0 f ) ∧ (γ2 + γ3∂2 f )
= γ012 − γ023∂1 f + γ123∂0 f + γ013∂2 f .

Here the shorthand γi jk = γiγ jγk has been used. Can we factor out a 4D pseudoscalar from
this and end up with a coherent result? We have

γ0123γ
3 = γ012 (43.15a)

γ0123γ
1 = γ023 (43.15b)

γ0123γ
0 = −γ123 (43.15c)

γ0123γ
2 = −γ013. (43.15d)

This gives us

d3 p = p0 ∧ p1 ∧ p2 = γ0123
(
γ3 − γ1∂1 f − γ0∂0 f − γ2∂2 f

)
. (43.16)

With the usual 4d gradient definition (sum implied)

(43.17)∇ = γµ∂µ,

we have

(43.18)
∇x3 = γµ∂µx3

= γµδµ
3

= γ3,

so we can write

(43.19)d3 p = γ0123∇
(
x3 − f (x0, x1, x2)

)
,

so, finally, the “normal” to this surface volume element at this point is
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n = ∇
(
x3 − f (x0, x1, x2)

)
. (43.20)

This is just like the 3D Euclidean result, with the exception that we need to look at the dual
of a 3-volume “surface” instead of our normal 2D surface.

It may seem curious that we had to specify an Euclidean metric for the 3D case, but did not
here. That doesn’t mean this is a metric free result. Instead, the metric choice is built into the
definition of the gradient eq. (43.17) and its associated reciprocal basis. For example with a 1, 3
metric where γ2

0 = 1, γ2
k = −1, we have γ0 = γ0 and γk = −γk.





44
S T O K E S ’ T H E O R E M

The subject of differential forms is one way to obtain an understanding of how to apply Stokes
theorem to higher dimensional spaces, non-Euclidean metrics, and curvilinear coordinate sys-
tems. The formalism of differential forms requires reexpressing physical quantities as “forms”.
A notable example, as given in [10], introduces a two-form for the Faraday field

(44.1)α =
(
E1dx1 + E2dx2 + E3dx3

)
∧ (cdt) +

(
H1dx2 ∧ dx3H2dx3 ∧ dx1H3dx1 ∧ dx2

)
.

With a metric for which (cdt, cdt) = −1, and a cooresponding notion of duality (*), Maxwell’s
equations for freespace become

dα = 0

d∗α = 0.
(44.2)

These are equivalent to the usual pair of tensor equations

∂iFi j = 0

εi jkl∂ jFkl = 0
, (44.3)

or the Geometric Algebra equation

(44.4)∇F = 0.

An aspect of differential forms that I found unintuitive, is that all physical quantities have to
be expressed as forms, even when we have no pressing desire to integrate them. It also seemed
to me that it ought to be possible to express volume and area elements in parameterized spaces
directly as wedge products. For example, given a two parameter surface of all the points that
can be traced out on x(u, v), we can express the (oriented) area of a patch of that surface directly
as

(44.5)dA =

(
du
∂x
∂u

)
∧

(
dv
∂x
∂v

)
.

With such a capability is the abstract notion of a form really required? Can we stick with the
vector notation that we are comfortable with, perhaps just generalizing slightly? How would
something like Stokes theorem, a basic tool needed to tackle so many problems in electromag-
netism, be expressed so that it acted on vectors directly?

335
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An answer to this question was found in Denker’s straight wire treatment [6], which states
that the geometric algebra formulation of Stokes theorem has the form

∫
S
∇∧ F =

∫
∂S

F. (44.6)

This looks simple enough, but there are some important details left out. In particular the
grades do not match, so there must be some sort of implied projection or dot product. We also
need to understand how to express the hypervolume and hypersurfaces when evaluating these
integrals, especially when we want to use curvilinear coordinates.

If one restricts attention to the special case where the dimension of the integration volume
also equaled the dimension of the vector space, so that the grade of the curl matches the grade
of the space (i.e. integration of a two form

∫
d2x · (∇∧ f) in a two dimensional space), then

some of those important details are not difficult to work out.
To treat a more general case, such as the same two form

∫
d2x · (∇∧ f) in a space of dimension

greater than two, we need to introduce the notion of tangent space. That concept can also be
found in differential forms, but can also be expressed directly in vector algebra. Suppose, for
example, that x(u, v,w) parameterizes a subspace, the the tangent space at the point of evaluation
is the space that is spanned by {∂x/∂u, ∂x/∂v, ∂x/∂w}. Stokes theorem is expressed not in terms
of the gradient ∇, but in terms of the projection of the gradient onto the tangent space. This
projection denoted by ∂ and called the vector derivative. The concept of tangent space and and
vector derivative are covered thoroughly in [24], which also introduces Stokes theorem as a
special case of a more fundamental theorem for integration of geometric algebraic objects.

The objective of this chapter is to detail the Geometric Algebra form of Stokes theorem, and
not the fundamental theorem of geometric calculus. Specific aims include the generalization
of Stokes theorem to higher dimensional spaces and non-Euclidean metrics and understanding
how to properly deal with curvilinear coordinates. An understanding of both non-Euclidean and
higher dimenional spaces is required for special relativity and electromagnetism. This general-
ization has the form

Theorem 44.1: Stokes’ Theorem

For blades F ∈
∧s, and m volume element dkx, s < k,

∫
V

dkx · (∂∧ F) =

∫
∂V

dk−1x · F.
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Here the volume integral is over a m dimensional surface (manifold). The derivative
operator ∂ is called the vector derviative and is the projection of the gradient onto the
tangent space of the manifold. Integration over the boundary of V is indicated by ∂V .

The vector derivative is defined by

∂ = xi∂i =
∑

i

xi
∂

∂ui . (44.7)

where xi are reciprocal frame vectors dual to the tangent vector basis xi associated with the
parameters u1, u2, · · ·. These will be defined in more detail in the next section. Once the volume
element, vector product and the other concepts are defined, the proof of Stokes theorem is really
just a statement that

∫
V

dkx · (xi∂i ∧ F) =

∫
V

(
dkx · xi

)
· ∂iF. (44.8)

This dot product expansion applies to any degree blade and volume element provided the
degree of the blade is less than that of the volume element (i.e. s < k). That magic follows
directly from theorem B.1.

This dot product defines the oriented surface “area” elements associated with the “volume”
element dkx. That area element is

dk−1x =
∑

i

dkx · xi. (44.9)

The ith contribution dkx · xi to this area elements is evaluated with the associated parameter
ui held constant, which allows the right hand side integral of eq. (44.8) to be evaluated for each
i independently. This means the area element dk−1x and the blade F that it is dotted with in
Stokes theorem, are both evaluated at the end points of integration variable ui that has been
integrated against.

Some work is required to make sense of these concepts and fully detail the meaning of all the
terms in this statement of Stokes Theorem. I will attempt to do so in a gradual fashion, providing
a number of examples such as that of eq. (44.27), and eq. (44.28), which illustrate some of the
relevant details.

Before we can get there, we need some notation for curvilinear coordinates, and need to
define the reciprocal frame vectors xi used in the expansion of the vector derivative curl.
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44.1 curvilinear coordinates

A finite vector space, not necessarily Euclidean, with basis {e1, e2, · · ·} will be assumed to be
the generator of the geometric algebra. A dual or reciprocal basis

{
e1, e2, · · ·

}
for this basis can

be calculated, defined by the property

ei · e j = δi
j. (44.10)

This is an Euclidean space when ei = ei,∀i.
For our purposes a manifold can be loosely defined as a parameterized surface. For example,

a 2D manifold can be considered a surface in an n dimensional vector space, parameterized by
two variables

x = x(a, b) = x(u1, u2). (44.11)

Note that the indices here do not represent exponentiation. We can construct a basis for the
manifold as

xi =
∂x
∂ui . (44.12)

On the manifold we can calculate a reciprocal basis
{
xi
}
, defined by requiring, at each point

on the surface

xi · x j = δi
j. (44.13)

Associated implicitly with this basis is a curvilinear coordinate representation defined by the
projection operation

x = xixi, (44.14)

(sums over mixed indices are implied). These coordinates can be calculated by taking dot
products with the reciprocal frame vectors

(44.15)
x · xi = x jx j · xi

= x jδ j
i

= xi.
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In this document all coordinates are with respect to a specific curvilinear basis, and not with
respect to the standard basis {ei} or its dual basis unless otherwise noted.

Similar to the usual notation for derivatives with respect to the standard basis coordinates we
form a lower index partial derivative operator

(44.16)
∂

∂ui ≡ ∂i,

so that when the complete vector space is spanned by {xi} the gradient has the curvilinear
representation

(44.17)∇ = xi ∂

∂ui .

When the basis {xi} does not span the space, the projection of the gradient onto the tangent
space at the point of evaluation is given by eq. (44.7).

44.2 green’s theorem

Given a two parameter (u, v) surface parameterization, the curvilinear coordinate representation
of a vector f has the form

(44.18)f = fuxu + fvxv + f⊥x⊥.

We assume that the vector space is of dimension two or greater but otherwise unrestricted,
and need not have an Euclidean basis. Here f⊥x⊥ denotes the rejection of f from the tangent
space at the point of evaluation. Green’s theorem relates the integral around a closed curve to
an “area” integral on that surface

Theorem 44.2: Green’s Theorem

�
f · dl =

" (
−
∂ fu
∂v

+
∂ fv
∂u

)
dudv

Following the arguments used in [28] for Stokes theorem in three dimensions, we first evalu-
ate the loop integral along the differential element of the surface at the point x(u0, v0) evaluated
over the range (du, dv), as shown in the infinitesimal loop of fig. 44.1.

Over the infinitesimal area, the loop integral decomposes into

(44.19)
�

f · dl =

∫
f · dx1 +

∫
f · dx2 +

∫
f · dx3 +

∫
f · dx4,
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Figure 44.1: Infinitesimal loop integral

where the differentials along the curve are

(44.20)

dx1 =
∂x
∂u

∣∣∣∣∣
v=v0

du

dx2 =
∂x
∂v

∣∣∣∣∣
u=u0+du

dv

dx3 = −
∂x
∂u

∣∣∣∣∣
v=v0+dv

du

dx4 = −
∂x
∂v

∣∣∣∣∣
u=u0

dv.

It is assumed that the parameterization change (du, dv) is small enough that this loop integral
can be considered planar (regardless of the dimension of the vector space). Making use of the
fact that x⊥ · xα = 0 for α ∈ {u, v}, the loop integral is�

f · dl =

∫ (
fuxu + fvxv + f⊥x⊥

)
·(xu(u, v0)du−xu(u, v0 +dv)du+xv(u0 +du, v)dv−xv(u0, v)dv)

=

∫
fu(u, v0)du − fu(u, v0 + dv)du + fv(u0 + du, v)dv − fv(u0, v)dv

(44.21)

With the distances being infinitesimal, these differences can be rewritten as partial differen-
tials

(44.22)
�

f · dl =

" (
−
∂ fu
∂v

+
∂ fv
∂u

)
dudv.

We can now sum over a larger area as in fig. 44.2
All the opposing oriented loop elements cancel, so the integral around the complete boundary

of the surface x(u, v) is given by the u, v area integral of the partials difference.
We will see that Green’s theorem is a special case of the Stokes theorem. This observation

will also provide a geometric interpretation of the right hand side area integral of theorem 44.2,
and allow for a coordinate free representation.
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Figure 44.2: Sum of infinitesimal loops

Special case: An important special case of Green’s theorem is for a Euclidean two dimen-
sional space where the vector function is

(44.23)f = Pe1 + Qe2.

Here Green’s theorem takes the form

�
Pdx + Qdy =

" (
∂Q
∂x
−
∂P
∂y

)
dxdy. (44.24)

44.3 stokes theorem , two volume vector field

Having examined the right hand side of theorem 44.1 for the very simplest geometric object f,
let’s look at the right hand side, the area integral in more detail. We restrict our attention for
now to vectors f still defined by eq. (44.18).

First we need to assign a meaning to d2x. By this, we mean the wedge products of the two
differential elements. With

(44.25)dxi = dui ∂x
∂ui

= duixi,

that area element is

d2x = dx1 ∧ dx2 = du1du2x1 ∧ x2. (44.26)

This is the oriented area element that lies in the tangent plane at the point of evaluation, and
has the magnitude of the area of that segment of the surface, as depicted in fig. 44.3.
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Figure 44.3: Oriented area element tiling of a surface

Observe that we have no requirement to introduce a normal to the surface to describe the
direction of the plane. The wedge product provides the information about the orientation of the
place in the space, even when the vector space that our vector lies in has dimension greater than
three.

Proceeding with the expansion of the dot product of the area element with the curl, using
scalar selection

(44.27)

d2x · (∂ ∧ f) =
〈
d2x (∂ ∧ f)

〉
=

〈
d2x

1
2

(
→

∂f − f
←

∂
)〉

=
1
2

〈
d2x

(
xi (∂if) − (∂if) xi

)〉
=

1
2

〈
(∂if) d2x xi − (∂if) xid2x

〉
=

〈
(∂if)

(
d2x · xi

)〉
= ∂if ·

(
d2x · xi

)
.

Let’s proceed to expand the inner dot product

(44.28)
d2x · xi = du1du2 (x1 ∧ x2) · xi

= du1du2
(
x2 · xix1 − x1 · xix2

)
= du1du2

(
δ2

ix1 − δ1
ix2

)
.

The complete curl term is thus
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(44.29)d2x · (∂ ∧ f) = du1du2
(
∂f
∂u2 · x1 −

∂f
∂u1 · x2

)
This almost has the form of eq. (44.22), although that is not immediately obvious. Working

backwards, using the shorthand u = u1, v = u2, we can show that this coordinate representation
can be eliminated

(44.30)

−dudv
(
∂ fv
∂u
−
∂ fu
∂v

)
= dudv

(
∂

∂v
(f · xu) −

∂

∂u
(f · xv)

)
= dudv

(
∂f
∂v
· xu −

∂f
∂u
· xv + f ·

(
∂xu

∂v
−
∂xv

∂u

))
= dudv

(
∂f
∂v
· xu −

∂f
∂u
· xv + f ·

(
∂2x
∂v∂u

−
∂2x
∂u∂v

))
= dudv

(
∂f
∂v
· xu −

∂f
∂u
· xv

)
= d2x · (∂ ∧ f) .

This relates the two parameter surface integral of the curl to the loop integral over its bound-
ary

∫
d2x · (∂∧ f) =



f · dl. (44.31)

This is the very simplest special case of Stokes theorem. When written in the general form of
Stokes theorem 44.1

∫
A

d2x · (∂∧ f) =

∫
∂A

d1x · f =

∫
∂A

(dx1 − dx2) · f, (44.32)

we must remember (the ∂A is to remind us of this) that it is implied that both the vector f and
the differential elements are evaluated on the boundaries of the integration ranges respectively.
A more exact statement is

∫
∂A

d1x · f =

∫
f · dx1|∆u2 − f · dx2|∆u1 =

∫
f1|∆u2du1 − f2|∆u1du2. (44.33)

Expanded out in full this is

∫
f · dx1|u2(1) − f · dx1|u2(0) + f · dx2|u1(0) − f · dx2|u1(1), (44.34)
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which can be cross checked against fig. 44.4 to demonstrate that this specifies a clockwise
orientation. For the surface with oriented area dx1 ∧ dx2, the clockwise loop is designated with
line elements (1)-(4), we see that the contributions around this loop (in boxes) match eq. (44.34).

Figure 44.4: Clockwise loop

Example 44.1: Green’s theorem, a 2D Cartesian parameterization for a Euclidean space

For a Cartesian 2D Euclidean parameterization of a vector field and the integration space,
Stokes theorem should be equivalent to Green’s theorem eq. (44.24). Let’s expand both
sides of eq. (44.31) independently to verify equality. The parameterization is

(44.35)x(x, y) = xe1 + ye2.

Here the dual basis is the basis, and the projection onto the tangent space is just the
gradient

∂ = ∇ = e1
∂

∂x
+ e2

∂

∂y
. (44.36)

The volume element is an area weighted pseudoscalar for the space

d2x = dxdy
∂x
∂x
∧
∂x
∂y

= dxdye1e2, (44.37)

and the curl of a vector f = f1e1 + f2e2 is
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(44.38)
∂ ∧ f =

(
e1
∂

∂x
+ e2

∂

∂y

)
∧ ( f1e1 + f2e2)

= e1e2

(
∂ f2
∂x
−
∂ f1
∂y

)
.

So, the LHS of Stokes theorem takes the coordinate form

(44.39)
∫

d2x · (∂ ∧ f) =

"
dxdy 〈e1e2e1e2〉

= −1 (
∂ f2
∂x
−
∂ f1
∂y

)
.

For the RHS, following fig. 44.5, we have

(44.40)



f · dx = f2(x0, y)dy + f1(x, y1)dx − f2(x1, y)dy − f1(x, y0)dx

=

∫
dx ( f1(x, y1) − f1(x, y0)) −

∫
dy ( f2(x1, y) − f2(x0, y)) .

As expected, we can also obtain this by integrating eq. (44.39).

Figure 44.5: Euclidean 2D loop

Example 44.2: Cylindrical parameterization

Let’s now consider a cylindrical parameterization of a 4D space with Euclidean metric
+ + ++ or Minkowski metric + + +−. For such a space let’s do a brute force expansion of
both sides of Stokes theorem to gain some confidence that all is well.

With κ = e3e4, such a space is conveniently parameterized as illustrated in fig. 44.6 as

(44.41)x(ρ, θ, h) = xe1 + ye2 + ρe3eκθ.
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Figure 44.6: Cylindrical polar parameterization

Note that the Euclidean case where (e4)
2

= 1 rejection of the non-axial components of
x expands to

(44.42)
(
(x ∧ e1 ∧ e2) · e2

)
· e1 = ρ (e3 cos θ + e4 sin θ) ,

whereas for the Minkowski case where (e4)
2

= −1 the expansion is hyperbolic

(44.43)
(
(x ∧ e1 ∧ e2) · e2

)
· e1 = ρ (e3 cosh θ + e4 sinh θ) .

Within such a space consider the surface along x = c, y = d, for which the vectors are
parameterized by

(44.44)x(ρ, θ) = ce1 + de2 + ρe3eκθ.

The tangent space unit vectors are

(44.45)xρ =
∂x
∂ρ

= e3eκθ,

and

(44.46)
xθ =

∂x
∂θ

= ρe3e3e4eκθ

= ρe4eκθ.

Observe that both of these vectors have their origin at the point of evaluation, and aren’t
relative to the absolute origin used to parameterize the complete space.

We wish to compute the volume element for the tangent plane. Noting that e3 and e4

both anticommute with κ we have for a ∈ span {e3, e4}
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(44.47)aeκθ = e−κθa,

so

(44.48)
xθ ∧ xρ =

〈
e3eκθρe4eκθ

〉
2

= ρ
〈
e3eκθe−κθe4

〉
2

= ρe3e4.

The tangent space volume element is thus

(44.49)d2x = ρdρdθe3e4.

With the tangent plane vectors both perpendicular we don’t need the general theo-
rem B.6 to compute the reciprocal basis, but can do so by inspection

xρ = e−κθe3, (44.50)

and

xθ = e−κθe4 1
ρ
. (44.51)

Observe that the latter depends on the metric signature.
The vector derivative, the projection of the gradient on the tangent space, is

(44.52)
∂ = xρ

∂

∂ρ
+ xθ

∂

∂θ

= e−κθ
(
e3∂ρ +

e4

ρ
∂θ

)
.

From this we see that acting with the vector derivative on a scalar radial only dependent
function f (ρ) is a vector function that has a radial direction, whereas the action of the vector
derivative on an azimuthal only dependent function g(θ) is a vector function that has only
an azimuthal direction. The interpretation of the geometric product action of the vector
derivative on a vector function is not as simple since the product will be a multivector.

Expanding the curl in coordinates is messier, but yields in the end when tackled with
sufficient care
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(44.53)

∂ ∧ f =

〈
e−κθ

(
e3∂ρ +

e4

ρ
∂θ

) (
��e1x +��e2y + e3eκθ fρ +

e4

ρ
eκθ fθ

)〉
2

=
((((

((((
((〈

e−κθe3∂ρ
(
e3eκθ fρ

)〉
2

+

〈
��e−κθe3∂ρ

(
e4

ρ
��eκθ fθ

)〉
2

+

〈
e−κθ

e4

ρ
∂θ

(
e3eκθ fρ

)〉
2

+

〈
e−κθ

e4

ρ
∂θ

(
e4

ρ
eκθ fθ

)〉
2

= e3e4
(
−

fθ
ρ2 +

1
ρ
∂ρ fθ −

1
ρ
∂θ fρ

)
+

1
ρ2

〈
e−κθ

(
e4

)2
(e3e4 fθ +��

�∂θ fθ) eκθ
〉

2

= e3e4
(
−

fθ
ρ2 +

1
ρ
∂ρ fθ −

1
ρ
∂θ fρ

)
+

1
ρ2

〈
��e−κθe3e4 fθ��eκθ

〉
2

=
e3e4

ρ

(
∂ρ fθ − ∂θ fρ

)
.

After all this reduction, we can now state in coordinates the LHS of Stokes theorem
explicitly

(44.54)

∫
d2x · (∂ ∧ f) =

∫
ρdρdθ

〈
e3e4e3e4

〉 1
ρ

(
∂ρ fθ − ∂θ fρ

)
=

∫
dρdθ

(
∂θ fρ − ∂ρ fθ

)
=

∫
dρ fρ

∣∣∣
∆θ −

∫
dθ fθ|∆ρ.

Now compare this to the direct evaluation of the loop integral portion of Stokes theorem.
Expressing this using eq. (44.33), we have the same result

∫
d2x · (∂∧ f) =

∫
fρ
∣∣∣
∆θdρ − fθ|∆ρdθ (44.55)

This example highlights some of the power of Stokes theorem, since the reduction of the
volume element differential form was seen to be quite a chore (and easy to make mistakes
doing.)

Example 44.3: Composition of boost and rotation
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Working in a
∧1,3 space with basis {γ0, γ1, γ2, γ3} where (γ0)

2
= 1 and (γk)

2
= −1, k ∈

{1, 2, 3}, an active composition of boost and rotation has the form

x′ = eiα/2x0e−iα/2

x′′ = e− jθ/2x′e jθ/2 , (44.56)

where i is a bivector of a timelike unit vector and perpendicular spacelike unit vector,
and j is a bivector of two perpendicular spacelike unit vectors. For example, i = γ0γ1 and
j = γ1γ2. For such i, j the respective Lorentz transformation matrices are


x0

x1

x2

x3



′

=


coshα − sinhα 0 0

− sinhα coshα 0 0

0 0 1 0

0 0 0 1




x0

x1

x2

x3


, (44.57)

and


x0

x1

x2

x3



′′

=


1 0 0 0

0 cos θ sin θ 0

0 − sin θ cos θ 0

0 0 0 1




x0

x1

x2

x3



′

. (44.58)

Let’s calculate the tangent space vectors for this parameterization, assuming that the
particle is at an initial spacetime position of x0. That is

x = e− jθ/2eiα/2x0e−iα/2e jθ/2. (44.59)

To calculate the tangent space vectors for this subspace we note that

∂x′

∂α
=

i
2

x0 − x0
i
2

= i · x0, (44.60)

and

∂x′′

∂θ
= −

j
2

x′ + x′
j
2

= x′ · j. (44.61)
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The tangent space vectors are therefore

xα = e− jθ/2 (i · x0) e jθ/2

xθ =
(
eiα/2x0e−iα/2

)
· j.

(44.62)

Continuing a specific example where i = γ0γ1, j = γ1γ2 let’s also pick x0 = γ0, the
spacetime position of a particle at the origin of a frame at that frame’s ct = 1. The tangent
space vectors for the subspace parameterized by this transformation and this initial position
is then reduced to

(44.63)xα = −γ1e jθ

= γ1 sin θ + γ2 cos θ,

and

(44.64)

xθ =
(
γ0e−iα

)
· j

= (γ0 (coshα − γ0γ1 sinhα)) · (γ1γ2)
= 〈(γ0 coshα − γ1 sinhα) γ1γ2〉1
= γ2 sinhα.

By inspection the dual basis for this parameterization is

xα = γ1e jθ

xθ =
γ2

sinhα

(44.65)

So, Stokes theorem, applied to a spacetime vector f, for this subspace is

∫
dαdθ sinhα sin θ (γ1γ2) ·

((
γ1e jθ∂α +

γ2

sinhα
∂θ

)
∧ f

)
=

∫
dα f · (γ1e jθ)

∣∣∣θ1

θ0
−

∫
dθ f · (γ2 sinhα)

∣∣∣α1

α0
.

(44.66)

Since the point is to avoid the curl integral, we did not actually have to state it explicitly,
nor was there any actual need to calculate the dual basis.
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Example 44.4: Dual representation in three dimensions

It’s clear that there is a projective nature to the differential form d2x · (∂∧ f). This projec-
tive nature allows us, in three dimensions, to re-express Stokes theorem using the gradient
instead of the vector derivative, and to utilize the cross product and a normal direction to
the plane.

When we parameterize a normal direction to the tangent space, so that for a 2D tangent
space spanned by curvilinear coordinates x1 and x2 the vector x3 is normal to both, we can
write our vector as

f = f1x1 + f2x2 + f3x3, (44.67)

and express the orientation of the tangent space area element in terms of a pseudoscalar
that includes this normal direction

x1 ∧ x2 = x3 · (x1 ∧ x2 ∧ x3) = x3 (x1 ∧ x2 ∧ x3) . (44.68)

Inserting this into an expansion of the curl form we have

(44.69)
d2x · (∂ ∧ f) = du1du2

〈
x3 (x1 ∧ x2 ∧ x3)


∑

i=1,2

xi∂i

 ∧ f

〉
= du1du2x3 ·

(
(x1 ∧ x2 ∧ x3) · (∇ ∧ f) − (x1 ∧ x2 ∧ x3) ·

(
x3∂3 ∧ f

))
.

Observe that this last term, the contribution of the component of the gradient perpendic-
ular to the tangent space, has no x3 components

(44.70)

(x1 ∧ x2 ∧ x3) ·
(
x3∂3 ∧ f

)
= (x1 ∧ x2 ∧ x3) ·

(
x3 ∧ ∂3f

)
=

(
(x1 ∧ x2 ∧ x3) · x3

)
· ∂3f

= (x1 ∧ x2) · ∂3f
= x1 (x2 · ∂3f) − x2 (x1 · ∂3f) ,

leaving

(44.71)d2x · (∂ ∧ f) = du1du2x3 · ((x1 ∧ x2 ∧ x3) · (∇ ∧ f)) .
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Now scale the normal vector and its dual to have unit norm as follows

x3 = αx̂3

x3 =
1
α

x̂3,
(44.72)

so that for β > 0, the volume element can be

(44.73)x1 ∧ x2 ∧ x̂3 = βI.

This scaling choice is illustrated in fig. 44.7, and represents the “outwards” normal. With
such a scaling choice we have

Figure 44.7: Outwards normal

(44.74)βdu1du2 = dA,

and almost have the desired cross product representation

(44.75)d2x · (∂ ∧ f) = dAx̂3 · (I · (∇ ∧ f))
= dAx̂3 · (I (∇ ∧ f)) .

With the duality identity a∧ b = I (a × b), we have the traditional 3D representation of
Stokes theorem

∫
d2x · (∂∧ f) = −

∫
dAx̂3 · (∇ × f) =



f · dl. (44.76)

Note that the orientation of the loop integral in the traditional statement of the 3D Stokes
theorem is counterclockwise instead of clockwise, as written here.
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44.4 stokes theorem , three variable volume element parameterization

Let’s now proceed to evaluate the area elements defined by eq. (44.8) for a three variable pa-
rameterization, and a vector blade f

(44.77)

d3x · (∂ ∧ f) =
(
d3x · xi

)
· ∂if

= du1du2du3
(
(x1 ∧ x2 ∧ x3) · xi

)
· ∂if

= du1du2du3
(
(x1 ∧ x2) δ3

i − (x1 ∧ x3) δ2
i + (x2 ∧ x3) δ1

i
)
· ∂if

= du1du2du3 ((x1 ∧ x2) · ∂3f − (x1 ∧ x3) · ∂2f + (x2 ∧ x3) · ∂1f) .

It should not be surprising that this has the structure found in the theory of differential forms.
Using the differentials for each of the parameterization “directions”, we can write this dot prod-
uct expansion as

(44.78)d3x · (∂ ∧ f) = du3 (dx1 ∧ dx2) · ∂3f − du2 (dx1 ∧ dx3) · ∂2f + du1 (dx2 ∧ dx3) · ∂1f.

Observe that the sign changes with each element of dx1 ∧ dx2 ∧ dx3 that is skipped. In dif-
ferential forms, the wedge product composition of 1-forms is an abstract quantity. Here the
differentials are just vectors, and their wedge product represents an oriented volume element.
This interpretation is likely available in the theory of differential forms too, but is arguably less
obvious.

As was the case with the loop integral, we expect that the coordinate representation has a
representation that can be expressed as a number of antisymmetric terms. A bit of experi-
mentation shows that such a sum, after dropping the parameter space volume element factor,
is

(44.79)

x1 (−∂2 f3 + ∂3 f2) + x2 (−∂3 f1 + ∂1 f3) + x3 (−∂1 f2 + ∂2 f1)
= x1 (−∂2f · x3 + ∂3f · x2) + x2 (−∂3f · x1 + ∂1f · x3) + x3 (−∂1f · x2 + ∂2f · x1)
= (x1∂3f · x2 − x2∂3f · x1) + (x3∂2f · x1 − x1∂2f · x3) + (x2∂1f · x3 − x3∂1f · x2)
= (x1 ∧ x2) · ∂3f + (x3 ∧ x1) · ∂2f + (x2 ∧ x3) · ∂1f.

Digression

To proceed with the integration, we must again consider an infinitesimal volume element, for
which the partial can be evaluated as the difference of the endpoints, with all else held constant.
For this three variable parameterization, say, (u, v,w), let’s delimit such an infinitesimal volume
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element by the parameterization ranges [u0, u0 + du], [v0, v0 + dv], [w0,w0 + dw]. The integral
is

∫ u0+du

u=u0

∫ v0+dv

v=v0

∫ w0+dw

w=w0

d3x · (∂∧ f) =

∫ u0+du

u=u0

du
∫ v0+dv

v=v0

dv ((xu ∧ xv) · f)
∣∣∣w0+dw
w=w0

−

∫ u0+du

u=u0

du
∫ w0+dw

w=w0

dw ((xu ∧ xw) · f)
∣∣∣v0+dv
v=v0

+

∫ v0+dv

v=v0

dv
∫ w0+dw

w=w0

dw ((xv ∧ xw) · f)
∣∣∣u0+du
u=u0

.

(44.80)

Extending this over the ranges [u0, u0 + ∆u], [v0, v0 + ∆v], [w0,w0 + ∆w], we have proved
Stokes theorem 44.1 for vectors and a three parameter volume element, provided we have a
surface element of the form

(44.81)d2x = (dxu ∧ dxv)
∣∣∣w1

w=w0
− (dxu ∧ dxw)

∣∣∣v1

v=v0
+ (dxv ∧ xw)

∣∣∣u1

u=u0
,

where the evaluation of the dot products with f are also evaluated at the same points.

Example 44.5: Euclidean spherical polar parameterization of 3D subspace

Consider an Euclidean space where a 3D subspace is parameterized using spherical coor-
dinates, as in

x(x, ρ, θ, φ) = e1x + e4ρ exp
(
e4e2ee2e3φθ

)
= (x, ρ sin θ cos φ, ρ sin θ sin φ, ρ cos θ) . (44.82)

The tangent space basis for the subspace situated at some fixed x = x0, is easy to calcu-
late, and is found to be

xρ = (0, sin θ cos φ, sin θ sin φ, cos θ) = e4 exp
(
e4e2ee2e3φθ

)
xθ = ρ (0, cos θ cos φ, cos θ sin φ,− sin θ) = ρe2ee2e3φ exp

(
e4e2ee2e3φθ

)
xφ = ρ (0,− sin θ sin φ, sin θ cos φ, 0) = ρ sin θe3ee2e3φ.

(44.83)

While we can use the general relation of theorem B.7 to compute the reciprocal basis.
That is

a∗ = (b∧ c)
1

a∧ b∧ c
. (44.84)
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However, a naive attempt at applying this without algebraic software is a route that
requires a lot of care, and is easy to make mistakes doing. In this case it is really not
necessary since the tangent space basis only requires scaling to orthonormalize, satisfying
for i, j ∈ {ρ, θ, φ}

xi · x j =


1 0 0

0 ρ2 0

0 0 ρ2 sin2 θ

 . (44.85)

This allows us to read off the dual basis for the tangent volume by inspection

xρ = e4 exp
(
e4e2ee2e3φθ

)
xθ =

1
ρ

e2ee2e3φ exp
(
e4e2ee2e3φθ

)
xφ =

1
ρ sin θ

e3ee2e3φ.

(44.86)

Should we wish to explicitly calculate the curl on the tangent space, we would need
these. The area and volume elements are also messy to calculate manually. This expansion
can be found in the Mathematica notebook sphericalSurfaceAndVolumeElements.nb , and
is

xθ ∧ xφ = ρ2 sin θ (e4e2 sin θ sin φ + e2e3 cos θ + e3e4 sin θ cos φ)

xφ ∧ xρ = ρ sin θ (−e2e3 sin θ − e2e4 cos θ sin φ + e3e4 cos θ cos φ)

xρ ∧ xθ = −e4ρ (e2 cos φ + e3 sin φ)

xρ ∧ xθ ∧ xφ = e2e3e4ρ
2 sin θ

(44.87)

Those area elements have a Geometric Algebra factorization that are perhaps useful

xθ ∧ xφ = −ρ2 sin θe2e3 exp
(
−e4e2ee2e3φθ

)
xφ ∧ xρ = ρ sin θe3e4ee2e3φ exp

(
e4e2ee2e3φθ

)
xρ ∧ xθ = −ρe4e2ee2e3φ

. (44.88)

One of the beauties of Stokes theorem is that we don’t actually have to calculate the
dual basis on the tangent space to proceed with the integration. For that calculation above,
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where we had a normal tangent basis, I still used software was used as an aid, so it is clear
that this can generally get pretty messy.

To apply Stokes theorem to a vector field we can use eq. (44.81) to write down the
integral directly

(44.89)

∫
V

d3x · (∂ ∧ f) =

∫
∂V

d2x · f

=

∫ (
xθ ∧ xφ

)
· f

∣∣∣∣ρ1

ρ=ρ0
dθdφ

+

∫ (
xφ ∧ xρ

)
· f

∣∣∣∣θ1

θ=θ0
dφdρ +

∫ (
xρ ∧ xθ

)
· f

∣∣∣∣φ1

φ=φ0
dρdθ.

Observe that eq. (44.89) is a vector valued integral that expands to

∫
(xθ fφ − xφ fθ)

∣∣∣ρ1

ρ=ρ0
dθdφ+

∫
(xφ fρ − xρ fφ)

∣∣∣θ1

θ=θ0
dφdρ+

∫
(xρ fθ − xθ fρ)

∣∣∣φ1

φ=φ0
dρdθ.

(44.90)

This could easily be a difficult integral to evaluate since the vectors xi evaluated at the
endpoints are still functions of two parameters. An easier integral would result from the
application of Stokes theorem to a bivector valued field, say B, for which we have

(44.91)

∫
V

d3x · (∂ ∧ B) =

∫
∂V

d2x · B

=

∫ (
xθ ∧ xφ

)
· B

∣∣∣∣ρ1

ρ=ρ0
dθdφ

+

∫ (
xφ ∧ xρ

)
· B

∣∣∣∣θ1

θ=θ0
dφdρ +

∫ (
xρ ∧ xθ

)
· B

∣∣∣∣φ1

φ=φ0
dρdθ

=

∫
Bφθ

∣∣∣ρ1

ρ=ρ0
dθdφ +

∫
Bρφ

∣∣∣θ1

θ=θ0
dφdρ +

∫
Bθρ

∣∣∣φ1

φ=φ0
dρdθ.

There is a geometric interpretation to these oriented area integrals, especially when writ-
ten out explicitly in terms of the differentials along the parameterization directions. Pulling
out a sign explicitly to match the geometry (as we had to also do for the line integrals in
the two parameter volume element case), we can write this as

∫
∂V

d2x ·B = −

∫
(dxφ ∧ dxθ) · B

∣∣∣ρ1

ρ=ρ0
−

∫
(dxρ ∧ dxφ) · B

∣∣∣θ1

θ=θ0
−

∫
(dxθ ∧ dxρ) · B

∣∣∣φ1

φ=φ0
.

(44.92)
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When written out in this differential form, each of the respective area elements is an
oriented area along one of the faces of the parameterization volume, much like the line in-
tegral that results from a two parameter volume curl integral. This is visualized in fig. 44.8.
In this figure, faces (1) and (3) are “top faces”, those with signs matching the tops of the
evaluation ranges eq. (44.92), whereas face (2) is a bottom face with a sign that is corre-
spondingly reversed.

Figure 44.8: Boundary faces of a spherical parameterization region

Example 44.6: Minkowski hyperbolic-spherical polar parameterization of 3D subspace

Working with a three parameter volume element in a Minkowski space does not change
much. For example in a 4D space with (e4)

2
= −1, we can employ a hyperbolic-spherical

parameterization similar to that used above for the 4D Euclidean space

x(x, ρ, α, φ) = {x, ρ sinhα cos φ, ρ sinhα sin φ, ρ coshα} = e1x + e4ρ exp
(
e4e2ee2e3φα

)
.

(44.93)

This has tangent space basis elements

xρ = sinhα (cos φe2 + sin φe3) + coshαe4 = e4 exp
(
e4e2ee2e3φα

)
xα = ρ coshα (cos φe2 + sin φe3) + ρ sinhαe4 = ρe2ee2e3φ exp

(
−e4e2ee2e3φα

)
xφ = ρ sinhα (e3 cos φ − e2 sin φ) = ρ sinhαe3ee2e3φ.

(44.94)
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This is a normal basis, but again not orthonormal. Specifically, for i, j ∈ {ρ, θ, φ}we have

xi · x j =


−1 0 0

0 ρ2 0

0 0 ρ2 sinh2 α

 , (44.95)

where we see that the radial vector xρ is timelike. We can form the dual basis again by
inspection

xρ = −e4 exp
(
e4e2ee2e3φα

)
xα =

1
ρ

e2ee2e3φ exp
(
−e4e2ee2e3φα

)
xφ =

1
ρ sinhα

e3ee2e3φ.

(44.96)

The area elements are

xα ∧ xφ = ρ2 sinhα (−e4e3 sinhα cos φ + coshαe2e3 + sinhα sin φe2e4)

xφ ∧ xρ = ρ sinhα (−e2e3 sinhα − e2e4 coshα sin φ + coshα cos φe3e4)

xρ ∧ xα = −e4ρ (cos φe2 + sin φe3) ,

(44.97)

or

xα ∧ xφ = ρ2 sinhαe2e3 exp
(
e4e2e−e2e3φα

)
xφ ∧ xρ = ρ sinhαe3e4ee2e3φ exp

(
e4e2ee2e3φα

)
xρ ∧ xα = −e4e2ρee2e3φ.

(44.98)

The volume element also reduces nicely, and is

xρ ∧ xα ∧ xφ = e2e3e4ρ
2 sinhα. (44.99)

The area and volume element reductions were once again messy, done in software us-
ing sphericalSurfaceAndVolumeElementsMinkowski.nb . However, we really only need
eq. (44.94) to perform the Stokes integration.
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44.5 stokes theorem , four variable volume element parameterization

Volume elements for up to four parameters are likely of physical interest, with the four volume
elements of interest for relativistic physics in

∧3,1 spaces. For example, we may wish to use a
parameterization u1 = x, u2 = y, u3 = z, u4 = τ = ct, with a four volume

(44.100)d4x = dxx ∧ dxy ∧ dxz ∧ dxτ,

We follow the same procedure to calculate the corresponding boundary surface “area” ele-
ment (with dimensions of volume in this case). This is

d4x · (∂ ∧ f) =
(
d4x · xi

)
· ∂if

= du1du2du3du4
(
(x1 ∧ x2 ∧ x3 ∧ x4) · xi

)
· ∂if

= du1du2du3du4
(
(x1 ∧ x2 ∧ x3) δ4

i − (x1 ∧ x2 ∧ x4) δ3
i + (x1 ∧ x3 ∧ x4) δ2

i

− (x2 ∧ x3 ∧ x4) δ1
i
)
· ∂if

= du1du2du3du4 ((x1 ∧ x2 ∧ x3) · ∂4f − (x1 ∧ x2 ∧ x4) · ∂3f + (x1 ∧ x3 ∧ x4) · ∂2f
− (x2 ∧ x3 ∧ x4) · ∂1f) .

(44.101)

Our boundary value surface element is therefore

(44.102)d3x = x1 ∧ x2 ∧ x3 − x1 ∧ x2 ∧ x4 + x1 ∧ x3 ∧ x4 − x2 ∧ x3 ∧ x4.

where it is implied that this (and the dot products with f) are evaluated on the boundaries of
the integration ranges of the omitted index. This same boundary form can be used for vector,
bivector and trivector variations of Stokes theorem.

44.6 duality and its relation to the pseudoscalar .

Looking to eq. (B.24) of theorem B.6, and scaling the wedge product a ∧ b by its absolute
magnitude, we can express duality using that scaled bivector as a pseudoscalar for the plane
that spans {a,b}. Let’s introduce a subscript notation for such scaled blades

(44.103)Iab =
a ∧ b
|a ∧ b|

.

This allows us to express the unit vector in the direction of a∗ as

a∗â∗ = b̂
|a∧ b|
a∧ b

= b̂
1

Iab
. (44.104)



360 stokes’ theorem

Following the pattern of eq. (B.24), it is clear how to express the dual vectors for higher
dimensional subspaces. For example

or for the unit vector in the direction of a∗,

a∗â∗ = Ibc
1

Iabc
.

44.7 divergence theorem .

When the curl integral is a scalar result we are able to apply duality relationships to obtain the
divergence theorem for the corresponding space. We will be able to show that a relationship of
the following form holds

∫
V

dV∇ · f =

∫
∂V

dAin̂i · f. (44.105)

Here f is a vector, n̂i is normal to the boundary surface, and dAi is the area of this bounding
surface element. We wish to quantify these more precisely, especially because the orientation of
the normal vectors are metric dependent. Working a few specific examples will show the pattern
nicely, but it is helpful to first consider some aspects of the general case.

First note that, for a scalar Stokes integral we are integrating the vector derivative curl of
a blade F ∈

∧k−1 over a k-parameter volume element. Because the dimension of the space
matches the number of parameters, the projection of the gradient onto the tangent space is
exactly that gradient

∫
V

dkx · (∂∧ F) =

∫
V

dkx · (∇∧ F). (44.106)

Multiplication of F by the pseudoscalar will always produce a vector. With the introduction
of such a dual vector, as in

(44.107)F = If,

Stokes theorem takes the form

(44.108)
∫

V
dkx · 〈∇If〉k =

∫
∂V

〈
dk−1xIf

〉
,

or

(44.109)
∫

V

〈
dkx∇If

〉
=

∫
∂V

(
dk−1xI

)
· f,
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where we will see that the vector dk−1xI can roughly be characterized as a normal to the
boundary surface. Using primes to indicate the scope of the action of the gradient, cyclic per-
mutation within the scalar selection operator can be used to factor out the pseudoscalar

(44.110)

∫
V

〈
dkx∇If

〉
=

∫
V

〈
f′dkx∇′I

〉
=

∫
V

〈
f′dkx∇′

〉
k
I

=

∫
V

(−1)k+1dkx (∇ · f) I

= (−1)k+1I2
∫

V
dV (∇ · f) .

The second last step uses theorem B.8, and the last writes dkx = I2
∣∣∣dkx

∣∣∣ = I2dV , where we
have assumed (without loss of generality) that dkx has the same orientation as the pseudoscalar
for the space. We also assume that the parameterization is non-degenerate over the integration
volume (i.e. no dxi = 0), so the sign of this product cannot change.

Let’s now return to the normal vector dk−1xI. With dk−1ui = du1du2 · · · dui−1dui+1 · · · duk (the
i indexed differential omitted), and Iab···c = (xa ∧ xb ∧ · · · ∧ xc)/|xa ∧ xb ∧ · · · ∧ xc|, we have

dk−1xI = dk−1ui (x1 ∧ x2 ∧ · · · ∧ xk) · xiI

= I12···(k−1)I|dx1 ∧ dx2 ∧ · · · ∧ dxk−1|

− I1···(k−2)kI|dx1 ∧ · · · ∧ dxk−2 ∧ dxk| + · · ·

(44.111)

We’ve seen in eq. (44.104) and theorem B.7 that the dual of vector a with respect to the unit
pseudoscalar Ib···cd in a subspace spanned by {a, · · · c,d} is

a∗â∗ = Ib···cd
1

Ia···cd
, (44.112)

or

a∗â∗I2
a···cd = Ib···cd. (44.113)

This allows us to write

dk−1xI = I2
∑

i

xix̂idA′i (44.114)
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where dA′i = ±dAi, and dAi is the area of the boundary area element normal to xi. Note that
the I2 term will now cancel cleanly from both sides of the divergence equation, taking both the
metric and the orientation specific dependencies with it.

This leaves us with

∫
V

dV∇ · f = (−1)k+1
∫
∂V

dA′ixix̂i · f. (44.115)

To spell out the details, we have to be very careful with the signs. However, that is a job best
left for specific examples.

Example 44.7: 2D divergence theorem

Let’s start back at

(44.116)
∫

A

〈
d2x∇If

〉
=

∫
∂A

(
d1xI

)
· f.

On the left our integral can be rewritten as

(44.117)

∫
A

〈
d2x∇If

〉
= −

∫
A

〈
d2xI∇f

〉
= −

∫
A

d2xI (∇ · f)

= −I2
∫

A
dA∇ · f,

where d2x = IdA and we pick the pseudoscalar with the same orientation as the volume
(area in this case) element I = (x1 ∧ x2)/|x1 ∧ x2|.

For the boundary form we have

(44.118)d1x = du2 (x1 ∧ x2) · x1 + du1 (x1 ∧ x2) · x2

= −du2x2 + du1x1.

The duality relations for the tangent space are

x2 = x1
1

x2 ∧ x1

x1 = x2
1

x1 ∧ x2

, (44.119)
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or

x2x̂2 = −x1x̂1
1
I

x1x̂1 = x2x̂2
1
I

. (44.120)

Back substitution into the line element gives

(44.121)d1x = −du2|x2|x2x̂2 + du1|x1|x1x̂1

= −du2|x2|x1x̂1I − du1|x1|x2x̂2I.

Writing (no sum) dui|xi| = dsi, we have

(44.122)d1xI = −

(
ds2x1x̂1 + ds1x2x̂2

)
I2.

This provides us a divergence and normal relationship, with −I2 terms on each side that
can be canceled. Restoring explicit range evaluation, that is

(44.123)

∫
A

dA∇ · f =

∫
∆u2

ds2x1x̂1 · f
∣∣∣∣
∆u1

+

∫
∆u1

ds1x2x̂2 · f
∣∣∣∣
∆u2

=

∫
∆u2

ds2x1x̂1 · f
∣∣∣∣
u1(1)
−

∫
∆u2

ds2x1x̂1 · f
∣∣∣∣
u1(0)

+

∫
∆u1

ds1x2x̂2 · f
∣∣∣∣
u2(0)
−

∫
∆u1

ds1x2x̂2 · f
∣∣∣∣
u2(0)

.

Let’s consider this graphically for an Euclidean metric as illustrated in fig. 44.9.

Figure 44.9: Normals on area element
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We see that

• along u2(0) the outwards normal is −x2x̂2,

• along u2(1) the outwards normal is x2x̂2,

• along u1(0) the outwards normal is −x1x̂1, and

• along u1(1) the outwards normal is x2x̂2.

Writing that outwards normal as n̂, we have

∫
A

dA∇ · f =

�
dsn̂ · f. (44.124)

Note that we can use the same algebraic notion of outward normal for non-Euclidean
spaces, although cannot expect the geometry to look anything like that of the figure.

Example 44.8: 3D divergence theorem

As with the 2D example, let’s start back with

(44.125)
∫

V

〈
d3x∇If

〉
=

∫
∂V

(
d2xI

)
· f.

In a 3D space, the pseudoscalar commutes with all grades, so we have

(44.126)

∫
V

〈
d3x∇If

〉
=

∫
V

(
d3xI

)
∇ · f

= I2
∫

V
dV∇ · f,

where d3xI = dVI2, and we have used a pseudoscalar with the same orientation as the
volume element

I = x123x̂123

x123 = x1 ∧ x2 ∧ x3.
(44.127)

In the boundary integral our dual two form is
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(44.128)
d2xI = du1du2x1 ∧ x2 + du3du1x3 ∧ x1 + du2du3x2 ∧ x3

=

(
dA3x12x̂12

1
I

+ dA2x31x̂31
1
I

+ dA1x23x̂23
1
I

)
I2,

where xi j = xi ∧ x j, and

dA1 = |dx2 ∧ dx3|

dA2 = |dx3 ∧ dx1|

dA3 = |dx1 ∧ dx2|.

(44.129)

Observe that we can do a cyclic permutation of a 3 blade without any change of sign,
for example

x1 ∧ x2 ∧ x3 = −x2 ∧ x1 ∧ x3 = x2 ∧ x3 ∧ x1. (44.130)

Because of this we can write the dual two form as we expressed the normals in theo-
rem B.7

(44.131)
d2xI =

(
dA1x23x̂23

1
x123x̂123

+ dA2x31x̂31
1

x231x̂231
+ dA3x12x̂12

1
x312x̂312

)
I2

=

(
dA1x1x̂1 + dA2x2x̂2 + dA3x3x̂3

)
I2.

We can now state the 3D divergence theorem, canceling out the metric and orientation
dependent term I2 on both sides

∫
V

dV∇ · f =

∫
dAn̂ · f, (44.132)

where (sums implied)

dAn̂ = dAixix̂i, (44.133)
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and

n̂|ui=ui(1) = xix̂i

n̂|ui=ui(0) = −xix̂i
. (44.134)

The outwards normals at the upper integration ranges of a three parameter surface are
depicted in fig. 44.10.

Figure 44.10: Outwards normals on volume at upper integration ranges.

This sign alternation originates with the two form elements (dxi ∧ dx j) · F from the
Stokes boundary integral, which were explicitly evaluated at the endpoints of the integral.
That is, for k , i, j,

∫
∂V

(dxi ∧ dx j) · F ≡
∫

∆ui

∫
∆u j

((dxi ∧ dx j) · F)
∣∣∣
uk=uk(1) − ((dxi ∧ dx j) · F)

∣∣∣
uk=uk(0)

(44.135)

In the context of the divergence theorem, this means that we are implicitly requiring
the dot products xkx̂k · f to be evaluated specifically at the end points of the integration
where uk = uk(1), uk = uk(0), accounting for the alternation of sign required to describe
the normals as uniformly outwards.

Example 44.9: 4D divergence theorem

Applying Stokes theorem to a trivector T = If in the 4D case we find
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(44.136)−I2
∫

V
d4x∇ · f =

∫
∂V

(
d3xI

)
· f.

Here the pseudoscalar has been picked to have the same orientation as the hypervolume
element d4x = Id4x. Writing xi j···k = xi ∧ x j ∧ · · · xk the dual of the three form is

d3xI =
(
du1du2du3x123 − du1du2du4x124 + du1du3du4x134 − du2du3du4x234

)
I

=
(
dA123x123x̂123 − dA124x124x̂124 + dA134x134x̂134 − dA234x234x̂234

)
I

=

(
dA123x123x̂123

1
x1234x̂1234

− dA124x124x̂124
1

x1234x̂1234
+ dA134x134x̂134

1
x1234x̂1234

− dA234x234x̂234
1

x1234x̂1234

)
I2

= −

(
dA123x123x̂123

1
x4123x̂4123

+ dA124x124x̂124
1

x3412x̂3412
+ dA134x134x̂134

1
x2341x̂2341

+ dA234x234x̂234
1

x1234x̂1234

)
I2

= −

(
dA123x123x̂123

1
x4123x̂4123

+ dA124x412x̂412
1

x3412x̂3412
+ dA134x341x̂341

1
x2341x̂2341

+ dA234x234x̂234
1

x1234x̂1234

)
I2

= −

(
dA123x4x̂4 + dA124x3x̂3 + dA134x2x̂2 + dA234x1x̂1

)
I2

(44.137)

Here, we’ve written

(44.138)dAi jk =
∣∣∣dxi ∧ dx j ∧ dxk

∣∣∣.
Observe that the dual representation nicely removes the alternation of sign that we had

in the Stokes theorem boundary integral, since each alternation of the wedged vectors in
the pseudoscalar changes the sign once.
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As before, we define the outwards normals as n̂ = ±xix̂i on the upper and lower integra-
tion ranges respectively. The scalar area elements on these faces can be written in a dual
form

dA4 = dA123

dA3 = dA124

dA2 = dA134

dA1 = dA234

, (44.139)

so that the 4D divergence theorem looks just like the 2D and 3D cases

∫
V

d4x∇ · f =

∫
∂V

d3xn̂ · f. (44.140)

Here we define the volume scaled normal as

d3xn̂ = dAixix̂i. (44.141)

As before, we have made use of the implicit fact that the three form (and it’s dot product
with f) was evaluated on the boundaries of the integration region, with a toggling of sign
on the lower limit of that evaluation that is now reflected in what we have defined as the
outwards normal.

We also obtain explicit instructions from this formalism how to compute the “outwards”
normal for this surface in a 4D space (unit scaling of the dual basis elements), something
that we cannot compute using any sort of geometrical intuition. For free we’ve obtained a
result that applies to both Euclidean and Minkowski (or other non-Euclidean) spaces.

44.8 volume integral coordinate representations

It may be useful to formulate the curl integrals in tensor form. For vectors f, and bivectors B,
the coordinate representations of those differential forms (exercise 44.1) are

d2x · (∂∧ f) = −d2uεab∂a fb (44.142a)

d3x · (∂∧ f) = −d3uεabcxa∂b fc (44.142b)
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d4x · (∂∧ f) = −
1
2

d4uεabcdxa ∧ xb∂c fd (44.142c)

d3x · (∂∧ B) = −
1
2

d3uεabc∂aBbc (44.142d)

d4x · (∂∧ B) = −
1
2

d4uεabcdxa∂bBcd (44.142e)

d4x · (∂∧ T ) = −d4u (∂4T123 − ∂3T124 + ∂2T134 − ∂1T234) . (44.142f)

Here the bivector B and trivector T is expressed in terms of their curvilinear components on
the tangent space

B =
1
2

xi ∧ x jBi j + B⊥ (44.143a)

T =
1
3!

xi ∧ x j ∧ xkTi jk + T⊥, (44.143b)

where

Bi j = x j · (xi · B) = −B ji. (44.144a)

Ti jk = xk · (x j · (xi · B)) . (44.144b)

For the trivector components are also antisymmetric, changing sign with any interchange of
indices.

Note that eq. (44.142d) and eq. (44.142f) appear much different on the surface, but both have
the same structure. This can be seen by writing for former as

(44.145)d3x · (∂ ∧ B) = −d3u (∂1B23 + ∂2B31 + ∂3B12)
= −d3u (∂3B12 − ∂2B13 + ∂1B23) .
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In both of these we have an alternation of sign, where the tensor index skips one of the volume
element indices is sequence. We’ve seen in the 4D divergence theorem that this alternation of
sign can be related to a duality transformation.

In integral form (no sum over indexes i in dui terms), these are

∫
d2x · (∂∧ f) = −εab

∫
dub fb

∣∣∣
∆ua (44.146a)

∫
d3x · (∂∧ f) = −εabc

∫
duaduc xa fc|∆ub (44.146b)

∫
d4x · (∂∧ f) = −

1
2
εabcd

∫
duadubdud xa ∧ xb fd |∆uc (44.146c)

∫
d3x · (∂∧ B) = −

1
2
εabc

∫
dubduc Bbc|∆ua (44.146d)

∫
d4x · (∂∧ B) = −

1
2
εabcd

∫
duaducdud xaBcd |∆ub (44.146e)

∫
d4x · (∂∧ T ) =∫

du1du2du3 T123|∆u4 −

∫
du1du2du4 T124|∆u3

+

∫
du1du3du4 T134|∆u2 −

∫
du2du3du4 T234|∆u1 .

(44.146f)

Of these, I suspect that only eq. (44.146a) and eq. (44.146d) are of use.

44.9 final remarks

Because we have used curvilinear coordinates from the get go, we have arrived naturally at a for-
mulation that works for both Euclidean and non-Euclidean geometries, and have demonstrated
that Stokes (and the divergence theorem) holds regardless of the geometry or the parameteriza-
tion. We also know explicitly how to formulate both theorems for any parameterization that we
choose, something much more valuable than knowledge that this is possible.

For the divergence theorem we have introduced the concept of outwards normal (for example
in 3D, eq. (44.134)), which still holds for non-Euclidean geometries. We may not be able to form
intuitive geometrical interpretations for these normals, but do have an algebraic description of
them.
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44.10 problems

Exercise 44.1 Expand volume elements in coordinates

Show that the coordinate representation for the volume element dotted with the curl can be
represented as a sum of antisymmetric terms. That is

1. Prove eq. (44.142a)

2. Prove eq. (44.142b)

3. Prove eq. (44.142c)

4. Prove eq. (44.142d)

5. Prove eq. (44.142e)

6. Prove eq. (44.142f)

Answer for Exercise 44.1

Part 1. Two parameter volume, curl of vector

(44.147)

d2x · (∂ ∧ f) = d2u((x1 ∧ x2) · xi) · ∂if
= d2u (x1 · ∂2f − x2 · ∂1f)
= d2u (∂2 f1 − ∂1 f2)
= −d2uεab∂a fb. �

Part 2. Three parameter volume, curl of vector

d3x · (∂ ∧ f) = d3u((x1 ∧ x2 ∧ x3) · xi) · ∂if
= d3u((x1 ∧ x2) · ∂3f + (x3 ∧ x1) · ∂2f + (x2 ∧ x3) · ∂1f)
= d3u((x1∂3f · x2 − x2∂3f · x1) + (x3∂2f · x1 − x1∂2f · x3) + (x2∂1f · x3 − x3∂1f · x2))
= d3u(x1 (−∂2f · x3 + ∂3f · x2) + x2 (−∂3f · x1 + ∂1f · x3) + x3 (−∂1f · x2 + ∂2f · x1))
= d3u(x1 (−∂2 f3 + ∂3 f2) + x2 (−∂3 f1 + ∂1 f3) + x3 (−∂1 f2 + ∂2 f1))
= −d3uεabc∂b fc. �

(44.148)
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Part 3. Four parameter volume, curl of vector

d4x · (∂∧ f) = d4u((x1 ∧ x2 ∧ x3 ∧ x4) · xi) · ∂if
= d4u((x1 ∧ x2 ∧ x3) · ∂4f − (x1 ∧ x2 ∧ x4) · ∂3f + (x1 ∧ x3 ∧ x4) · ∂2f − (x2 ∧ x3 ∧ x4) · ∂1f)
= d4u(

(x1 ∧ x2) x3 · ∂4f − (x1 ∧ x3) x2 · ∂4f + (x2 ∧ x3) x1 · ∂4f
− (x1 ∧ x2) x4 · ∂3f + (x1 ∧ x4) x2 · ∂3f − (x2 ∧ x4) x1 · ∂3f
+ (x1 ∧ x3) x4 · ∂2f − (x1 ∧ x4) x3 · ∂2f + (x3 ∧ x4) x1 · ∂2f
− (x2 ∧ x3) x4 · ∂1f + (x2 ∧ x4) x3 · ∂1f − (x3 ∧ x4) x2 · ∂1f
)

= d4u(x1 ∧ x2∂[4 f3] + x1 ∧ x3∂[2 f4] + x1 ∧ x4∂[3 f2] + x2 ∧ x3∂[4 f1] + x2 ∧ x4∂[1 f3] + x3 ∧ x4∂[2 f1])

= −
1
2

d4uεabcdxa ∧ xb∂c fd. �

(44.149)
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Part 4. Three parameter volume, curl of bivector

d3x · (∂∧ B) = d3u((x1 ∧ x2 ∧ x3) · xi) · ∂iB

= d3u((x1 ∧ x2) · ∂3B + (x3 ∧ x1) · ∂2B + (x2 ∧ x3) · ∂1B)

=
1
2

d3u(x1 · (x2 · ∂3B) − x2 · (x1 · ∂3B)

+ x3 · (x1 · ∂2B) − x1 · (x3 · ∂2B)

+ x2 · (x3 · ∂1B) − x3 · (x2 · ∂1B))

=
1
2

d3u(x1 · (x2 · ∂3B− x3 · ∂2B)

+ x2 · (x3 · ∂1B− x1 · ∂3B)

+ x3 · (x1 · ∂2B− x2 · ∂1B))

=
1
2

d3u(x1 · (∂3 (x2 · B) − ∂2 (x3 · B))

+ x2 · (∂1 (x3 · B) − ∂3 (x1 · B))

+ x3 · (∂2 (x1 · B) − ∂1 (x2 · B)))

=
1
2

d3u(∂2 (x3 · (x1 · B)) − ∂3 (x2 · (x1 · B))

+ ∂3 (x1 · (x2 · B)) − ∂1 (x3 · (x2 · B))

+ ∂1 (x2 · (x3 · B)) − ∂2 (x1 · (x3 · B)))

=
1
2

d3u(∂2B13 − ∂3B12 + ∂3B21 − ∂1B23 + ∂1B32 − ∂2B31)

= d3u(∂2B13 + ∂3B21 + ∂1B32)

= −
1
2

d3uεabc∂aBbc. �

(44.150)
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Part 5. Four parameter volume, curl of bivector To start, we require theorem B.3. For conve-
nience lets also write our wedge products as a single indexed quantity, as in xabc for xa ∧ xb ∧ xc.
The expansion is

d4x · (∂∧ B) = d4u
(
x1234 · xi

)
· ∂iB

= d4u (x123 · ∂4B− x124 · ∂3B + x134 · ∂2B− x234 · ∂1B)

= d4u(x1 (x23 · ∂4B) + x2 (x32 · ∂4B) + x3 (x12 · ∂4B)

− x1 (x24 · ∂3B) − x2 (x41 · ∂3B) − x4 (x12 · ∂3B)

+ x1 (x34 · ∂2B) + x3 (x41 · ∂2B) + x4 (x13 · ∂2B)

− x2 (x34 · ∂1B) − x3 (x42 · ∂1B) − x4 (x23 · ∂1B))

= d4u(x1 (x23 · ∂4B + x42 · ∂3B + x34 · ∂2B)

+ x2 (x32 · ∂4B + x14 · ∂3B + x43 · ∂1B)

+ x3 (x12 · ∂4B + x41 · ∂2B + x24 · ∂1B)

+ x4 (x21 · ∂3B + x13 · ∂2B + x32 · ∂1B))

= −
1
2

d4uεabcdxa∂bBcd. �

(44.151)

This last step uses an intermediate result from the eq. (44.150) expansion above, since each
of the four terms has the same structure we have previously observed.

Part 6. Four parameter volume, curl of trivector Using the xi jk shorthand again, the initial
expansion gives

(44.152)d4x · (∂ ∧ T ) = d4u (x123 · ∂4T − x124 · ∂3T + x134 · ∂2T − x234 · ∂1T ) .
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Applying theorem B.4 to expand the inner products within the braces we have

x123 · ∂4T−x124 · ∂3T + x134 · ∂2T − x234 · ∂1T

= x1 · (x2 · (x3 · ∂4T )) − x1 · (x2 · (x4 · ∂3T ))

+ x1 · (x3 · (x4 · ∂2T )) − x2 · (x3 · (x4 · ∂1T ))

Apply cyclic permutations

= x1 · (x2 · (x3 · ∂4T )) − x1 · (x2 · (x4 · ∂3T ))

+ x3 · (x4 · (x1 · ∂2T )) − x3 · (x4 · (x2 · ∂1T ))

= x1 · (x2 · (x3 · ∂4T − x4 · ∂3T ))

+ x3 · (x4 · (x1 · ∂2T − x2 · ∂1T ))

= x1 · (x2 · (∂4 (x3 · T ) − ∂3 (x4 · T )))

+ x3 · (x4 · (∂2 (x1 · T ) − ∂1 (x2 · T )))

= x1 · ∂4 (x2 · (x3 · T )) + x2 · ∂3 (x1 · (x4 · T ))

+ x3 · ∂2 (x4 · (x1 · T )) + x4 · ∂1 (x3 · (x2 · T ))

− x1 · ((∂4x2) · (x3 · T )) − x2 · ((∂3x1) · (x4 · T ))

− x3 · ((∂2x4) · (x1 · T )) − x4 · ((∂1x3) · (x2 · T ))

= x1 · ∂4 (x2 · (x3 · T )) + x2 · ∂3 (x1 · (x4 · T ))

+ x3 · ∂2 (x4 · (x1 · T )) + x4 · ∂1 (x3 · (x2 · T ))

+
∂2x

∂u4∂u2 ·(((
((((

((((
((

(x1 · (x3 · T ) + x3 · (x1 · T ))

+
∂2x

∂u1∂u3 ·((((
((((

(((
((

(x2 · (x4 · T ) + x4 · (x2 · T )).

(44.153)

We can cancel those last terms using theorem B.5. Using the same reverse chain rule expan-
sion once more we have

x123 · ∂4T−x124 · ∂3T + x134 · ∂2T − x234 · ∂1T

= ∂4 (x1 · (x2 · (x3 · T ))) + ∂3 (x2 · (x1 · (x4 · T ))) + ∂2 (x3 · (x4 · (x1 · T ))) + ∂1 (x4 · (x3 · (x2 · T )))

− (∂4x1) ·
(((

((((
(((

(((
(x2 · (x3 · T ) + x3 · (x2 · T )) − (∂3x2) ·

((((
((((

((((
(x1 · (x4 · T ) x4 · (x1 · T )),

(44.154)

or

(44.155)d4x · (∂ ∧ T ) = d4u(∂4T321 + ∂3T412 + ∂2T143 + ∂1T234).
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The final result follows after permuting the indices slightly.

Exercise 44.2 Stokes theorem on scalar function. ([13] pr. 1.60a)

Prove

(44.156)
∫
∇TdV =

∮
Tda.

Answer for Exercise 44.2
The direct way to prove this is to apply Stokes theorem

(44.157)
∫

d3x · (∇ ∧ T ) =

∮
d2x · T

Here d3x = dx1 ∧ dx2 ∧ dx3, a pseudoscalar (trivector) volume element, and the wedge and
dot products take their most general meanings. For k-blade F, and k′-blade F′, that is

(44.158)
F ∧ F′ =

〈
FF′

〉
k+k′

F · F′ =
〈
FF′

〉
|k−k′ |

With d3x = IdV , and d2x = In̂dA = Ida, we have

(44.159)
∫

IdV∇T =

∮
IdaT.

Cancelling the factors of I proves the result.
Griffith’s trick to do this was to let v = cT , where c is a constant. For this, the divergence

theorem integral is

(44.160)

∫
dV∇ · (cT ) =

∫
dVc · ∇T

= c ·
∫

dV∇T

=

∮
da · (cT )

= c ·
∮

daT.

This is true for any constant c, so is also true for the unit vectors. This allows for summing
projections in each of the unit directions
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(44.161)

∫
dV∇T =

∑
ek

(
ek ·

∫
dV∇T

)
=

∑
ek

(
ek ·

∮
daT

)
=

∮
daT. �

Exercise 44.3 ([13] pr. 1.60b)

Prove

(44.162)
∫
∇ × vdV = −

∮
v × da.

Answer for Exercise 44.3
This also follows directly from the general Stokes theorem

(44.163)
∫

d3x · (∇ ∧ v) =

∮
d2x · v

The volume integrand is

(44.164)d3x · (∇ ∧ v) = 〈IdVI∇ × v〉1
= −dV∇ × v,

and the surface integrand is

(44.165)

d2x · v = 〈Idav〉1
= 〈I(da ∧ v)〉1
= I2(da × v)
= −da × v
= v × da.

Plugging these into eq. (44.163) proves the result.
Griffiths trick for the same is to apply the divergence theorem to v× c. Such a volume integral

is

(44.166)

∫
dV∇ · (v × c) =

∫
dVc · (∇ × v)

= c ·
∫

dV∇ × v.
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This must equal

(44.167)

∮
da · (v × c) = c ·

∮
da × v

= −c ·
∮

v × da

Again, assembling projections, we have

(44.168)

∫
dV∇ × v =

∑
ek

(
ek ·

∫
dV∇ × v

)
= −

∑
ek

(
ek ·

∮
v × da

)
= −

∮
v × da.

Exercise 44.4 ([13] pr. 1.60e)
Prove

(44.169)
∫
∇T × da = −

�
Tdl.

Answer for Exercise 44.4
This one follows from

(44.170)
∫

d2x · (∇ ∧ T ) =

∮
d1x · T.

The surface integrand can be written

(44.171)

d2x · (∇ ∧ T ) = 〈Ida∇T 〉1
= I(da ∧ ∇T )
= I2(da × ∇T )
= −da × ∇T.

The line integrand is

(44.172)d1x · T = d1xT.

Given a two parameter representation of the surface area element d2x = dx1 ∧ dx2, the line
element representation is

(44.173)d1x = (x1 ∧ dx2) · x1 + (dx1 ∧ x2) · x2

= −dx2 + dx1,
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giving

(44.174)
−

∫
da × ∇T =

∫
−

(
∂x
∂u2

T
)∣∣∣∣∣∣

∆u1

du2 +

(
∂x
∂u1

T
)∣∣∣∣∣∣

∆u2

du1

=



dlT,

or

(44.175)
∫
∇T × da = −

�
dlT. �

Griffiths trick for the same is to use v = cT for constant c in (the usual 3D) Stokes’ theorem.
That is

(44.176)

∫
da · (∇ × (cT )) = c ·

∫
da × ∇T

= −c ·
∫
∇T × da

=

�
dl · (cT )

= c ·
�

dlT.

Again assembling projections we have

(44.177)

∫
∇T × da =

∑
ek

(
ek ·

∫
∇T × da

)
= −

∑
ek

(
ek ·

�
dlT

)
= −

�
dlT. �





45
F U N DA M E N TA L T H E O R E M O F G E O M E T R I C C A L C U L U S

45.1 fundamental theorem of geometric calculus

Definitions The Fundamental Theorem of (Geometric) Calculus is a generalization of Stokes
theorem theorem 44.1 to multivector integrals. Notationally, it looks like Stokes theorem with
all the dot and wedge products removed.

Theorem 45.1: Fundamental Theorem of Geometric Calculus

For blades F,G, and a volume element dkx,

∫
V

Fdkx∂G =

∮
∂V

Fdk−1xG.

The Fundamental Theorem as stated here generalized Stokes’ theorem in a couple ways. One
generalization is that the blade grade restriction of Stokes’ theorem are missing in action. This
theorem is a multivector result, whereas the LHS and RHS of Stokes’ are of equal grade. Addi-
tional, the fundamental theorem promotes the action of the vector derivative to a bidirectional
operator. Not all formulations of this theorem include that generalization. For example [24]
states the theorem as

(45.1)
∫

V
dkx∂F =

∮
∂V

dk−1xF.

whereas [7] points out there is a variant with the vector derivative acting to the left

(45.2)
∫

V
Fdkx∂ =

∮
∂V

Fdk−1x,

but does not promote the vector derivative to a bidirectional operator. Here I follow [29]
which uses a bidirectional vector derivative, providing the most general expression of the Fun-
damental Theorem of (Geometric) Calculus.

This theorem and Stokes’ theorem, both single formulas, are loaded and abstract statement,
requiring many definitions to make them useful. Most of those definitions can be found in the
previous Stokes’ theorem chapter, but are summarized here

381
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• The volume integral is over a m dimensional surface (manifold).

• Integration over the boundary of the manifold V is indicated by ∂V .

• This manifold is assumed to be spanned by a parameterized vector x(u1, u2, · · · , uk).

• A curvilinear coordinate basis {xi} can be defined on the manifold by

xi ≡
∂x
∂ui ≡ ∂ix. (45.3)

• A dual basis
{
xi
}

reciprocal to the tangent vector basis xi can be calculated subject to the

requirement xi · x j = δ
j
i .

• The vector derivative ∂, the projection of the gradient onto the tangent space of the mani-
fold, is defined by

∂ = xi∂i =

k∑
i=1

xi
∂

∂ui . (45.4)

• The volume element is defined by

(45.5)dkx = dx1 ∧ dx2 · · · ∧ dxk,

where

(45.6)dxk = xkduk, (no sum).

• The volume element is non-zero on the manifold, or x1 ∧ · · · ∧ xk , 0.

• The surface area element dk−1x, is defined by

(45.7)dk−1x =

k∑
i=1

(−1)k−idx1 ∧ dx2 · · · dxid̂xi · · · ∧ dxk,

where dxid̂xi indicates the omission of dxi.

• My proof for this theorem was restricted to a simple “rectangular” volume parameterized
by the ranges [u1(0), u1(1)] ⊗ [u2(0), u2(1)] ⊗ · · · ⊗ [uk(0), uk(1)]
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• The precise meaning that should be given to oriented area integral is

(45.8)
∮
∂V

dk−1x · F =

k∑
i=1

(−1)k−i
∫ ((

dx1 ∧ dx2 · · · dxid̂xi · · · ∧ dxk
)
· F

)∣∣∣∣ui(1)

ui=ui(0)
,

where both the a area form and the blade F are evaluated at the end points of the parame-
terization range.

• The bidirectional vector derivative operator acts both to the left and right on F and G. The
specific action of this operator is

(45.9)F∂G = (F∂)G + F(∂G)
= (∂iF)xiG + Fxi(∂iG).

For Stokes’ theorem theorem 44.1, after the work of stating exactly what is meant by this
theorem, most of the proof follows from the fact that for s < k the volume curl dot product can
be expanded as

(45.10)

∫
V

dkx · (∂ ∧ F) =

∫
V

dkx · (xi ∧ ∂iF)

=

∫
V

(
dkx · xi

)
· ∂iF.

Each of the dui integrals can be evaluated directly, since each of the remaining dx j =

du j∂/∂u j, i , j is calculated with ui held fixed. This allows for the integration over a “rect-
angular” parameterization region, proving the theorem for such a volume parameterization. A
more general proof requires a triangulation of the volume and surface, but the basic principle of
the theorem is evident, without that additional work.

Fundamental Theorem of Calculus The fundamental theorem can be demonstrated by direct
expansion. With the vector derivative ∂ and its partials ∂i acting bidirectionally, that is

(45.11)

∫
V

Fdkx∂G =

∫
V

Fdkxxi∂iG

=

∫
V

F
(
dkx · xi + dkx ∧ xi

)
∂iG.

Both the reciprocal frame vectors and the curvilinear basis span the tangent space of the
manifold, since we can write any reciprocal frame vector as a set of projections in the curvilinear
basis
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(45.12)xi =
∑

j

(
xi · x j

)
x j,

so xi ∈ span
{
x j, j ∈ [1, k]

}
. This means that dkx∧ xi = 0, and

FIXME: bug in latex? widehat is duplicating the thing that it is covering:

(45.13)

∫
V

Fdkx∂G

=

∫
V

F
(
dkx · xi

)
∂iG

=

k∑
i=1

∫
V

du1du2 · · · duid̂ui · · · dukF
(
(−1)k−ix1 ∧ x2 · · · xix̂i · · · ∧ xk

)
∂iGdui

=

k∑
i=1

(−1)k−i
∫

u1

∫
u2
· · ·

∫
ui−1

∫
ui+1
· · ·

∫
uk

(
Fdx1 ∧ dx2 · · · dxid̂xi · · · ∧ dxkG

)∣∣∣∣ui(1)

ui=ui(0)
.

Adding in the same notational sugar that we used in Stokes theorem, this proves the Funda-
mental theorem for “rectangular” parameterizations. Note that such a parameterization need not
actually be rectangular.

Example 45.1: Application to Maxwell’s equation

Maxwell’s equation is an example of a first order gradient equation

(45.14)∇F =
1
ε0c

J.

Integrating over a four-volume (where the vector derivative equals the gradient), and
applying the Fundamental theorem, we have

(45.15)
1
ε0c

∫
d4xJ =

∮
d3xF.

Observe that the surface area element product with F has both vector and trivector terms.
This can be demonstrated by considering some examples

(45.16)
γ012γ01 ∝ γ2

γ012γ23 ∝ γ023.

On the other hand, the four volume integral of J has only trivector parts. This means
that the integral can be split into a pair of same-grade equations
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(45.17)

1
ε0c

∫
d4x · J =

∮ 〈
d3xF

〉
3

0 =

∮
d3x · F.

The first can be put into a slightly tidier form using a duality transformation

(45.18)

〈
d3xF

〉
3

= −
〈
d3xI2F

〉
3

=
〈
Id3xIF

〉
3

= (Id3x) ∧ (IF).

Letting n
∣∣∣d3x

∣∣∣ = Id3x, this gives

(45.19)
∮ ∣∣∣d3x

∣∣∣n ∧ (IF) =
1
ε0c

∫
d4x · J.

Note that this normal is normal to a three-volume subspace of the spacetime volume. For
example, if one component of that spacetime surface area element is γ012cdtdxdy, then the
normal to that area component is γ3.

A second set of duality transformations

(45.20)

n ∧ (IF) = 〈nIF〉3
= −〈InF〉3
= −〈I(n · F)〉3
= −I(n · F),

and

(45.21)

Id4x · J =
〈
Id4x · J

〉
1

=
〈
Id4xJ

〉
1

=
〈
(Id4x)J

〉
1

= (Id4x)J,

can further tidy things up, leaving us with
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∮ ∣∣∣d3x
∣∣∣n · F =

1
ε0c

∫
(Id4x)J∮

d3x · F = 0.
(45.22)

The Fundamental theorem of calculus immediately provides relations between normal
projections of the Faraday bivector F and the four-current J, as well as boundary value
constraints on F coming from the source free components of Maxwell’s equation.

45.2 green’s function for the gradient in euclidean spaces .

In [7] it is stated that the Green’s function for the gradient is

(45.23)G(x, x′) =
1

S n

x − x′

|x − x′|n
,

where n is the dimension of the space, S n is the area of the unit sphere, and

∇G = ∇ ·G = δ(x − x′). (45.24)

What I’d like to do here is verify that this Green’s function operates as asserted. Here, as in
some parts of the text, I am following a convention where vectors are written without boldface.

Let’s start with checking that the gradient of the Green’s function is zero everywhere that
x , x′

(45.25)

∇
1

|x − x′|n
= −

n
2

eν∂ν(xµ − x′µ)(xµ − xµ′)

|x − x′|n+2

= −
n
2

2
eν(xµ − x′µ)δµν
|x − x′|n+2

= −n
x − x′

|x − x′|n+2 .

This means that we have, everywhere that x , x′

(45.26)

∇ ·G =
1

S n

(
∇ · (x − x′)
|x − x′|n

+

(
∇

1
|x − x′|n

)
·
(
x − x′

))
=

1
S n

(
n

|x − x′|n
+

(
−n

x − x′

|x − x′|n+2 ·
(
x − x′

)))
= 0.
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Next, consider the curl of the Green’s function. Zero curl will mean that we have ∇G =

∇ ·G = G
←

∇.

(45.27)
S n(∇ ∧G) =

∇ ∧ (x − x′)
|x − x′|n

+ ∇
1

|x − x′|n
∧ (x − x′)

=
∇ ∧ (x − x′)
|x − x′|n

−
���

���
���

�
n

x − x′

|x − x′|n
∧ (x − x′).

However,

(45.28)

∇ ∧ (x − x′) = ∇ ∧ x
= eµ ∧ eν∂µxν

= eµ ∧ eνδνµ
= eµ ∧ eµ.

For any metric where eµ ∝ eµ, which is the case in all the ones with physical interest (i.e. R3

and Minkowski space), ∇∧G is zero.
Having shown that the gradient of the (presumed) Green’s function is zero everywhere that

x , x′, the guts of the demonstration can now proceed. We wish to evaluate the gradient
weighted convolution of the Green’s function using the Fundamental Theorem of (Geomet-
ric) Calculus. Here the gradient acts bidirectionally on both the gradient and the test function.
Working in primed coordinates so that the final result is in terms of the unprimed, we have

(45.29)
∫

V
G(x, x′)dnx′

↔

∇

′

F(x′) =

∫
∂V

G(x, x′)dn−1x′F(x′).

Let dnx′ = dV ′I, dn−1x′n = dA′I, where n = n(x′) is the outward normal to the area element
dn−1x′. From this point on, lets restrict attention to Euclidean spaces, where n2 = 1. In that case

(45.30)

∫
V

dV ′G(x, x′)
↔

∇

′

F(x′) =

∫
V

dV ′
(
G(x, x′)

←

∇

′)
F(x′) +

∫
V

dV ′G(x, x′)
(
→

∇

′

F(x′)
)

=

∫
∂V

dA′G(x, x′)nF(x′).

Here, the pseudoscalar I has been factored out by commuting it with G, using GI = (−1)n−1IG,
and then pre-multiplication with 1/((−1)n−1I).

Each of these integrals can be considered in sequence. A convergence bound is required of
the multivector test function F(x′) on the infinite surface ∂V . Since it’s true that

(45.31)
∣∣∣∣∣∫
∂V

dA′G(x, x′)nF(x′)
∣∣∣∣∣ ≥ ∫

∂V
dA′

∣∣∣G(x, x′)nF(x′)
∣∣∣,

then it is sufficient to require that
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(45.32)lim
x′ →∞

∣∣∣∣∣ x − x′

|x − x′|n
n(x′)F(x′)

∣∣∣∣∣→ 0,

in order to kill off the surface integral. Evaluating the integral on a hypersphere centred on x
where x′ − x = n|x − x′|, that is

(45.33)lim
x′ →∞

|F(x′)|
|x − x′|n−1 → 0.

Given such a constraint, that leaves

(45.34)
∫

V
dV ′

(
G(x, x′)

←

∇

′)
F(x′) = −

∫
V

dV ′G(x, x′)
(
→

∇

′

F(x′)
)
.

The LHS is zero everywhere that x , x′ so it can be restricted to a spherical ball around x,
which allows the test function F to be pulled out of the integral, and a second application of the
Fundamental Theorem to be applied.

(45.35)

∫
V

dV ′
(
G(x, x′)

←

∇

′)
F(x′) = lim

ε→0

∫
|x−x′ |<ε

dV ′
(
G(x, x′)

←

∇

′)
F(x′)

=

(
lim
ε→0

I−1
∫
|x−x′ |<ε

IdV ′
(
G(x, x′)

←

∇

′))
F(x)

=

(
lim
ε→0

(−1)n−1I−1
∫
|x−x′ |<ε

G(x, x′)dnx′
←

∇

′
)

F(x)

=

(
lim
ε→0

(−1)n−1I−1
∫
|x−x′ |=ε

G(x, x′)dn−1x′
)

F(x)

=

(
lim
ε→0

(−1)n−1I−1
∫
|x−x′ |=ε

G(x, x′)dA′In
)

F(x)

=

(
lim
ε→0

∫
|x−x′ |=ε

dA′G(x, x′)n
)

F(x)

=

(
lim
ε→0

∫
|x−x′ |=ε

dA′
ε(−n)
S nεn n

)
F(x)

= − lim
ε→0

F(x)
S nεn−1

∫
|x−x′ |=ε

dA′

= − lim
ε→0

F(x)
S nεn−1 S nε

n−1

= −F(x).

This essentially calculates the divergence integral around an infinitesimal hypersphere, with-
out assuming that the gradient commutes with the gradient in this infinitesimal region. So, pro-
vided the test function is constrained by eq. (45.33), we have
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(45.36)F(x) =

∫
V

dV ′G(x, x′)
(
∇′F(x′)

)
.

In particular, should we have a first order gradient equation

(45.37)∇
′F(x′) = M(x′),

the inverse of this equation is given by

F(x) =

∫
V

dV ′G(x, x′)M(x′). (45.38)

Note that the sign of the Green’s function is explicitly tied to the definition of the convolution
integral that is used. This is important since since the conventions for the sign of the Green’s
function or the parameters in the convolution integral often vary.

What’s cool about this result is that it applies not only to gradient equations in Euclidean
spaces, but also to multivector (or even just vector) fields F, instead of the usual scalar functions
that we usually apply Green’s functions to.

Example 45.2: Electrostatics

As a check of the sign consider the electrostatics equation

(45.39)∇E =
ρ

ε0
,

for which we have after substitution into eq. (45.38)

(45.40)E(x) =
1

4πε0

∫
V

dV ′
x − x′

|x − x′|3
ρ(x′).

This matches the sign found in a trusted reference such as [17].

Example 45.3: Magnetostatics.

The magnetostatics equation in linear media has the Geometric Algebra form

(45.41)∇IB = −µJ.
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The Green’s inversion of this is

(45.42)

IB(x) =

∫
V

dV ′G(x, x′)∇′IB(x′)

=

∫
V

dV ′G(x, x′)(−µJ(x′))

=
1

4π

∫
V

dV ′
x − x′

|x − x′|3
(−µJ(x′)).

We expect the LHS to be a bivector, so the scalar component of this should be zero. That
can be demonstrated with some of the usual trickery

(45.43)

−
µ

4π

∫
V

dV ′
x − x′

|x − x′|3
· J(x′) =

µ

4π

∫
V

dV ′
(
∇

1
|x − x′|

)
· J(x′)

= −
µ

4π

∫
V

dV ′
(
∇
′ 1
|x − x′|

)
· J(x′)

= −
µ

4π

∫
V

dV ′
(
∇
′ ·

J(x′)
|x − x′|

−
∇′ · J(x′)
|x − x′|

)
.

The current J is not unconstrained. This can be seen by premultiplying eq. (45.41) by
the gradient

(45.44)∇
2IB = −µ∇J.

On the LHS we have a bivector so must have ∇J = ∇ ∧ J, or ∇ · J = 0. This kills the
∇′ · J(x′) integrand numerator in eq. (45.43), leaving

(45.45)
−
µ

4π

∫
V

dV ′
x − x′

|x − x′|3
· J(x′) = −

µ

4π

∫
V

dV ′∇′ ·
J(x′)
|x − x′|

= −
µ

4π

∫
∂V

dA′n̂ ·
J(x′)
|x − x′|

.

This shows that the scalar part of the equation is zero, provided the normal component
of J/|x − x′| vanishes on the boundary of the infinite sphere. This leaves the Biot-Savart
law as a bivector equation

(45.46)IB(x) =
µ

4π

∫
V

dV ′J(x′) ∧
x − x′

|x − x′|3
.

Observe that the traditional vector form of the Biot-Savart law can be obtained by pre-
multiplying both sides with −I, leaving
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(45.47)B(x) =
µ

4π

∫
V

dV ′J(x′) ×
x − x′

|x − x′|3
.

This checks against a trusted source such as [13] (eq. 5.39).

45.3 problems

Exercise 45.1 Helmholtz theorem

Prove the first Helmholtz’s theorem, i.e. if vector M is defined by its divergence

(45.48)∇ ·M = s

and its curl

(45.49)∇ ×M = C

within a region and its normal component Mn over the boundary, then M is uniquely speci-
fied.
Answer for Exercise 45.1

The gradient of the vector M can be written as a single even grade multivector

∇M = ∇ ·M + I∇ ×M = s + IC. (45.50)

We will use this to attempt to discover the relation between the vector M and its divergence
and curl. We can express M at the point of interest as a convolution with the delta function at
all other points in space

(45.51)M(x) =

∫
V

dV ′δ(x − x′)M(x′).

The Laplacian representation of the delta function in R3 is

(45.52)δ(x − x′) = −
1

4π
∇

2 1
|x − x′|

,

so M can be represented as the following convolution

(45.53)M(x) = −
1

4π

∫
V

dV ′∇2 1
|x − x′|

M(x′).

Using this relation and proceeding with a few applications of the chain rule, plus the fact that
∇1/|x − x′| = −∇′1/|x − x′|, we find
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(45.54)

−4πM(x) =

∫
V

dV ′∇2 1
|x − x′|

M(x′)

=

〈∫
V

dV ′∇2 1
|x − x′|

M(x′)
〉

1

= −

〈∫
V

dV ′∇
(
∇
′ 1
|x − x′|

)
M(x′)

〉
1

= −

〈
∇

∫
V

dV ′
(
∇
′ M(x′)
|x − x′|

−
∇′M(x′)
|x − x′|

)〉
1

= −

〈
∇

∫
∂V

dA′n̂
M(x′)
|x − x′|

〉
1

+

〈
∇

∫
V

dV ′
s(x′) + IC(x′)
|x − x′|

〉
1

= −

〈
∇

∫
∂V

dA′n̂
M(x′)
|x − x′|

〉
1

+ ∇

∫
V

dV ′
s(x′)
|x − x′|

+ ∇ ·

∫
V

dV ′
IC(x′)
|x − x′|

.

By inserting a no-op grade selection operation in the second step, the trivector terms that
would show up in subsequent steps are automatically filtered out. This leaves us with a boundary
term dependent on the surface and the normal and tangential components of M. Added to that is
a pair of volume integrals that provide the unique dependence of M on its divergence and curl.
When the surface is taken to infinity, which requires |M|/|x − x′| → 0, then the dependence of
M on its divergence and curl is unique.

In order to express final result in traditional vector algebra form, a couple transformations are
required. The first is that

(45.55)〈aIb〉1 = I2a × b
= −a × b.

For the grade selection in the boundary integral, note that

(45.56)
〈∇n̂X〉1 = 〈∇(n̂ · X)〉1 + 〈∇(n̂ ∧ X)〉1

= ∇(n̂ · X) + 〈∇I(n̂ × X)〉1
= ∇(n̂ · X) − ∇ × (n̂ × X).

These give

M(x) = ∇
1

4π

∫
∂V

dA′n̂ ·
M(x′)
|x − x′|

−∇ ×
1

4π

∫
∂V

dA′n̂ ×
M(x′)
|x − x′|

−∇
1

4π

∫
V

dV ′
s(x′)
|x − x′|

+∇ ×
1

4π

∫
V

dV ′
C(x′)
|x − x′|

.

(45.57)
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46
A N G U L A R V E L O C I T Y A N D AC C E L E R AT I O N ( AG A I N )

A more coherent derivation of angular velocity and acceleration than my initial attempt while
first learning geometric algebra.

46.1 angular velocity

The goal is to take first and second derivatives of a vector expressed radially:

r = rr̂. (46.1)

The velocity is the derivative of our position vector, which in terms of radial components is:

v = r′ = r′r̂ + rr̂′. (46.2)

We can also calculate the projection and rejection of the velocity by multiplication by 1 = r̂2,
and expanding this product in an alternate order taking advantage of the associativity of the
geometric product:

v = r̂r̂v
= r̂ (r̂ · v + r̂∧ v)

(46.3)

Since r̂∧ (r̂∧ v) = 0, the total velocity in terms of radial components is:

v = r̂ (r̂ · v) + r̂ · (r̂∧ v) . (46.4)

Here the first component above is the projection of the vector in the radial direction:

Projr(v) = r̂ (r̂ · v) (46.5)

This projective term can also be rewritten in terms of magnitude:

(
r2

)′
= 2rr′ = (r · r)′ = 2r · v. (46.6)
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So the magnitude variation can be expressed the radial coordinate of the velocity:

r′ = r̂ · v (46.7)

The remainder is the rejection of the radial component from the velocity, leaving just the part
portion perpendicular to the radial direction.

Rejr(v) = r̂ · (r̂∧ v) (46.8)

It is traditional to introduce an angular velocity vector normal to the plane of rotation that
describes this rejective component using a triple cross product. With the formulation above, one
can see that it is more natural to directly use an angular velocity bivector instead:

Ω =
r∧ v

r2 (46.9)

This bivector encodes the angular velocity as a plane directly. The product of a vector with the
bivector that contains it produces another vector in the plane. That product is a scaled and rotated
by 90 degrees, much like the multiplication by a unit complex imaginary. That is no coincidence
since the square of a bivector is negative and directly encodes this complex structure of an
arbitrarily oriented plane.

Using this angular velocity bivector we have the following radial expression for velocity:

v = r̂r′ + r ·Ω. (46.10)

A little thought will show that r̂′ is also entirely perpendicular to r̂. The r̂ vector describes
a path traced out on the unit sphere, and any variation of that vector must be tangential to the
sphere. It is thus not surprising that we can also express r̂′ using the rejective term of equation
eq. (46.4). Using the angular velocity bivector this is:

r̂′ = r̂ ·Ω. (46.11)

This identity will be useful below for the calculation of angular acceleration.
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46.2 angular acceleration

Next we want the second derivatives of position

a = r′′

= r′′r̂ + 2r′r̂′ + rr̂′′

= r′′r̂ +
1
r

(
r2r̂′

)′ (46.12)

This last step I found scribbled in a margin note in my old mechanics book. It is a trick that
somebody clever once noticed and it simplifies this derivation to use it since it avoids the gen-
eration of a number of terms that will just cancel out anyways after more tedious manipulation
(see examples section).

Expanding just this last derivative:

(
r2r̂′

)′
=

(
r2r̂ ·Ω

)′
= (r̂ · (r∧ v))′

= (r̂ · (r∧ v))′

= r̂′ · (r∧ v) + r̂ · ( v∧ v

= 0

) + r̂ · (r∧ a)

(46.13)

Thus the acceleration is:

a = r′′r̂ + (r ·Ω) ·Ω + r̂ · (r̂∧ a)

Note that the action of taking two successive dot products with the plane bivector Ω just acts
to rotate the vector by 180 degrees (as well as scale it).

One can verify this explicitly using grade selection operators. This allows the total accelera-
tion to be expressed in the final form:

a = r′′r̂ + rΩ2 + r̂ · (r̂∧ a)

Note that the squared bivector Ω2 is a negative scalar, so the first two terms are radially
directed. The last term is perpendicular to the acceleration, in the plane formed by the vector
and its second derivative.
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Given the acceleration, the force on a particle is thus:

F = ma = mr̂r′′ + mrΩ2 +
r
r2 (r∧ p)′ (46.14)

Writing the angular momentum as:

L = r∧ p = mr2Ω (46.15)

the force is thus:

F = ma = mr̂r′′ + mrΩ2 +
1
r
·

dL
dt

(46.16)

The derivative of the angular momentum is called the torque τ, also a bivector:

τ =
dL
dt

(46.17)

When r is constant this has the radial arm times force form that we expect of torque:

τ = r∧
dp
dt

= r∧ F (46.18)

We can also write the equation of motion in terms of torque, in which case we have:

F = mr̂r′′ + mrΩ2 +
1
r
· τ (46.19)

As with all these plane quantities (angular velocity, momentum, acceleration), the torque as
well is a bivector as it is natural to express this as a planar quantity. This makes more sense in
many ways than a cross product, since all of these quantities should be perfectly well defined in
a plane (or in spaces of degree greater than three), whereas the cross product is a strictly three
dimensional entity.

46.3 expressing these using traditional form (cross product)

To compare with traditional results to see if I got things right, remove the geometric algebra
constructs (wedge products and bivector/vector products) in favor of cross products. Do this by
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using the duality relationships, multiplication by the three dimensional pseudoscalar i = e1e2e3,
to convert bivectors to vectors and wedge products to cross and dot products (u∧ v = u × vi).

First define some vector quantities in terms of the corresponding bivectors:

ω = Ω/i =
r∧ v
r2i

=
r × v

r2 (46.20)

r ·Ω =
1
2

(rωi −ωir) = r∧ωi = ω × r (46.21)

Thus the velocity is:

v = r̂r′ +ω × r. (46.22)

In the same way, write the angular momentum vector as the dual of the angular momentum
bivector:

l = L/i = r × p = mr2ω (46.23)

And the torque vector N as the dual of the torque bivector τ

N = τ/i =
dl
dt

=
d
dt

(r × p) (46.24)

The equation of motion for a single particle then becomes:

F = mr̂r′′ −mr‖ω‖2 + N ×
r
r2 (46.25)
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46.4 examples (perhaps future exercises?)

46.4.1 Unit vector derivative

Demonstrate by direct calculation the result of eq. (46.11).

r̂′ =

(r
r

)′
=

r′

r
−

rr′

r2

=
1
r
(v − r̂ (r̂ · v))

=
r̂
r
(r̂v − r̂ · v)

=
r̂
r
(r̂∧ v)

(46.26)

46.4.2 Direct calculation of acceleration

It is more natural to calculate this acceleration directly by taking derivatives of eq. (46.10), but
as noted above this is messier. Here is exactly that calculation for comparison.

Taking second derivatives of the velocity we have:

v′ = a =

(
r̂r′ +

r
r2 (r∧ v)

)′
(46.27)

a = r̂′r′ + r̂r′′ +
r
r2 (v∧ v)

= 0

+
r
r2 (r∧ a) +

(
r̂
r

)′
(r∧ v)

= r̂r′′ + r̂′
(
r′ +

1
r

r∧ v
)
− r′

r̂
r2 (r∧ v) + r̂ (r̂∧ a)

= r̂r′′ +
1
r3 r (r∧ v)

(
r′ +

1
r

r∧ v
)
− r′

r̂
r2 (r∧ v) + r̂ (r̂∧ a)

(46.28)

The r′ terms cancel out, leaving just:

a = r̂r′′ + rΩ2 + r̂ (r̂∧ a) (46.29)
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46.4.3 Expand the omega omega triple product

(r ·Ω) ·Ω =
〈
(r ·Ω)Ω

〉
1

=
1
2

〈
rΩ2

−ΩrΩ
〉

1

=
1
2

rΩ2
−

1
2
〈ΩrΩ〉1

=
1
2

rΩ2 +
1
2
〈rΩΩ〉1

=
1
2

rΩ2 +
1
2

rΩ2

= rΩ2

(46.30)

Also used above implicitly was the following:

rΩ = r ·Ω + r∧Ω

= 0

= −Ω · r = −Ωr (46.31)

(ie: a vector anticommutes with a bivector describing a plane that contains it).





47
C RO S S P RO D U C T R A D I A L D E C O M P O S I T I O N

We have seen how to use GA constructs to perform a radial decomposition of a velocity and
acceleration vector. Is it that much harder to do this with straight vector algebra. This shows
that the answer is no, but we need to at least assume some additional identities that can take
work to separately prove. Here is a quick demonstration for comparision purposes how a radial
decomposition can be performed entirely without any GA usage.

47.1 starting point

Starting point is taking derivatives of:

r = rr̂ (47.1)

v = r′r̂ + rr̂′ (47.2)

It can be shown without any Geometric Algebra use (see for example [27]) that the unit vector
derivative can be expressed using the cross product:

r̂′ =
1
r

(
r̂ ×

dr
dt

)
× r̂. (47.3)

Now, one can express r′ in terms of r as well as follows:

(r · r)′ = 2v · r = 2rr′. (47.4)

Thus the derivative of the vector magnitude is part of a projective term:

r′ = r̂ · v. (47.5)

Putting this together one has velocity in terms of projective and rejective components along
a radial direction:

v = (r̂ · v) r̂ +

(
r̂ ×

dr
dt

)
× r̂. (47.6)
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Now ω = r×v
r2 term is what we call the angular velocity. The magnitude of this is the rate of

change of the angle between the radial arm and the direction of rotation. The direction of this
cross product is normal to the plane of rotation and encodes both the rotational plane and the
direction of the rotation. Putting these together one has the total velocity expressed radially:

v = (r̂ · v) r̂ +ω × r. (47.7)

47.2 acceleration

Acceleration follows in the same fashion.

v′ = ( (r̂ · v) r̂

r′r̂

)′ + ( ω × r

(r × v) × r
r2

)′

= r′′r̂ + r′
ω × r

r
+ (r̂ × a) × r̂ + ( v × v)

= 0

×
r
r2 + (r × v) ×

( r
r2

)′
(47.8)

That last derivative is

( r
r2

)′
=

(
r̂
r

)′
=

r̂′

r
−

r̂r′

r2

=
ω × r

r2 −
r̂r′

r2 ,

(47.9)

and back substitution gives:

v′ = r′′r̂ + r′
ω × r

r
+ (r̂ × a) × r̂ + (r × v) ×

(
ω × r

r2 −
r̂r′

r2

)
. (47.10)

Canceling terms and collecting we have the final result for acceleration expressed radially:

v′ = a = r′′r̂ +ω × (ω × r) + (r̂ × a) × r̂ (47.11)
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Now, applying the angular velocity via cross product takes the vector back to the original
plane, but inverts it. Thus we can write the acceleration completely in terms of the radially
directed components, and the perpendicular component.

a = r′′r̂ − rω2 + (r̂ × a) × r̂ (47.12)

An alternate way to express this is in terms of radial scalar acceleration:

a · r̂ = r′′ − rω2. (47.13)

This is the acceleration analogue of the scalar radial velocity component demonstrated above:

v · r̂ = r′. (47.14)





48
K I N E T I C E N E R G Y I N ROTAT I O NA L F R A M E

48.1 motivation

Fill in the missing details of the rotational Kinetic Energy derivation in [31] and contrast matrix
and GA approach.

Generalize acceleration in terms of rotating frame coordinates without unproved extrapola-
tion that the z axis result of Tong’s paper is good unconditionally (his cross products are kind
of pulled out of a magic hat and this write up will show a couple ways to see where they come
from).

Given coordinates for a point in a rotating frame r′, the coordinate vector for that point in a
rest frame is:

r = Rr′ (48.1)

Where the rotating frame moves according to the following z-axis rotation matrix:

R =


cos θ − sin θ 0

sin θ cos θ 0

0 0 1

 (48.2)

To compute the Lagrangian we want to re-express the kinetic energy of a particle:

K =
1
2

mṙ2 (48.3)

in terms of the rotating frame coordinate system.

48.2 with matrix formulation

The Tong paper does this for a z axis rotation with θ = ωt. Constant angular frequency is
assumed.

First we calculate our position vector in terms of the rotational frame

r = Rr′ (48.4)
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The rest frame velocity is:

ṙ = Ṙθr′ + Rθṙ′. (48.5)

Taking the matrix time derivative we have:

Ṙθ = −θ̇


sin θ cos θ 0

− cos θ sin θ 0

0 0 0

 . (48.6)

Taking magnitudes of the velocity we have three terms

ṙ2 = (Ṙθr′) · (Ṙθr′) + 2(Ṙθr′) · (Rθṙ′) + (Rθṙ′) · (Rθṙ′)

= r′TṘT
θ Ṙθr′ + 2r′TṘT

θRθṙ′ + ṙ′2
(48.7)

We need to calculate all the intermediate matrix products. The last was identity, and the first
is:

ṘT
θ Ṙθ = θ̇2


sin θ − cos θ 0

cos θ sin θ 0

0 0 0




sin θ cos θ 0

− cos θ sin θ 0

0 0 0

 (48.8)

= θ̇2


1 0 0

0 1 0

0 0 0

 (48.9)

This leaves just the mixed term

ṘT
θRθ = −θ̇


sin θ − cos θ 0

cos θ sin θ 0

0 0 0



cos θ − sin θ 0

sin θ cos θ 0

0 0 1

 (48.10)

= −θ̇


0 −1 0

1 0 0

0 0 0

 (48.11)
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With θ̇ = ω, the total magnitude of the velocity is thus

ṙ2 = r′Tω2


1 0 0

0 1 0

0 0 0

 r′ − 2ωr′T


0 −1 0

1 0 0

0 0 0

 ṙ′ + ṙ′2 (48.12)

Tong’s paper presents this expanded out in terms of coordinates:

ṙ2 = ω2
(
x′2 + y′2

)
+ 2ω (x′ẏ′ − y′ ẋ′) +

(
ẋ′2 + ẏ′2 + ż′2

)
(48.13)

Or,

ṙ2 = (−ωy′ + ẋ′)2
+ (ωx′ + ẏ′)2

+ ż′2 (48.14)

He also then goes on to show that this can be written, with ω = ωẑ, as

ṙ2 = (ṙ′ +ω × r′)2 (48.15)

The implication here is that this is a valid result for any rotating coordinate system. How to
prove this in the general rotation case, is shown much later in his treatment of rigid bodies.

48.3 with rotor

The equivalent to eq. (48.1) using a rotor is:

r′ = R†rR (48.16)

Where R = exp(iθ/2).
Unlike the matrix formulation above we are free to pick any constant unit bivector for i if we

want to generalize this to any rotational axis, but if we want an equivalent to the above rotation
matrix we just have to take i = e1 ∧ e2.

We need a double sided inversion to get our unprimed vector:

r = Rr′R† (48.17)

and can then take derivatives:

ṙ = Ṙr′R† + Rr′Ṙ† + Rṙ′R† (48.18)
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= iω
1
2

Rr′R† − Rr′R†iω
1
2

+ Rṙ′R† (48.19)

=⇒ ṙ = ωi · (Rr′R†) + Rṙ′R† (48.20)

One can put this into the traditional cross product form by introducing a normal vector for
the rotational axis in the usual way:

Ω = ωi (48.21)

ω = Ω/I3 (48.22)

We can describe the angular velocity by a scaled normal vector (ω) to the rotational plane, or
by a scaled bivector for the plane itself (Ω).

Ω · (Rr′R†) =
〈
ΩRr′R†

〉
1

=
〈
RΩr′R†

〉
1

= RΩ · r′R†

= R(ωI3) · r′R†

= R(ω × r′)R†

(48.23)

Note that here as before this is valid only when the rotational plane orientation is constant (ie:
no wobble), since only then can we assume i, and thus Ω will commute with the rotor R.

Summarizing, we can write our velocity using rotational frame components as:

ṙ = R (ω × r′ + ṙ′)R† (48.24)

Or

ṙ = R (Ω · r′ + ṙ′)R† (48.25)

Using the result above from eq. (48.24), we can calculate the squared magnitude directly:

ṙ2 =
〈
R (ω × r′ + ṙ′)R†R (ω × r′ + ṙ′)R†

〉
=

〈
R(ω × r′ + ṙ′)2R†

〉
= (ω × r′ + ṙ′)2

(48.26)
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We are able to go straight to the end result this way without the mess of sine and cosine terms
in the rotation matrix. This is something that we can expand by components if desired:

ω × r′ + ṙ′ =

∣∣∣∣∣∣∣∣∣∣∣
e1 e2 e3

0 0 ω

x′ y′ z′

∣∣∣∣∣∣∣∣∣∣∣ + ṙ′

=


−ωy′ + ẋ′

ωx′ + ẏ′

ż′


(48.27)

This verifies the second part of Tong’s equation 2.19, also consistent with the derivation of
eq. (48.14).

48.4 acceleration in rotating coordinates

Having calculated velocity in terms of rotational frame coordinates, acceleration is the next
logical step.

The starting point is the velocity

ṙ = R(Ω · r′ + ṙ′)R† (48.28)

Taking derivatives we have

r̈ = iω/2ṙ − ṙiω/2 + R
(
Ω̇ · r′ + Ω · ṙ′ + r̈′

)
R† (48.29)

The first two terms are a bivector vector dot product and we can simplify this as follows

iω/2ṙ − ṙiω/2 = Ω/2ṙ − ṙΩ

= Ω · ṙ

=
〈
ΩR(Ω · r′ + ṙ′)R†

〉
1

=
〈
R(Ω(Ω · r′ + ṙ′))R†

〉
1

= R(Ω · (Ω · r′) + Ω · ṙ′)R†

(48.30)

Thus the total acceleration is

r̈ = R
(
Ω · (Ω · r′) + Ω̇ · r′ + 2Ω · ṙ′ + r̈′

)
R† (48.31)
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Or, in terms of cross products, and angular velocity and acceleration vectors ω, and α respec-
tively, this is

r̈ = R (ω × (ω × r′) + α × r′ + 2ω × ṙ′ + r̈′)R† (48.32)

48.5 allow for a wobble in rotational plane

A calculation similar to this can be found in GAFP, but for strictly rigid motion. It does not
take too much to combine the two for a generalized result that expresses the total acceleration
expressed in rotating frame coordinates, but also allowing for general rotation where the frame
rotation and the angular velocity bivector do not have to be coplanar (ie: commute as above).

Since the primes and dots are kind of cumbersome switch to the GAFP notation where the
position of a particle is expressed in terns of a rotational component x and origin translation x0:

y = RxR† + x0 (48.33)

Taking derivatives for velocity

ẏ = ṘxR† + RxṘ† + RẋR† + ẋ0 (48.34)

Now use the same observation that the derivative of RR† = 1 is zero:

d(RR†)
dt

= ṘR† + RṘ† = 0

=⇒ ṘR† = −RṘ† = −
(
ṘR†

)†
(48.35)

Since R has only grade 0 and 2 terms, so does its derivative. Thus the product of the two
has grade 0, 2, and 4 terms, but eq. (48.35) shows that the product ṘR† has a value that is the
negative of its reverse, so it must have only grade 2 terms (the reverse of the grade 0 and 4 terms
would not change sign).

As in eq. (48.20) we want to write Ṙ as a bivector/rotor product and eq. (48.35) gives us a
means to do so. This would have been clearer in GAFP if they had done the simple example
first with the orientation of the rotational plane fixed.

So, write:

ṘR† =
1
2

Ω (48.36)
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Ṙ =
1
2

ΩR (48.37)

Ṙ† = −
1
2

R†Ω (48.38)

(including the 1/2 here is a bit of a cheat ... it is here because having done the calculation on
paper first one sees that it is natural to do so).

With this we can substitute back into eq. (48.34), writing y0 = y − x0 :

ẏ =
1
2

ΩRxR† −
1
2

RxR†Ω + RẋR† + ẋ0

=
1
2
(Ωy−y0Ω) + RẋR† + ẋ0

= Ω · y0 + RẋR† + ẋ0

(48.39)

We also want to pull in this Ω into the rotor as in the fixed orientation case, but cannot use
commutativity this time since the rotor and angular velocity bivector are not necessarily in the
same plane.

This is where GAFP introduces their body angular velocity, which applies an inverse rotation
to the angular velocity.

Let:

Ω = RΩBR† (48.40)

Computing this bivector dot product with y we have

Ω · y0 = (RΩBR†) · (RxR†)

=
〈
RΩBR†RxR†

〉
1

=
〈
RΩBxR†

〉
1

=
〈
R(ΩB · x + ΩB ∧ x)R†

〉
1

= RΩB · xR†

(48.41)

Thus the total velocity is:

ẏ = R(ΩB · x + ẋ)R† + ẋ0 (48.42)
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Thus given any vector x in the rotating frame coordinate system, we have the relationship for
the inertial frame velocity. We can apply this a second time to compute the inertial (rest frame)
acceleration in terms of rotating coordinates. Write v = ΩB · x + ẋ,

ẏ = RvR† + ẋ0

=⇒ ÿ = R(ΩB · v + v̇)R† + ẍ0

v̇ = Ω̇B · x + ΩB · ẋ + ẍ (48.43)

Combining these we have:

ÿ = R(ΩB · (ΩB · x + ẋ) + Ω̇B · x + ΩB · ẋ + ẍ)R† + ẍ0 (48.44)

=⇒ ÿ = R(ΩB · (ΩB · x) + Ω̇B · x + 2ΩB · ẋ + ẍ)R† + ẍ0 (48.45)

This generalizes eq. (48.32), providing the rest frame acceleration in terms of rotational frame
coordinates, with centrifugal acceleration, Euler force acceleration, and Coriolis force acceler-
ation terms that accompany the plain old acceleration term ẍ. The only requirement for the
generality of allowing the orientation of the rotational plane to potentially vary is the use of the
“body angular velocity” ΩB, replacing the angular velocity as seen from the rest frame Ω.

48.5.1 Body angular acceleration in terms of rest frame

Since we know the relationship between the body angular velocity ΩB with the Rotor (rest
frame) angular velocity bivector, for completeness, lets compute the body angular acceleration
bivector Ω̇B in terms of the rest frame angular acceleration Ω̇.

ΩB = R†ΩR (48.46)

=⇒ Ω̇B = Ṙ†ΩR + R†Ω̇R + R†ΩṘ

= −
1
2

R†Ω2R + R†Ω̇R + R†Ω2R
1
2

=
1
2

(
R†Ω2R − R†Ω2R

)
+ R†Ω̇R

= R†Ω̇R

(48.47)

This shows that the body angular acceleration is just an inverse rotation of the rest frame
angular acceleration like the angular velocities are.
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48.6 revisit general rotation using matrices

Having fully calculated velocity and acceleration in terms of rotating frame coordinates, lets go
back and revisit this with matrices and see how one would do the same for a general rotation.

Following GAFP express the rest frame coordinates for a point y in terms of a rotation applied
to a rotating frame position x (this is easier than the mess of primes and dots used in Tong’s
paper). Also omit the origin translation (that can be added in later if desired easily enough)

y = Rx (48.48)

Thus the derivative is:

ẏ = Ṙx + Rẋ. (48.49)

As in the GA case we want to factor this so that we have a rotation applied to a something
that is completely specified in the rotating frame. This is quite easy with matrices, as we just
have to factor out a rotation matrix from Ṙ:

ẏ = RRTṘx + Rẋ

= R
(
RTṘx + ẋ

) (48.50)

This new product RTṘx we have seen above in the special case of z-axis rotation as a cross
product. In the GA general rotation case, we have seen that this as a bivector-vector dot product.
Both of these are fundamentally antisymmetric operations, so we expect this of the matrix
operator too. Verification of this antisymmetry follows in almost the same fashion as the GA
case, by observing that the derivative of an identity matrix I = RTR is zero:

İ = 0 (48.51)

=⇒ ṘTR + RTṘ = 0 (48.52)

=⇒ RTṘ = −ṘTR = −RTṘ
T

(48.53)
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Thus if one writes:

Ω = RTṘ (48.54)

the antisymmetric property of this matrix can be summarized as:

Ω = −ΩT. (48.55)

Let us write out the form of this matrix in the first few dimensions:

• R2

Ω =

0 −a

a 0

 (48.56)

For some a.

• R3

Ω =


0 −a −b

a 0 −c

b c 0

 (48.57)

For some a, b, c.

• R4

Ω =


0 −a −b −d

a 0 −c −e

b c 0 − f

d e f 0


(48.58)

For some a, b, c, d, e, f .
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For RN we have (N2 − N)/2 degrees of freedom. It is noteworthy to observe that this is
exactly the number of basis elements of a bivector. For example, in R4, such a bivector basis is
e12, e13, e14, e23, e24, e34.

For R3 we have three degrees of freedom and because of the antisymmetry can express this
matrix-vector product using the cross product. Let

(a, b, c) = (ω3,−ω2, ω1) (48.59)

One has:

Ωx =


0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0



x1

x2

x3

 =


−ω3x2 +ω2x3

+ω3x1 −ω1x3

−ω2x1 +ω1x2

 = ω × x (48.60)

Summarizing the velocity result we have, using Ω from eq. (48.54):

ẏ = R (Ωx + ẋ) (48.61)

Or, for R3, we can define a body angular velocity vector

ω =


Ω32

Ω13

Ω21

 (48.62)

and thus write the velocity as:

ẏ = R (ω × x + ẋ) (48.63)

This, like the GA result is good for general rotations. Then do not have to be constant rotation
rates, and it allows for arbitrarily oriented as well as wobbly motion of the rotating frame.

As with the GA general velocity calculation, this general form also allows us to calculate the
squared velocity easily, since the rotation matrices will cancel after transposition:

ẏ2 = (R (ω × x + ẋ)) · (R (ω × x + ẋ)) = (ω × x + ẋ)TRTR (ω × x + ẋ) (48.64)

=⇒ ẏ2 = (ω × x + ẋ)2 (48.65)
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48.7 equations of motion from lagrange partials

TBD. Do this using the Rotor formulation. How?



49
P O L A R V E L O C I T Y A N D AC C E L E R AT I O N

49.1 motivation

Have previously worked out the radial velocity and acceleration components a pile of different
ways in 46, 47, 9, 48, 8, and 7.

So, what is a couple more?
When the motion is strictly restricted to a plane we can get away with doing this either in

complex numbers (used in a number of the Tong Lagrangian solutions), or with a polar form
R2 vector (a polar representation I have not seen since High School).

49.2 with complex numbers

Let

z = reiθ (49.1)

So our velocity is

ż = ṙeiθ + irθ̇eiθ (49.2)

and the acceleration is

z̈ = r̈eiθ + iṙθ̇eiθ + iṙθ̇eiθ + irθ̈eiθ − rθ̇2eiθ

= (r̈ − rθ̇2)eiθ + (2ṙθ̇ + rθ̈)ieiθ (49.3)

49.3 plane vector representation

Also can do this with polar vector representation directly (without involving the complexity of
rotation matrices or anything fancy)

r = r

cos θ

sin θ

 (49.4)

419
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Velocity is then

v = ṙ

cos θ

sin θ

 + rθ̇

− sin θ

cos θ

 (49.5)

and for acceleration we have

a = r̈

cos θ

sin θ

 + ṙθ̇

− sin θ

cos θ

 + ṙθ̇

− sin θ

cos θ

 + rθ̈

− sin θ

cos θ

 − rθ̇2

cos θ

sin θ


= (r̈ − rθ̇2)

cos θ

sin θ

 + (2ṙθ̇ + rθ̈)

− sin θ

cos θ


(49.6)
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G R A D I E N T A N D T E N S O R N OT E S

50.1 motivation

Some notes on tensors filling in assumed details covered in [7].
Conclude with the solution of problem 6.1 to demonstrate the frame independence of the

vector derivative.
Despite being notes associated with a Geometric Algebra text, there is no GA content. Out-

side of the eventual GA application of the gradient as described in this form, the only GA
connection is the fact that the the reciprocal frame vectors can be thought of as a result of a
duality calculation. That connection is not necessary though since one can just as easily define
the reciprocal frame in terms of matrix operations. As an example, for a Euclidean metric the
reciprocal frame vectors are the columns of F(FTF)−1 where the columns of F are the vectors
in question.

These notes may not stand well on their own without the text, at least as learning material.

50.1.1 Raised and lowered indices. Coordinates of vectors with non-orthonormal frames

Let {ei} represent a frame of not necessarily orthonormal basis vectors for a metric space, and
{ei} represent the reciprocal frame.

The reciprocal frame vectors are defined by the relation:

ei · e j = δi
j. (50.1)

Lets compute the coordinates of a vector x in terms of both frames:

x =
∑

α je j =
∑

β je j (50.2)

Forming x · ei, and x · ei respectively solves for the α, and β coefficients

x · ei =
∑

α je j · ei =
∑

α jδ j
i = αi (50.3)

x · ei =
∑

β je j · ei =
∑

β jδi
j = βi (50.4)

421
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Thus, the reciprocal frame vectors allow for simple determination of coordinates for an arbi-
trary frame. We can summarize this as follows:

x =
∑

(x · ei)ei =
∑

(x · ei)ei (50.5)

Now, for orthonormal frames, where ei = ei we are used to writing:

x =
∑

xiei, (50.6)

however for non-orthonormal frames the convention is to mix raised and lowered indices as
follows:

x =
∑

xiei =
∑

xiei. (50.7)

Where, as demonstrated above these generalized coordinates have the values, xi = x · ei, and
xi = x · ei. This is a strange seeming notation at first especially since most of linear algebra is
done with always lowered (or always upper for some authors) indices. However one quickly
gets used to it, especially after seeing how powerful the reciprocal frame concept is for dealing
with non-orthonormal frames. The alternative is probably the use of matrices and their inverses
to express the same vector decompositions.

50.1.2 Metric tensor

It is customary in tensor formulations of physics to utilize a metric tensor to express the dot
product.

Compute the dot product using the coordinate vectors

x · y =
(∑

xiei
) (∑

y je j
)

=
∑

xiy j (ei · e j) (50.8)

x · y =
(∑

xiei
) (∑

y je j
)

=
∑

xiy j
(
ei · e j

)
(50.9)

Introducing second rank (symmetric) tensors for the dot product pairs ei · e j = gi j, and gi j =

ei · e j we have

x · y =
∑

xiy jgi j =
∑

xiy jgi j =
∑

xiyi =
∑

xiyi (50.10)
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We see that the metric tensor provides a way to specify the dot product in index notation, and
removes the explicit references to the original frame vectors. Mixed indices also removes the
references to the original frame vectors, but additionally eliminates the need for either of the
metric tensors.

Note that it is also common to see Einstein summation convention employed, which omits
the

∑
:

x · y = xiy jgi j = xiy jgi j = xiyi = xiyi (50.11)

Here summation over all matched upper, lower index pairs is implied.

50.1.3 Metric tensor relations to coordinates

Given a coordinate expression of a vector, we dot that with the frame vectors to observe the
relation between coordinates and the metric tensor:

x · ei =
∑

x je j · ei =
∑

x jgi j (50.12)

x · ei =
∑

x je j · ei =
∑

x jgi j (50.13)

The metric tensors can therefore be used be used to express the relations between the upper
and lower index coordinates:

xi =
∑

gi jx j (50.14)

xi =
∑

gi jx j (50.15)

It is therefore apparent that the matrix of the index lowered metric tensor gi j is the inverse of
the matrix for the raised index metric tensor gi j.

Expressed more exactly,

xi =
∑

i j

gi jx j

=
∑
i jk

gi jg jkxk

=
∑

ik

xk

∑
j

gi jg jk

(50.16)
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Since the left and right hand sides are equal for any xi, xk, we have:

δi
j =

∑
m

gimgm j (50.17)

Demonstration of the inverse property required for summation on other set of indices too for
completeness, but since these functions are symmetric, there is no potential that this would have
a “left” or “right” inverse type of action.

50.1.4 Metric tensor as a Jacobian

The relations of equations eq. (50.14), and eq. (50.15) show that the metric tensor can be ex-
pressed in terms of partial derivatives:

∂xi

∂x j = gi j

∂xi

∂x j
= gi j

(50.18)

Therefore the metric tensors can also be expressed as Jacobian matrices (not Jacobian deter-
minants) :

gi j =
∂(x1, · · · , xn)
∂(x1, · · · , xn)

gi j =
∂(x1, · · · , xn)
∂(x1, · · · , xn)

(50.19)

Will this be useful in any way?

50.1.5 Change of basis

To perform a change of basis from one non-orthonormal basis {ei} to a second { fi}, relations
between the sets of vectors are required. Using Greek indices for the f frame, and English for
the e frame, those are:

ei =
∑

f µei · fµ =
∑

fµei · f µ

fα =
∑

ek fα · ek =
∑

ek fα · ek

ei =
∑

f µei · fµ =
∑

fµei · f µ

f α =
∑

ek f α · ek =
∑

ek f α · ek

(50.20)
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Following GAFP we can write the dot product terms as a second order tensors f (ie: matrix
relation) :

ei =
∑

f µ fiµ =
∑

fµ fiµ

fα =
∑

ek fkα =
∑

ek f k
α

ei =
∑

f µ f i
µ =

∑
fµ f iµ

f α =
∑

ek fkα =
∑

ek f kα

(50.21)

Note that all these various tensors are related to each other using the metric tensors for f and
e. FIXME: show example. Also note that using this notation the metric tensors gi j and gαβ are
two completely different linear functions, and careful use of the index conventions are required
to keep these straight.

50.1.6 Inverse relationships

Looking at these relations in pairs, such as

fα =
∑

ek fkα

ei =
∑

fµ f iµ
(50.22)

and

ei =
∑

f µ fiµ

f α =
∑

ek f kα
(50.23)

It is clear that fiα is the inverse of f iα.
To be more precise

fα =
∑

ek fkα

=
∑

fµ f kµ fkα
(50.24)

Thus∑
k

f kβ fkα = δ
β
α (50.25)
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To verify both “left” and “right” inverse properties we also need:

ei =
∑

fµ f iµ

=
∑

ek fkµ f iµ
(50.26)

which shows that summation on the Greek indices also yields an inverse:

∑
µ

fiµ f jµ = δ
j
i (50.27)

There are also inverse relationships for the mixed index tensors above. Specifically,

xα =
∑

xi f αi

=
∑

xβ f i
β f αi

(50.28)

Thus,∑
i

f i
β f αi = δαβ (50.29)

And,

xi =
∑

xβ f i
β

=
∑

x j f βj f i
β

(50.30)

Thus,∑
α

f αj f i
α = δi

j (50.31)

This completely demonstrates the inverse relationship.

50.1.7 Vector derivative

GAFP exercise 6.1. Show that the vector derivative:

∇ =
∑

ei ∂

∂xi (50.32)

is not frame dependent.
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To show this we will need to utilize the chain rule to rewrite the partials in terms of the
alternate frame:

∂

∂xi =
∑ ∂xα

∂xi

∂

∂xα
(50.33)

To evaluate the first partial here, we write the coordinates of a vector in terms of both, and
take dot products:

(∑
xγ fγ

)
· f α =

(∑
xiei

)
· f α (50.34)

xα =
∑

xi fiα (50.35)

∂xα

∂xi = fiα (50.36)

Similar expressions for the other change of basis tensors is also possible, but not required for
this problem.

With this result we have the partial re-expressed in terms of coordinates in the new frame.

∂

∂xi =
∑

fiα
∂

∂xα
(50.37)

Combine this with the alternate contra-variant frame vector as calculated above:

ei =
∑

f µ f i
µ (50.38)

and we have:

∑
i

ei ∂

∂xi =
∑

i

∑
µ

f µ f i
µ


∑
α

fiα
∂

∂xα


=

∑
µα

(
f µ

∂

∂xα

)∑
i

f i
µ fiα

=
∑
µα

(
f µ

∂

∂xα

)
δµ
α

=
∑
α

f α
∂

∂xα

(50.39)
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50.1.8 Why a preference for index upper vector and coordinates in the gradient?

We can express the gradient in terms of index lower variables and vectors too, as follows:

∂

∂xi =
∑ ∂x j

∂xi

∂

∂x j

Employing the coordinate relations we have:∑
xiei · e j = x j =

∑
xiei · e j =

∑
xigi j (50.40)

and can thus calculate the partials:

∂x j

∂xi = gi j, (50.41)

and can use that to do the change of variables to index lower coordinates:

∂

∂xi =
∑

gi j
∂

∂x j

Now we also can write the reciprocal frame vectors:

ei =
∑

e jei · e j =
∑

e jgi j

Thus the gradient is:

∑
i

ei ∂

∂xi =
∑
i jk

e jgi jgik
∂

∂xk

=
∑

jk

(
e j

∂

∂xk

)∑
i

gi jgik

=
∑

jk

(
e j

∂

∂xk

)
δ

j
k

=
∑

i

ei
∂

∂xi

(50.42)

My conclusion is that there is not any preference for the index upper form of the gradient in
GAFP. Both should be equivalent. That said consistency is likely required. FIXME: To truly get
a feel for why index upper is used in this definition one likely needs to step back and look at the
defining directional derivative relation for the gradient.
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[7] derives the angular momentum for rotational motion in the following form

L = R
(∫

x∧ (x ·ΩB)dm
)

R† (51.1)

and calls the integral part, the inertia tensor

I(B) =

∫
x∧ (x ·ΩB)dm (51.2)

which is a linear mapping from bivectors to bivectors. To understand the form of this I found
it helpful to expanding the wedge product part of this explicitly for the R3 case.

Ignoring the sum in this expansion write

f (B) = x∧ (x · B) (51.3)

And writing ei j = eie j introduce a basis

b = {e1I, e2I, e3I} = {e23, e31, e12} (51.4)

for the R3 bivector product space.
Now calculate f (B) for each of the basis vectors

f (e1I) = x∧ (x · e23)

= (x1e1 + x2e2 + x3e3)∧ (x2e3 − x3e2)
(51.5)

Completing this calculation for each of the unit basic bivectors, we have

f (e1I) = (x2
2 + x2

3)e23 − (x1x2)e31 − (x1x3)e12

f (e2I) = −(x1x2)e23 + (x2
1 + x2

3)e31 − (x2x3)e12

f (e3I) = −(x1x3)e23 − (x2x3)e31 + (x2
1 + x2

2)e12

(51.6)
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Observe that taking dot products with (eiI)† will select just the eiI term of the result, so one
can form the matrix of this linear transformation that maps bivectors in basis b to image vectors
also in basis b as follows

[
I(B)

]b

b
=

[
I(eiI) · (e jI)†

]
i j

=

∫ 
x2

2 + x2
3 −x1x2 −x1x3

−x1x2 x2
1 + x2

3 −x2x3

−x1x3 −x2x3 x2
1 + x2

2

dm (51.7)

Here the notation
[
A
]c

b
is borrowed from [4] for the matrix of a linear transformation that

takes one from basis b to c.
Observe that this (R3 specific expansion) can also be written in a more typical tensor notation

with
[
I
]b

b
=

[
Ii j

]
i j

Ii j = I(eiI) · (e jI)† =

∫
(δi jx2 − xix j)dm (51.8)

Where, as usual for tensors, the meaning of the indices and whether summation is required
is implied. In this case the coordinate transformation matrix for this linear transformation has
components Ii j (and no summation).

51.1 orthogonal decomposition of a function mapping a blade to a blade

Arriving at this result without explicit expansion is also possible by observing that an orthonor-
mal decomposition of a function can be written in terms of an orthogonal basis {σi} as follows:

f (B) =
∑

i

( f (B) ·σi) ·
1
σi

(51.9)

The dot product is required since the general product of two bivectors has grade-0, grade-2,
and grade-4 terms (with a similar mix of higher grade terms for k-blades).

Perhaps unobviously since one is not normally used to seeing a scalar-vector dot product,
this formula is not only true for bivectors, but any grade blade, including vectors. To verify this
recall that the general definition of the dot product is the lowest grade term of the geometric
product of two blades. For example with grade i, j blades a, and b respectively the dot product
is:

a · b = 〈ab〉|i− j| (51.10)
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So, for a scalar-vector dot product is just the scalar product of the two

a · x = 〈ax〉1 = ax (51.11)

The inverse in section 51.1 can be removed by reversion, and for a grade-r blade this sum of
projective terms then becomes:

f (B) = (−1)r(r−1)/2 1

|σi|
2

∑
i

( f (B) ·σi) ·σi (51.12)

For an orthonormal basis we have

σiσ
†

i = |σi|
2 = 1 (51.13)

Which allows for a slightly simpler set of projective terms:

f (B) = (−1)r(r−1)/2
∑

i

( f (B) ·σi) ·σi (51.14)

51.2 coordinate transformation matrix for a couple other linear transforma-
tions

Seeing a function of a bivector for the first time is kind of intriguing. We can form the matrix of
such a linear transformation from a basis of the bivector space to the space spanned by function.
For fun, let us calculate that matrix for the basis b above for the following function:

f (B) = e1 ∧ (e2 · B) (51.15)

For this function operating on R3 bivectors we have:

f (e23) = e1 ∧ (e2 · e23) = −e31

f (e31) = e1 ∧ (e2 · e31) = 0

f (e12) = e1 ∧ (e2 · e12) = 0

(51.16)
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So

[
f
]b

b
=


−1 0 0

0 0 0

0 0 0

 (51.17)

For R4 one orthonormal basis is

b = {e12, e13, e14, e23, e24, e34} (51.18)

A basis for the span of f is b′ = {e13, e14}. Like any other coordinate transformation asso-
ciated with a linear transformation we can write the matrix of the transformation that takes a
coordinate vector in one basis into a coordinate vector for the basis for the image:

[
f (x)

]
b′

=
[
f
]b′

b

[
x
]
b

(51.19)

For this function f and these pair of basis bivectors we have:

[
f
]b′

b
=

0 0 0 1 0 0

0 0 0 0 1 0

 (51.20)

51.3 equation 3.126 details

This statement from GAFP deserves expansion (or at least an exercise):

A · (x∧ (x · B)) = 〈Ax(x · B)〉 = 〈(A · x)xB〉 = B · (x∧ (x · A)) (51.21)

Perhaps this is obvious to the author, but was not to me. To clarify this observe the following
product

x(x · B) = x · (x · B) + x∧ (x · B) (51.22)

By writing B = b∧ c we can show that the dot product part of this product is zero:

x · (x · B) = x · ((x · b)c − (x · c)b)

= (x · c)(x · b) − (x · b)(x · c))

= 0

(51.23)
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This provides the justification for the wedge product removal in the text, since one can write

x∧ (x · B) = x(x · B) (51.24)

Although it was not stated in the text section 51.3, can be used to put this inertia product in a
pure dot product form

A† · (x∧ (x · B)) = −〈Ax(x · B)〉

= 〈(x · A − A∧ x)(x · B)〉
(51.25)

The trivector-vector part of this product has only vector and trivector components

(A∧ x)(x · B) = 〈(A∧ x)(x · B)〉1 + 〈(A∧ x)(x · B)〉3 (51.26)

So 〈(A∧ x)(x · B)〉0 = 0, and one can write

A† · (x∧ (x · B)) = (x · A) · (x · B) (51.27)

As pointed out in the text this is symmetric. That can not be more clear than in section 51.3.

51.4 just for fun . general dimension component expansion of inertia tensor
terms

This triple dot product expansion allows for a more direct component expansion of the compo-
nent form of the inertia tensor. There are three general cases to consider.

• The diagonal terms:

(x ·σi) · (x ·σi) = (x ·σi)2 (51.28)

Writing σi = est where s , t, we have

(x · est)2 = ((x · es)et − (x · et)es)2

= x2
s + x2

t − 2xsxtet · es

= x2
s + x2

t

(51.29)
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• Off diagonal terms where basis bivectors have a line of intersection (always true for R3).

Here, ignoring the potential variation in sign, we can write the two basis bivectors as
σi = esi and σ j = eti, where s , t , i. Computing the products we have

(x ·σi) · (x ·σ j) = (x · esi) · (x · eti)

= ((x · es)ei − (x · ei)es) · ((x · et)ei − (x · ei)et)

= (xsei − xies) · (xtei − xiet)

= xsxt

(51.30)

• Off diagonal terms where basis bivectors have no intersection.

An example from R4 are the two bivectors e1 ∧ e2 and e3 ∧ e4

In general, again ignoring the potential variation in sign, we can write the two basis
bivectors as σi = esu and σ j = etv, where s , t , u , v. Computing the products we have

(x ·σi) · (x ·σ j) = (x · esu) · (x · etv)

= ((x · es)eu − (x · eu)es) · ((x · et)ev − (x · ev)et)

= 0

(51.31)

For example, choosing basis σ = {e12, e13, e14, e23, e24, e34} the coordinate transformation
matrix can be written out

[
f
]σ
σ

=



x2
1 + x2

2 x2x3 x2x4 −x1x3 −x1x4 0

x2x3 x2
1 + x2

3 x3x4 x1x2 0 −x1x4

x2x4 x3x4 x2
1 + x2

4 0 x1x2 x1x3

−x1x3 x1x2 0 x2
2 + x2

3 x3x4 −x2x4

−x1x4 0 x1x2 x3x4 x2
1 + x2

4 x2x3

0 −x1x4 x1x3 −x2x4 x2x3 x2
3 + x2

4


(51.32)
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51.5 example calculation . masses in a line

Pick some points on the x-axis, r(i) with masses mi. The (R3) inertia tensor with respect to basis
{eiI}, is

∑
i


0 0 0

0 (r(i)
1 )2 0

0 0 (r(i)
1 )2

mi =
∑

mir2
i


0 0 0

0 1 0

0 0 1

 (51.33)

Observe that in this case the inertia tensor here only has components in the zx and xy planes
(no component in the yz plane that is perpendicular to the line).

51.6 example calculation . masses in a plane

Let x = reiθe1, where i = e1 ∧ e2 be a set of points in the xy plane, and use σ = {σi = eiI} as the
basis for the R3 bivector space.

We need to compute

x ·σi = r(eiθe1) · (eiI)

= r〈eiθe1eiI〉
(51.34)

Calculation of the inertia tensor components has three cases, depending on the value of i

• i = 1

1
r

(x ·σi) = 〈eiθI〉1

= i sin θI

= −e3 sin θ

(51.35)

• i = 2

1
r

(x ·σi) = 〈eiθe1e2I〉1

= −〈eiθe3〉1

= −e3 cos θ

(51.36)
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• i = 3

1
r

(x ·σi) = 〈eiθe1e3(e3e1e2)〉1

= 〈eiθe2〉1

= eiθe2

(51.37)

Thus for i = {1, 2, 3}, the diagonal terms are

(x ·σi)2 = r2{sin2 θ, cos2 θ, 1} (51.38)

and the non-diagonal terms are

(x ·σ1) · (x ·σ2) = r2 sin θ cos θ (51.39)

(x ·σ1) · (x ·σ3) = 0 (51.40)

(x ·σ2) · (x ·σ3) = 0 (51.41)

Thus, with indices implied (r = ri, θ = θi, and m = mi, the inertia tensor is

[
I
]σ
σ

=
∑

mr2


sin2 θ sin θ cos θ 0

sin θ cos θ cos2 θ 0

0 0 1

 (51.42)

It is notable that this can be put into double angle form

[
I
]σ
σ

=
∑

mr2


1
2 (1 − cos 2θ) 1

2 sin 2θ 0
1
2 sin 2θ 1

2 (1 + cos 2θ) 0

0 0 1


=

1
2

∑
mr2

I +


− cos 2θ sin 2θ 0

sin 2θ cos 2θ 0

0 0 1




(51.43)

So if grouping masses along each distinct line in the plane, those components of the inertia
tensor can be thought of as functions of twice the angle. This is natural in terms of a rotor



51.6 example calculation . masses in a plane 437

interpretation, which is likely possible since each of these groups of masses in a line can be
diagonalized with a rotation.

It can be verified that the following xy plane rotation diagonalizes all the terms of constant
angle. Writing

Rθ =


cos θ − sin θ 0

sin θ cos θ 0

0 0 1

 (51.44)

We have

[
I
]σ
σ

=
∑

mr2R−θ


0 0 0

0 1 0

0 0 1

 Rθ (51.45)





52
S AT E L L I T E T R I A N G U L AT I O N OV E R S P H E R E

52.1 motivation and preparation

Was playing around with what is probably traditionally a spherical trig type problem using
geometric algebra (locate satellite position using angle measurements from two well separated
points). Origin of the problem was just me looking at my Feynman Lectures introduction where
there is a diagram illustrating how triangulation could be used to locate "Sputnik" and thought
I had try such a calculation, but in a way that I thought was more realistic.

Figure 52.1: Satellite location by measuring direction from two points

Figure 52.1 illustrates the problem I attempted to solve. Pick two arbitrary points P1, and
P2 on the globe, separated far enough that the curvature of the earth may be a factor. For this
problem it is assumed that the angles to the satellite will be measured concurrently.

Place a fixed reference frame at the center of the earth. In the figure this is shown translated
to the (0, 0) point (equator and prime meridian intersection). I have picked e1 facing east, e2

facing north, and e3 facing outwards from the core.

439
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Each point Pi can be located by a rotation along the equatorial plane by angle λi (measured
with an east facing orientation (direction of e1), and a rotation ψi towards the north (directed
towards e2).

To identify a point on the surface we translate our (0, 0) reference frame to that point using
the following rotor equation:

Rψ = exp(−e32ψ/2) = cos(ψ/2) − e32 sin(ψ/2) (52.1)

Rλ = exp(−e31λ/2) = cos(λ/2) − e31 sin(λ/2) (52.2)

R(x) = RψRλxR†λR†ψ (52.3)

To verify that I got the sign of these rotations right, I applied them to the unit vectors using a
π/2 rotation. We want the following for the equatorial plane rotation:

Rλ(π/2)


e1

e2

e3

 Rλ(π/2)† =


−e3

e2

e1


And for the northwards rotation:

Rψ(π/2)


e1

e2

e3

 Rψ(π/2)† =


e1

e2

−e3


Verifying this is simple enough using the explicit sine and cosine expansion of the rotors in

eq. (52.1) and eq. (52.2).
Once we have the ability to translate our reference frame to each point on the Earth, we can

use the inverse rotation to translate our measured unit vector to the satellite at that point back to
the reference frame.

Suppose one calculates a local unit vector α′ towards the satellite by measuring direction
cosines in our local reference frame (ie: angle from gravity opposing (up facing) direction, east,
and north directions at that point). Once that is done, that unit vector α in our reference frame
is obtained by inverse rotation:

α = R†λi
R†ψi

α′RψiRλi (52.4)
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The other place we need this rotation for is to calculate the points Pi in our reference from
(treating this now as being at the core of the earth). This is just:

Pi = RψRλAie3R†λR†ψ (52.5)

Where Ai is the altitude (relative to the center of the earth) at the point of interest.

52.2 solution

Solving for the position of the satellite Ps we have:

Ps = a1α1 + P1 = a2α2 + P2 (52.6)

Solution of this follows directly by taking wedge products. Solve for a1 for example, we
wedge with α2 :

a1α1 ∧ α2 + P1 ∧ α2 = a2 α2 ∧ α2

= 0

+ P2 ∧ α2 (52.7)

Provided the points are far enough apart to get distinct αi measurements, then we have:

a1 =
(P2 − P1)∧ α2

α1 ∧ α2
. (52.8)

Thus the position vector from the core of earth reference frame to the satellite is:

Ps =

(
(P2 − P1)∧ α2

α1 ∧ α2

)
α1 + P1 (52.9)

Notice how all the trigonometry is encoded directly in the rotor equations. If one had to
calculate all this using the spherical trigonometry generalized triangle relations I expect that
you would have an ungodly mess of sine and cosines here.

This demonstrates two very distinct applications of the wedge product. The first was to define
an oriented plane, and was used as a generator of rotations (very much like the unit imaginary).
This second application, to solve linear equations takes advantage of a ∧ a = 0 property of
the wedge product. It was convenient as it allowed simple simultaneous solution of the three
equations (one for each component) and two unknowns problem in this particular case.
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52.3 matrix formulation

Instead of solving with the wedge product one could formulate this as a matrix equation:

[
α1 −α2

] a1

a2

 =
[
P2 − P1

]
(52.10)

This highlights the fact that the equations are over-specified, which is more obvious still when
this is written out in component form:


α11 −α21

α12 −α22

α13 −α23


a1

a2

 =


P21 − P11

P22 − P12

P23 − P13

 (52.11)

We have one more equation than we need to actually solve it, and cannot use matrix inversion
directly (Gaussian elimination or a generalized inverse is required).

Recall the figure in the Feynman lectures when the observation points and the satellite are
all in the same plane. For that all that was needed was two angles, whereas we have measured
six for each of the direction cosines used above, so the fact that our equations can include more
info than required to solve the problem is not unexpected.

We could also generalize this, perhaps to remove measurement error, by utilizing more than
two observation points. This will compound the over-specification of the equations, and makes
it clear that we likely want a least squares approach to solve it. Here is an example of the matrix
to solve for three points:


α1 −α2 0

−α1 0 α3

0 α2 −α3



a1

a2

a3

 =


P2 − P1

P1 − P3

P3 − P2

 (52.12)

Since the αi are vectors, this matrix of rotated direction cosines has dimensions 9 by 3 (just
as eq. (52.10) is a 3 by 2 matrix).

52.4 question . order of latitude and longitude rotors?

Looking at a globe, it initially seemed clear to me that these "perpendicular" (abusing the word)
rotations could be applied in either order, but their rotors definitely do not commute, so I assume
that together the non-commutative bits of the rotors "cancel out".
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Question, is it actually true that the end effect of applying these rotors in either order is the
same?

x′ = RψRλxR†λR†ψ = RλRψxR†ψR†λ (52.13)

Attempting to show this is true or false by direct brute force expansion is not productive
(perhaps would be okay with a symbolic GA calculator). However, such a direct expansion of
just the rotor products in either order allows for a comparison:

RψRλ = (cos(ψ/2) − e32 sin(ψ/2))(cos(λ/2) − e31 sin(λ/2))

= cos(ψ/2) cos(λ/2) − e32 sin(ψ/2) cos(λ/2) − e31 cos(ψ/2) sin(λ/2) − e21 sin(ψ/2) sin(λ/2)
(52.14)

RλRψ = (cos(λ/2) − e31 sin(λ/2))(cos(ψ/2) − e32 sin(ψ/2))

= cos(ψ/2) cos(λ/2)

a0

+ −e32 sin(ψ/2) cos(λ/2) − e31 cos(ψ/2) sin(λ/2)

A

+ e21 sin(ψ/2) sin(λ/2)

B

(52.15)

Observe that these are identical except for an inversion of sign of the e21 term. Using the
shorthand above the respective rotations are:

Rλ,ψ(x) = RψRλxR†λR†ψ = (a0 + A − B)x(a0 − A + B) (52.16)

And

Rψ,λ(x) = RλRψxR†ψR†λ = (a0 + A + B)x(a0 − A − B) (52.17)

And this can be used to disprove the general rotation commutativity. We take the difference
between these two rotation results, and see if it can be shown to equal zero. Taking differences,
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also temporarily writing a = a0 + A, and exploiting a grade one filter since the final result must
be a vector we have:

Rλ,ψ(x) − Rψ,λ(x) =
〈
Rλ,ψ(x) − Rψ,λ(x)

〉
1

=
〈
(a − B)x(a† + B) − (a + B)x(a† − B)

〉
1

=
〈
(axa† − BxB− Bxa† + axB) + (−axa† + BxB + axB− Bxa†)

〉
1

=
〈
(−Bxa† + axB) + (+axB− Bxa†)

〉
1

= 2
〈
−Bxa† + axB

〉
1

= 2〈−Bx(a0 − A) + (a0 + A)xB〉1
= 2a0(−Bx + xB) + 2〈BxA + AxB〉1
= 4a0x · B + 2〈BxA + AxB〉1
= 4a0x · B + 2〈B · xA − AB · x〉1 + 2〈B∧ xA + Ax ∧ B〉1
= 4a0x · B + 4(B · x) · A + 2(B∧ x) · A + 2A · (B∧ x)

= 4a0x · B + 4(B · x) · A + 2(B∧ x) · A − 2(B∧ x) · A

= 4a0x · B + 4(B · x) · A

= 4(B · x) · (−a0 + A)

= −4(B · x) · a†

(52.18)

Evaluate this for x = e1 we do not have zero (a vector with e2 and e3 components), and for
x = e2 this difference has e1, and e3 components. However, for x = e3 this is zero. Thus these
rotations only commute when applied to a vector that is completely normal to the sphere. This
is what messes up the intuition. Rotating a point (represented by a vector) in either order works
fine, but rotating a frame located at the surface back to a different point on the surface, and
maintaining the east and north orientations we have to be careful which orientation to use.

So which order is right? It has to be rotate first in the equatorial plane (λ), then the northwards
rotation, where both are great circle rotations.

A numeric confirmation of this is likely prudent.
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E X P O N E N T I A L S O L U T I O N S T O L A P L AC E E Q UAT I O N I N R N

53.1 the problem

Want solutions of

∇ 2 f =
∑

k

∂ 2 f
∂ x k

2 = 0 (53.1)

For real f.

53.1.1 One dimension

Here the problem is easy, just integrate twice:

f = c x + d . (53.2)

53.1.2 Two dimensions

For the two dimensional case we want to solve:

∂ 2 f
∂ x 1 2 +

∂ 2 f
∂ x 2 2 = 0 (53.3)

Using separation of variables one can find solutions of the form f = X ( x 1 ) Y ( x 2 ). Differ-
entiating we have:

X ′ ′ Y + X Y ′ ′ = 0 (53.4)

So, for X , 0, and Y , 0:

X ′ ′

X
= −

Y ′ ′

Y
= k 2 (53.5)
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=⇒ X = e k x (53.6)

Y = e k i y (53.7)

=⇒ f = XY = ek(x+iy) (53.8)

Here i is anything that squares to -1. Traditionally this is the complex unit imaginary, but we
are also free to use a geometric product unit bivector such as i = e1 ∧ e2 = e1e2 = e12, or i = e21.

With i = e12 for example we have:

f = XY = ek(x+iy) = ek(x+e12y)

= ek(xe1e1+e12y)

= eke1(xe1+e2y)

(53.9)

Writing x =
∑

xiei, all of the following are solutions of the Laplacian

eke1x

exke1

eke2x

exke2

(53.10)

Now there is not anything special about the use of the x and y axis so it is reasonable to expect
that, given any constant vector k, the following may also be solutions to the two dimensional
Laplacian problem

exk = ex·k+x∧k (53.11)

ekx = ex·k−x∧k (53.12)
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53.1.3 Verifying it is a solution

To verify that equations eq. (53.11) and eq. (53.12) are Laplacian solutions, start with taking
the first order partial with one of the coordinates. Since there are conditions where this form of
solution works in RN , a two dimensional Laplacian will not be assumed here.

∂

∂x j
exk (53.13)

This can be evaluated without any restrictions, but introducing the restriction that the bivector
part of xk is coplanar with its derivative simplifies the result considerably. That is introduce a
restriction:

〈
x∧ k

∂x∧ k
∂x j

〉
2

=
〈
x∧ ke j ∧ k

〉
2

= 0 (53.14)

With such a restriction we have

∂

∂x j
exk = e jkexk = exke jk (53.15)

Now, how does one enforce a restriction of this form in general? Some thought will show that
one way to do so is to require that both x and k have only two components. Say, components j,
and m. Then, summing second partials we have:

∑
u= j,m

∂2

∂xu
2 exk = (e jke jk + emkemk) exk

= (e jk(−ke j + 2k · e j) + emk(−kem + 2em · k)) exk

=
(
−2k2 + 2k2

j + 2kmk je jm + 2k2
m + 2k jkmem j

)
exk

=
(
−2k2 + 2k2 + 2k jkm(em j + e jm)

)
exk

= 0

(53.16)

This proves the result, but essentially just says that this form of solution is only valid when
the constant parametrization vector k and x and its variation are restricted to a specific plane.
That result could have been obtained in much simpler ways, but I learned a lot about bivector
geometry in the approach! (not all listed here since it caused serious digressions)
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53.1.4 Solution for an arbitrarily oriented plane

Because the solution above is coordinate free, one would expect that this works for any solution
that is restricted to the plane with bivector i even when those do not line up with any specific pair
of two coordinates. This can be verified by performing a rotational coordinate transformation
of the Laplacian operator, since one can always pick a pair of mutually orthogonal basis vectors
with corresponding coordinate vectors that lie in the plane defined by such a bivector.

Given two arbitrary vectors in the space when both are projected onto the plane with constant
bivector i their product is:

(
x · i

1
i

) (
1
i
i · k

)
= (x · i)(k · i) (53.17)

Thus one can express the general equation for a planar solution to the homogeneous Laplace
equation in the form

exp((x · i)(k · i)) = exp((x · i) · (k · i) + (x · i)∧ (k · i)) (53.18)

53.1.5 Characterization in real numbers

Now that it has been verified that equations eq. (53.11) and eq. (53.12) are solutions of eq. (53.1)
let us characterize this in terms of real numbers.

If x, and k are colinear, the solution has the form

e±x·k (53.19)

(ie: purely hyperbolic solutions).
Whereas with x and k orthogonal we have can employ the unit bivector for the plane spanned

by these vectors i = x∧k
|x∧k| :

e±x∧k = cos|x∧ k| ± i sin|x∧ k| (53.20)

Or:

e±x∧k = cos
(
x∧ k

i

)
± i sin

(
x∧ k

i

)
(53.21)

(ie: purely trigonometric solutions)
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Provided x, and k are not colinear, the wedge product component of the above can be written
in terms of a unit bivector i = x∧k

|x∧k| :

exk = ex·k+x∧k

= ex·k (cos |x∧ k| + i sin |x∧ k|)

= ex·k
(
cos

(
x∧ k

i

)
+ i sin

(
x∧ k

i

)) (53.22)

And, for the reverse:

(exk)† = ekx = ex·k (cos |x∧ k| − i sin (|x∧ k|))

= ex·k
(
cos

(
x∧ k

i

)
− i sin

(
x∧ k

i

)) (53.23)

This exponential however has both scalar and bivector parts, and we are looking for a strictly
scalar result, so we can use linear combinations of the exponential and its reverse to form a
strictly real sum for the x∧ k , 0 cases:

1
2

(
exk + ekx

)
= ex·k cos

(
x∧ k

i

)
1
2i

(
exk − ekx

)
= ex·k sin

x∧ k
i

(53.24)

Also note that further linear combinations (with positive and negative variations of k) can be
taken, so we can combine equations eq. (53.11) and eq. (53.12) into the following real valued,
coordinate free, form:

cosh(x · k) cos
(
x∧ k

i

)
sinh(x · k) cos

(
x∧ k

i

)
cosh(x · k) sin

(
x∧ k

i

)
sinh(x · k) sin

(
x∧ k

i

)
(53.25)

Observe that the ratio x∧k
i is just a scalar determinant

x∧ k
i

= x jkm − xmk j (53.26)
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So one is free to choose k′ = kme j − k jem, in which case the solution takes the alternate form:

cos(x · k′) cosh
(
x∧ k′

i

)
sin(x · k′) cosh

(
x∧ k′

i

)
cos(x · k′) sinh

(
x∧ k′

i

)
sin(x · k′) sinh

(
x∧ k′

i

)
(53.27)

These sets of equations and the exponential form both remove the explicit reference to the
pair of coordinates used in the original restriction

〈
x∧ ke j ∧ k

〉
2

= 0 (53.28)

that was used in the proof that exk was a solution.
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H Y P E R C O M P L E X N U M B E R S A N D S Y M P L E C T I C S T RU C T U R E

54.1 on 4.2 hermitian norms and unitary groups

These are some rather rough notes filling in some details on the treatment of [21].
Expanding equation 4.17

J = ei ∧ fi
a = uiei + vi fi
b = xiei + yi fi
B = a∧ b + (a · J)∧ (b · J)

(54.1)

a∧ b = (uiei + vi fi)∧ (x je j + y j f j)

= uix jei ∧ e j + uiy jei ∧ f j + vix j fi ∧ e j + viy j fi ∧ f j
(54.2)

a · J = uiei · (e j ∧ f j) + vi fi · (e j ∧ f j)

= u j f j − v je j
(54.3)

Search and replace for b · J gives

b · J = xiei · (e j ∧ f j) + yi fi · (e j ∧ f j)

= x j f j − y je j
(54.4)

So we have

(a · J)∧ (b · J) = (ui fi − viei)∧ (x j f j − y je j)

= uix j fi ∧ f j − uiy j fi ∧ e j − vix jei ∧ f j + viy jei ∧ e j
(54.5)

For

a∧ b + (a · J)∧ (b · J) = (uiy j − vix j)(ei ∧ f j − fi ∧ e j) + (uix j + viy j)(ei ∧ e j + fi ∧ f j)

(54.6)
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This shows why the elements were picked as a basis

ei ∧ f j − fi ∧ e j (54.7)

ei ∧ e j + fi ∧ f j (54.8)

The first of which is a multiple of Ji = ei ∧ fi when i = j, and the second of which is zero if
i = j.

54.2 5.1 conservation theorems and flows

equation 5.10 is

ḟ = ẋ · ∇ f = (∇ f ∧∇H) · J (54.9)

This one is not obvious to me. For ḟ we have

ḟ =
∂ f
∂pi

ṗi +
∂ f
∂qi

q̇i +
∂ f
∂t

= 0
(54.10)

compare to

ẋ · ∇ f = ( ṗiei + q̇i fi) · (e j
∂ f
∂p j

+ f j
∂ f
∂q j

)

= ṗi
∂ f
∂pi

+ q̇i
∂ f
∂qi

(54.11)

Okay, this part matches the first part of (5.10). Writing this in terms of the Hamiltonian
relation (5.9) ẋ = ∇H · J we have

ḟ = (∇H · J) · ∇ f

= ∇ f · (∇H · J)
(54.12)

The relation a · (b · (c∧ d)) = (a∧ b) · (c∧ d), can be used here to factor out the J, we have

ḟ = ∇ f · (∇H · J)

= (∇ f ∧∇H) · J
(54.13)
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which completes (5.10).
Also with f = H since H was also specified as having no explicit time dependence, one has

Ḣ = (∇H ∧∇H) · J = 0 · J = 0 (54.14)





55
N E W T O N ’ S M E T H O D F O R I N T E R S E C T I O N O F C U RV E S I N A
P L A N E

55.1 motivation

Reading the blog post Problem solving, artificial intelligence and computational linear algebra
some variations of Newton’s method for finding local minimums and maximums are given.

While I had seen the Hessian matrix eons ago in the context of back propagation feedback
methods, Newton’s method itself I remember as a first order root finding method. Here I refresh
my memory what that simpler Newton’s method was about, and build on that slightly to find
the form of the solution for the intersection of an arbitrarily oriented line with a curve, and
finally the problem of refining an approximation for the intersection of two curves using the
same technique.

55.2 root finding as the intersection with a horizontal

The essence of Newton’s method for finding roots is following the tangent from the point of first
guess down to the line that one wants to intersect with the curve. This is illustrated in fig. 55.1.

Algebraically, the problem is that of finding the point x1, which is given by the tangent

f (x0) − b
x0 − x1

= f ′(x0). (55.1)

Rearranging and solving for x1, we have

x1 = x0 −
f (x0) − b

f ′(x0)
(55.2)

If one presumes convergence, something not guaranteed, then a first guess, if good enough,
will get closer and closer to the target with each iteration. If this first guess is far from the target,
following the tangent line could ping pong you to some other part of the curve, and it is possible
not to find the root, or to find some other one.
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Figure 55.1: Refining an approximate horizontal intersection
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Figure 55.2: Refining an approximation for the intersection with an arbitrarily oriented line
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55.3 intersection with a line

The above pictorial treatment works nicely for the intersection of a horizontal line with a curve.
Now consider the intersection of an arbitrarily oriented line with a curve, as illustrated in
fig. 55.2. Here it is useful to setup the problem algebraically from the beginning. Our problem
is really still just that of finding the intersection of two lines. The curve itself can be considered
the set of end points of the vector

r(x) = xe1 + f (x)e2, (55.3)

for which the tangent direction vector is

t(x) =
dr
dx

= e1 + f ′(x)e2. (55.4)

The set of points on this tangent, taken at the point x0, can also be written as a vector, namely

(x0, f (x)) + αt(x0). (55.5)

For the line to intersect this, suppose we have one point on the line p0, and a direction vector
for that line û. The points on this line are therefore all the endpoints of

p0 + βû. (55.6)

Provided that the tangent and the line of intersection do in fact intersect then our problem
becomes finding α or β after equating eq. (55.5) and eq. (55.6). This is the solution of

(x0, f (x0)) + αt(x0) = p0 + βû. (55.7)

Since we do not care which of α or β we solve for, setting this up as a matrix equation in two
variables is not the best approach. Instead we wedge both sides with t(x0) (or û), essentially
using Cramer’s method. This gives

((x0, f (x0)) − p0) ∧ t(x0) = βû∧ t(x0). (55.8)

If the lines are not parallel, then both sides are scalar multiples of e1 ∧ e2, and dividing out
one gets
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β =
((x0, f (x0)) − p0) ∧ t(x0)

û∧ t(x0)
. (55.9)

Writing out t(x0) = e1 + f ′(x0)e2, explicitly, this is

β =
((x0, f (x0)) − p0) ∧ (e1 + f ′(x0)e2)

û∧ (e1 + f ′(x0)e2)
. (55.10)

Further, dividing out the common e1 ∧ e2 bivector, we have a ratio of determinants

β =

∣∣∣∣∣∣∣x0 − p0 · e1 f (x0) − p0 · e2

1 f ′(x0)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣û · e1 û · e2

1 f ′(x0)

∣∣∣∣∣∣∣
. (55.11)

The final step in the solution is noting that the point of intersection is just

p0 + βû, (55.12)

and in particular, the x coordinate of this is the desired result of one step of iteration

x1 = p0 · e1 + (û · e1)

∣∣∣∣∣∣∣x0 − p0 · e1 f (x0) − p0 · e2

1 f ′(x0)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣û · e1 û · e2

1 f ′(x0)

∣∣∣∣∣∣∣
. (55.13)

This looks a whole lot different than the original x1 for the horizontal from back at eq. (55.2),
but substitution of û = e1, and p0 = be2, shows that these are identical.

55.4 intersection of two curves

Can we generalize this any further? It seems reasonable that we would be able to use this New-
ton’s method technique of following the tangent to refine an approximation for the intersection
point of two general curves. This is not expected to be much harder, and the geometric idea is
illustrated in fig. 55.3
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Figure 55.3: Refining an approximation for the intersection of two curves in a plane
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The task at hand is to setup this problem algebraically. Suppose the two curves s(x), and r(x)
are parametrized as vectors

s(x) = xe1 + s(x)e2 (55.14)

r(x) = xe1 + r(x)e2. (55.15)

Tangent direction vectors at the point x0 are then

s′(x0) = e1 + s′(x0)e2 (55.16)

r′(x0) = e1 + r′(x0)e2. (55.17)

The intersection of interest is therefore the solution of

(x0, s(x0)) + αs′ = (x0, r(x0)) + βr′. (55.18)

Wedging with one of tangent vectors s′ or r′ provides our solution. Solving for α this is

α =
(0, r(x0) − s(x0))∧ r′

s′ ∧ r′
=

∣∣∣∣∣∣∣ 0 r(x0) − s(x0)

r′ · e1 r′ · e2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣s′ · e1 s′ · e2

r′ · e1 r′ · e2

∣∣∣∣∣∣∣
= −

r(x0) − s(x0)
r′(x0) − s′(x0)

. (55.19)

To finish things off, we just have to calculate the new x coordinate on the line for this value
of α, which gives us

x1 = x0 −
r(x0) − s(x0)

r′(x0) − s′(x0)
. (55.20)

It is ironic that generalizing things to two curves leads to a tidier result than the more specific
line and curve result from eq. (55.13). With a substitution of r(x) = f (x), and s(x) = b, we once
again recover the result eq. (55.2), for the horizontal line intersecting a curve.

55.5 followup

Having completed the play that I set out to do, the next logical step would be to try the min/max
problem that leads to the Hessian. That can be for another day.





56
C E N T E R O F M A S S O F A T O RO I DA L S E G M E N T

56.1 motivation

In I love when kids stump me, the center of mass of a toroidal segment is desired, and the
simpler problem of a circular ring segment is considered.

Let us try the solid torus problem for fun using the geometric algebra toolbox. To setup the
problem, it seems reasonable to introduce two angle, plus radius, toroidal parametrization as
shown in fig. 56.1.

Figure 56.1: Toroidal parametrization
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Our position vector to a point within the torus is then

r(ρ, θ, φ) = e− jθ/2
(
ρe1eiφ + Re3

)
e jθ/2 (56.1a)

i = e1e3 (56.1b)

j = e3e2 (56.1c)

Here i and j for the bivectors are labels picked at random. They happen to have the quaternion-
ic properties i j = − ji, and i2 = j2 = −1 which can be verified easily.

56.2 volume element

Before we can calculate the center of mass, we will need the volume element. I do not recall
having ever seen such a volume element, so let us calculate it from scratch.

We want

dV = ±e1e2e3

(
∂r
∂ρ
∧
∂r
∂θ
∧
∂r
∂φ

)
dρdθdφ, (56.2)

so the first order of business is calculation of the partials. After some regrouping those are

∂r
∂ρ

= e− jθ/2e1eiφe jθ/2 (56.3a)

∂r
∂θ

= e− jθ/2 (R + ρ sin φ) e2e jθ/2 (56.3b)

∂r
∂φ

= e− jθ/2ρe3eiφe jθ/2. (56.3c)

For the volume element we want the wedge of each of these, and can instead select the trivec-
tor grades of the products, which conveniently wipes out a number of the interior exponentials

∂r
∂ρ
∧
∂r
∂θ
∧
∂r
∂φ

= ρ (R + ρ sin φ)
〈
e− jθ/2e1eiφe2e3eiφe jθ/2

〉
3

(56.4)

Note that e1 commutes with j = e3e2, so also with e− jθ/2. Also e2e3 = − j anticommutes with
i, so we have a conjugate commutation effect eiφ j = je−iφ. Together the trivector grade selection
reduces almost magically to just

∂r
∂ρ
∧
∂r
∂θ
∧
∂r
∂φ

= ρ (R + ρ sin φ) e1e2e3 (56.5)
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Thus the volume element, after taking the positive sign, is

dV = ρ (R + ρ sin φ) dρdθdφ. (56.6)

As a check we should find that we can use this to calculate the volume of the complete torus,
and obtain the expected V = (2πR)(πr2) result. That volume is

V =

∫ r

ρ=0

∫ 2π

θ=0

∫ 2π

φ=0
ρ (R + ρ sin φ) dρdθdφ. (56.7)

The sine term conveniently vanishes over the 2π interval, leaving just

V =
1
2

r2R(2π)(2π), (56.8)

as expected.

56.3 center of mass

With the prep done, we are ready to move on to the original problem. Given a toroidal segment
over angle θ ∈ [−∆θ/2,∆θ/2], then the volume of that segment is

∆V = r2Rπ∆θ. (56.9)

Our center of mass position vector is then located at

R∆V =

∫ r

ρ=0

∫ ∆θ/2

θ=−∆θ/2

∫ 2π

φ=0
e− jθ/2

(
ρe1eiφ + Re3

)
e jθ/2ρ (R + ρ sin φ) dρdθdφ. (56.10)

Evaluating the φ integrals we loose the
∫ 2π

0 eiφ and
∫ 2π

0 sin φ terms and are left with
∫ 2π

0 eiφ sin φdφ =

iπ/2 and
∫ 2π

0 dφ = 2π. This leaves us with

R∆V =

∫ r

ρ=0

∫ ∆θ/2

θ=−∆θ/2

(
e− jθ/2ρ3e3

π

2
e jθ/2 + 2πρR2e3e jθ

)
dρdθ (56.11)

=

∫ ∆θ/2

θ=−∆θ/2

(
e− jθ/2r4e3

π

8
e jθ/2 + 2π

1
2

r2R2e3e jθ
)

dθ (56.12)

=

∫ ∆θ/2

θ=−∆θ/2

(
e− jθ/2r4e3

π

8
e jθ/2 + πr2R2e3e jθ

)
dθ. (56.13)
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Since e3 j = − je3, we have a conjugate commutation with the e− jθ/2 for just

R∆V = πr2
(
r2

8
+ R2

)
e3

∫ ∆θ/2

θ=−∆θ/2
e jθdθ (56.14)

= πr2
(
r2

8
+ R2

)
e32 sin(∆θ/2). (56.15)

A final reassembly, provides the desired final result for the center of mass vector

R = e3
1
R

(
r2

8
+ R2

)
sin(∆θ/2)

∆θ/2
. (56.16)

Presuming no algebraic errors have been made, how about a couple of sanity checks to see if
the correctness of this seems plausible.

We are pointing in the z-axis direction as expected by symmetry. Good. For ∆θ = 2π, our
center of mass vector is at the origin. Good, that is also what we expected. If we let r → 0, and
∆θ → 0, we have R = Re3 as also expected for a tiny segment of “wire” at that position. Also
good.

56.4 center of mass for a circular wire segment

As an additional check for the correctness of the result above, we should be able to compare
with the center of mass of a circular wire segment, and get the same result in the limit r → 0.

For that we have

Z(R∆θ) =

∫ ∆θ/2

θ=−∆θ/2
Rie−iθRdθ (56.17)

So we have

Z =
1

∆θ
Ri

1
−i

(e−i∆θ/2 − ei∆θ/2). (56.18)

Observe that this is

Z = Ri
sin(∆θ/2)

∆θ/2
, (56.19)

which is consistent with the previous calculation for the solid torus when we let that solid
diameter shrink to zero.
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In particular, for 3/4 of the torus, we have ∆θ = 2π(3/4) = 3π/2, and

Z = Ri
4 sin(3π/4)

3π
= Ri

2
√

2
3π
≈ 0.3Ri. (56.20)

We are a little bit up the imaginary axis as expected.
I had initially somehow thought I had been off by a factor of two compared to the result by

The Virtuosi, without seeing a mistake in either. But that now appears not to be the case, and
I just screwed up plugging in the numbers. Once again, I should go to my eight year old son
when I have arithmetic problems, and restrict myself to just the calculus and algebra bits.

http://samjshah.com/2010/05/05/i-love-when-kids-stump-me/#comment-2349
http://samjshah.com/2010/05/05/i-love-when-kids-stump-me/#comment-2349
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A P P E N D I C E S





Part VII

A P P E N D I X





A
N OTAT I O N A N D D E F I N I T I O N S

Here is a summary of the notation and definitions that will be used.
The following tables summarize a lot of the notation used in these notes. This largely follows

conventions from [7].

a.1 coordinates and basis vectors

Greek letters range over all indices and English indices range over 1, 2, 3.
Bold vectors are spatial entities and non-bold is used for four vectors and scalars.
Summation convention is often used (less so in earlier notes). This is summation over all sets

of matched upper and lower indices is implied.
While many things could be formulated in a metric signature independent fashion, a time posi-

tive (+,−,−,−) metric signature should be assumed in most cases. Specifically, that is (γ0)2 = 1,
and (γk)2 = −1.
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γµ γµ · γν = ±δµν Four vector basis vector

(γµ · γν = ±δµν)

(γ0)2(γk)2 = −1 Minkowski metric

σk = σk = γk ∧ γ0 Spatial basis bivector. (σk ·σ j = δk j)

= γkγ0

I = γ0 ∧ γ1 ∧ γ2 ∧ γ3 Four-vector pseudoscalar

= γ0γ1γ2γ3

= γ0123

γµ · γν = δµν Reciprocal basis vectors

xµ = x · γµ Vector coordinate

xµ = x · γµ Coordinate for reciprocal basis

x = γµxµ Four vector in terms of coordinates

= γµxµ
x0 = x · γ0 Time coordinate (length dim.)

= ct

x = x ∧ γ0 Spatial vector

= xkσk

x2 = x · x Four vector square.

= xµxµ
x2 = x · x Spatial vector square.

=
∑3

k=1(xk)2

= |x|2

If convient sometimes i will be used for the pseudoscalar.

a.2 electromagnetism

SI units are used in most places, but occasionally natural units are used. In some cases, when
working with material such as [1], CGS modifications of the notation are employed.
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E =
∑

Ekσk Electric field spatial vector

B =
∑

Bkσk Magnetic field spatial vector

E = Ekσk (CGS)Electric field spatial vector

H = Hkσk (CGS)Magnetic field spatial vector

J = γµJµ Current density four vector.

= γµJµ
F = E + IcB Electromagnetic (Faraday) bivector

= Fµνγµ ∧ γν in terms of Faraday tensor

= E + IH (CGS)

J0 = J · γ0 Charge density.

= cρ (current density dimensions.)

= ρ (CGS) (current density dimensions.)

J = J ∧ γ0 Current density spatial vector

= Jkσk
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a.3 differential operators

∂µ = ∂/∂xµ Index up partial.

∂µ = ∂/∂xµ Index down partial.

∂µν = ∂/∂xµ∂/∂xν Index up partial.

∇ =
∑
γµ∂/∂xµ Spacetime gradient

= γµ∂µ

=
∑
γµ∂/∂xµ

= γµ∂
µ

∇ = σk∂k Spatial gradient

Âk = Âk1,k2,k3 Fourier coefficient, integer indices.

∇2A = (∇ · ∇)A Four Laplacian.

= (∂00 −
∑

k ∂kk)A

d3x = dx1dx2dx3 Spatial volume element.

d4x = dx0dx1dx2dx3 Four volume element.∫
∂I =

∫ b
a Integration range I = [a, b]

STA Space Time Algebra

(xyz)̃ = xyzx̃yz = zyx Reverse of a vector product.

a.4 misc

The PV notation is taken from [22] where the author uses it in his Riemann integral proof of the
inverse Fourier integral.

PV
∫ ∞
−∞

= limR→∞
∫ R

R Integral Principle value

Â(k) = F (A(x)) Fourier transform of A

A(x) = F −1(A(k)) Inverse Fourier transform

exp(ikφ) = cos(|k|φ) + ik
|ik| sin(|k|φ) bivector exponential.



B
S O M E H E L P F U L I D E N T I T I E S

Theorem B.1: Distribution of inner products

Given two blades As, Br with grades subject to s > r > 0, and a vector b, the inner product
distributes according to

As · (b∧ Br) = (As · b) · Br.

This will allow us, for example, to expand a general inner product of the form dkx · (∂∧ F).
The proof is straightforward, but also mechanical. Start by expanding the wedge and dot

products within a grade selection operator

(B.1)
As · (b ∧ Br) = 〈As(b ∧ Br)〉s−(r+1)

=
1
2
〈
As

(
bBr + (−1)rBrb

)〉
s−(r+1)

Solving for Brb in

(B.2)2b · Br = bBr − (−1)rBrb,

we have

(B.3)As · (b ∧ Br) =
1
2
〈AsbBr + As (bBr − 2b · Br)〉s−(r+1)

= 〈AsbBr〉s−(r+1) −((((
((((

(〈
As (b · Br)

〉
s−(r+1).

The last term above is zero since we are selecting the s− r − 1 grade element of a multivector
with grades s − r + 1 and s + r − 1, which has no terms for r > 0. Now we can expand the Asb
multivector product, for

(B.4)As · (b ∧ Br) = 〈(As · b + As ∧ b) Br〉s−(r+1).

The latter multivector (with the wedge product factor) above has grades s + 1− r and s + 1 + r,
so this selection operator finds nothing. This leaves

(B.5)As · (b ∧ Br) = 〈(As · b) · Br + (As · b) ∧ Br〉s−(r+1).

The first dot products term has grade s − 1 − r and is selected, whereas the wedge term has
grade s − 1 + r , s − r − 1 (for r > 0). �
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Theorem B.2: Distribution of two bivectors

For vectors a, b, and bivector B, we have

(a∧ b) · B =
1
2
(a · (b · B) − b · (a · B)) . (B.6)

Proof follows by applying the scalar selection operator, expanding the wedge product within
it, and eliminating any of the terms that cannot contribute grade zero values

(B.7)

(a ∧ b) · B =

〈
1
2
(ab − ba)B

〉
=

1
2
〈a (b · B +���b ∧ B) − b (a · B +���a ∧ B)〉

=
1
2

〈
a · (b · B) +��

���a ∧ (b · B) − b · (a · B) −���
��b ∧ (a · B)

〉
=

1
2
(a · (b · B) − b · (a · B)) �

Theorem B.3: Inner product of trivector with bivector

Given a bivector B, and trivector a ∧ b ∧ c where a,b and c are vectors, the inner product
is

(B.8)(a ∧ b ∧ c) · B = a((b ∧ c) · B) + b((c ∧ a) · B) + c((a ∧ b) · B).
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This is also problem 1.1(c) from Exercises 2.1 in [15], and submits to a dumb expansion in
successive dot products with a final regrouping. With B = u∧ v

(a∧ b∧ c) · B =
〈
(a∧ b∧ c) (u∧ v)

〉
1

=
〈
(a∧ b∧ c) (uv − u · v)

〉
1

= ((a∧ b∧ c) · u) · v
= (a∧ b) · v (c · u) + (c∧ a) · v (b · u) + (b∧ c) · v (a · u)
= a (b · v) (c · u) − b (a · v) (c · u)

+ c (a · v) (b · u) − a (c · v) (b · u)
+ b (c · v) (a · u) − c (b · v) (a · u)

= a ((b · v) (c · u) − (c · v) (b · u))
+ b ((c · v) (a · u) − (a · v) (c · u))
+ c ((a · v) (b · u) − (b · v) (a · u))

= a (b∧ c) · (u∧ v)
+ b (c∧ a) · (u∧ v)
+ c (a∧ b) · (u∧ v)

= a (b∧ c) · B + b (c∧ a) · B + c (a∧ b) · B. �

(B.9)

Theorem B.4: Distribution of two trivectors

Given a trivector T and three vectors a,b, and c, the entire inner product can be expanded
in terms of any successive set inner products, subject to change of sign with interchange
of any two adjacent vectors within the dot product sequence

(B.10)

(a ∧ b ∧ c) · T = a · (b · (c · T ))
= −a · (c · (b · T ))
= b · (c · (a · T ))
= −b · (a · (c · T ))
= c · (a · (b · T ))
= −c · (b · (a · T )) .

To show this, we first expand within a scalar selection operator

(a∧ b∧ c) · T =
〈
(a∧ b∧ c) T

〉
=

1
6
〈abcT − acbT + bcaT − babT + cabT − cbaT 〉

(B.11)
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Now consider any single term from the scalar selection, such as the first. This can be re-
ordered using the vector dot product identity

(B.12)〈abcT 〉 = 〈a (−cb + 2b · c) T 〉
= −〈acbT 〉 + 2b · c���〈aT 〉.

The vector-trivector product in the latter grade selection operation above contributes only
bivector and quadvector terms, thus contributing nothing. This can be repeated, showing that

(B.13)

〈abcT 〉 = −〈acbT 〉
= +〈bcaT 〉
= −〈bacT 〉
= +〈cabT 〉
= −〈cbaT 〉.

Substituting this back into eq. (B.11) proves theorem B.4.

Theorem B.5: Permutation of two successive dot products with trivector

Given a trivector T and two vectors a and b, alternating the order of the dot products
changes the sign

(B.14)a · (b · T ) = −b · (a · T ) .

This and theorem B.4 are clearly examples of a more general identity, but I’ll not try to prove
that here. To show this one, we have

(B.15)

a · (b · T ) = 〈a (b · T )〉1

=
1
2
〈abT + aTb〉1

=
1
2
〈(−ba +���2a · b) T + (a · T ) b +���a ∧ Tb〉1

=
1
2

(−b · (a · T ) + (a · T ) · b)

= −b · (a · T ) . �

Cancellation of terms above was because they could not contribute to a grade one selection.
We also employed the relation x · B = −B · x for bivector B and vector x.

Theorem B.6: Duality in a plane

For a vector a, and a plane containing a and b, the dual a∗ of this vector with respect to
this plane is
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(B.16)a∗ =
b · (a ∧ b)
(a ∧ b)2 ,

Satisfying

(B.17)a∗ · a = 1,

and

(B.18)a∗ · b = 0.

To demonstrate, we start with the expansion of

(B.19)b · (a ∧ b) = (b · a) b − b2a.

Dotting with a we have

(B.20)a · (b · (a ∧ b)) = a ·
(
(b · a) b − b2a

)
= (b · a)2 − b2a2,

but dotting with b yields zero

(B.21)
b · (b · (a ∧ b)) = b ·

(
(b · a) b − b2a

)
= (b · a) b2 − b2 (a · b)
= 0.

To complete the proof, we note that the product in eq. (B.20) is just the wedge squared

(B.22)

(a ∧ b)2 =
〈
(a ∧ b)2

〉
= 〈(ab − a · b) (ab − a · b)〉
= 〈abab − 2 (a · b) ab〉 + (a · b)2

= 〈ab (−ba + 2a · b)〉 − (a · b)2

= (a · b)2 − a2b2.

This duality relation can be recast with a linear denominator

(B.23)

a∗ =
b · (a ∧ b)
(a ∧ b)2

= b
a ∧ b

(a ∧ b)2

= b
a ∧ b
|a ∧ b|

|a ∧ b|
a ∧ b

1
(a ∧ b)

,
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or

a∗ = b
1

(a∧ b)
. (B.24)

We can use this form after scaling it appropriately to express duality in terms of the pseu-
doscalar.

Theorem B.7: Dual vector in a three vector subspace

In the subspace spanned by {a,b, c}, the dual of a is

a∗ = b∧ c
1

a∧ b∧ c
,

Consider the dot product of â∗ with u ∈ {a,b, c}.

(B.25)

u · a∗ =

〈
ub ∧ c

1
a ∧ b ∧ c

〉
=

〈
u · (b ∧ c)

1
a ∧ b ∧ c

〉
+

〈
u ∧ b ∧ c

1
a ∧ b ∧ c

〉
=
((((

((((
((((

(((
〈
((u · b) c − (u · c) b)

1
a ∧ b ∧ c

〉
+

〈
u ∧ b ∧ c

1
a ∧ b ∧ c

〉
.

The canceled term is eliminated since it is the product of a vector and trivector producing no
scalar term. Substituting a,b, c, and noting that u∧ u = 0, we have

a · a∗ = 1

b · a∗ = 0

c · a∗ = 0.

(B.26)

Theorem B.8: Pseudoscalar selection

For grade k blade K ∈
∧k (i.e. a pseudoscalar), and vectors a,b, the grade k selection of

this blade sandwiched between the vectors is

〈aKb〉k = (−1)k+1〈Kab〉k = (−1)k+1K (a · b) .
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To show this, we have to consider even and odd grades separately. First for even k we have

(B.27)

〈aKb〉k = 〈(a · K +���a ∧ K) b〉k
=

1
2
〈(aK − Ka) b〉k

=
1
2
〈aKb〉k −

1
2
〈Kab〉k,

or

(B.28)〈aKb〉k = −〈Kab〉k
= −K (a · b) .

Similarly for odd k, we have

(B.29)

〈aKb〉k = 〈(a · K +���a ∧ K) b〉k
=

1
2
〈(aK + Ka) b〉k

=
1
2
〈aKb〉k +

1
2
〈Kab〉k,

or

(B.30)〈aKb〉k = 〈Kab〉k
= K (a · b) .

Adjusting for the signs completes the proof.





C
S O M E F O U R I E R T R A N S F O R M N OT E S

c.1 motivation

In [25] the Fourier transform pairs are written in a somewhat non-orthodox seeming way.

φ(p) =
1
√

2π h̄

∫ ∞

−∞

ψ(x)e−ipx/ h̄dx

ψ(x) =
1
√

2π h̄

∫ ∞

−∞

φ(p)eipx/ h̄dp
(C.1)

The aim here is to do verify this form and do a couple associated calculations (like the
Rayleigh energy theorem).

c.2 verify transform pair

As an exercise to verify, in a not particularly rigorous fashion, that we get back our original
function applying the forward and reverse transformations in sequence. Specifically, let us com-
pute

F −1(F (ψ(x))) = PV
1
√

2π h̄

∫ ∞

−∞

(
1
√

2π h̄

∫ ∞

−∞

ψ(u)e−ipu/ h̄du
)

eipx/ h̄dp (C.2)

Here PV is the principle value of the integral, which is the specifically symmetric integration

PV
∫ ∞

−∞

= lim
R→∞

∫ R

−R
(C.3)

We have for the integration

F −1(F (ψ(x))) = PV
1

2π h̄

∫
duψ(u)

∫
eip(x−u)/ h̄dp (C.4)
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Now, let v = (x − u)/ h̄, or u = x − v h̄ for

1
2π

∫
dvψ(x − v h̄)

∫ R

−R
eipvdp =

1
2π

∫
dvψ(x − v h̄)

1
iv

eipv
∣∣∣∣∣R
p=−R

=

∫
dvψ(x − v h̄)

sin(Rv)
πv

(C.5)

In a hand-waving (aka. Engineering) fashion, one can identify the limit of sin(Rv)/πv as the
Dirac delta function and then declare that this does in fact recover the value of ψ(x) by a Dirac
delta filtering around the point v = 0.

This does in fact work out, but as a strict integration exercise one ought to be able to do
better. Observe that the integral performed here was not really valid for v = 0 in which case the
exponential takes the value of one, so it would be better to treat the neighborhood of v = 0 more
carefully. Doing so

1
2π

∫
dvψ(x − v h̄)

∫ R

−R
eipvdp =

∫ −ε

v=−∞

dvψ(x − v h̄)
sin(Rv)
πv

+

∫ ∞

v=ε
dvψ(x − v h̄)

sin(Rv)
πv

+
1

2π

∫ ε

v=−ε
dvψ(x − v h̄)

∫ R

−R
eipvdp

=

∫ ∞

v=ε
dv (ψ(x − v h̄) + ψ(x + v h̄))

sin(Rv)
πv

+
1

2π

∫ ε

v=−ε
dvψ(x − v h̄)

∫ R

−R
eipvdp

(C.6)

Now, evaluating this with ε allowing to tend to zero and R tending to infinity simultaneously
is troublesome seeming. I seem to recall that one can do something to the effect of setting
ε = 1/R, and then carefully take the limit, but it is not obvious to me how exactly to do this
without pulling out an old text. While some kind of ad-hoc limit process can likely be done
and justified in some fashion, one can see why the hard core mathematicians had to invent an
alternate stricter mathematics to deal with this stuff rigorously.

That said, from an intuitive point of view, it is fairly clear that the filtering involved here will
recover the average of ψ(x) in the neighborhood assuming that it is piecewise continuous:

F −1(F (ψ(x))) =
1
2
(ψ(x − ε) + ψ(x + ε)) (C.7)

After digging through my old texts I found a treatment of the Fourier integral very similar
to what I have done above in [22], but the important details are not omitted (like integrability
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conditions). I had read that and some of my treatment is obviously was based on that. That text
treats this still with Riemann (and not Lebesgue) integration, but very carefully.

c.3 parseval’s theorem

In [25] he notes that Parseval’s theorem tells us

∫ ∞

−∞

f (x)g(x)dx =

∫ ∞

−∞

F(k)G∗(k)dk∫ ∞

−∞

| f (x)|2dx =

∫ ∞

−∞

|F(k)|2dk
(C.8)

The last of these in [14] is called Rayleigh’s energy theorem. As a refresher in Fourier manip-
ulation, and to translate to the QM Fourier transform notation, let us go through the arguments
required to prove these.

c.3.1 Convolution

We will need convolution in the QM notation as a first step to express the transform of a product.
Suppose we have two functions φi(x) , and their transform pairs φ̃i(x) = F (φi), then the

transform of the product is

Φ̃12(p) = F (φ1(x)φ2(x)) =
1
√

2π h̄

∫ ∞

−∞

φ1(x)φ2(x)e−ipx/ h̄dx (C.9)

Now write φ2(x) in terms of its inverse transform

φ2(x)) =
1
√

2π h̄

∫ ∞

−∞

φ̃2(u)eiux/ h̄du (C.10)

The product transform is now

Φ̃12(p) =
1
√

2π h̄

∫ ∞

−∞

φ1(x)
1
√

2π h̄

∫ ∞

−∞

φ̃2(u)eiux/ h̄due−ipx/ h̄dx

=
1
√

2π h̄

∫ ∞

−∞

duφ̃2(u)
1
√

2π h̄

∫ ∞

−∞

φ1(x)e−ix(p−u)/ h̄dx

=
1
√

2π h̄

∫ ∞

−∞

duφ̃2(u)φ̃1(p − u)

=
1
√

2π h̄

∫ ∞

−∞

dvφ̃1(v)φ̃2(p − v)

(C.11)
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So we have product transform expressed by the convolution integral, but have an extra
1/
√

2π h̄ factor in this form

φ1(x)φ2(x)⇔
1
√

2π h̄

∫ ∞

−∞

dvφ̃1(v)φ̃2(p − v) (C.12)

c.3.2 Conjugation

Next we need to see how the conjugate transforms. This is pretty straight forward

φ∗(x)⇔
1
√

2π h̄

∫ ∞

−∞

φ∗(x)e−ipx/ h̄dx

=

(
1
√

2π h̄

∫ ∞

−∞

φ(x)eipx/ h̄dx
)∗ (C.13)

So we have

φ∗(x)⇔ (φ̃(−p))∗ (C.14)

c.3.3 Rayleigh’s Energy Theorem

Now, we should be set to prove the energy theorem. Let us start with the momentum domain
integral and translate back to position basis

∫ ∞

−∞

dpφ̃(p)φ̃∗(p) =

∫ ∞

−∞

dp
1
√

2π h̄

∫ ∞

−∞

dxφ(x)e−ipx/ h̄φ̃∗(p)

=

∫ ∞

−∞

dxφ(x)
1
√

2π h̄

∫ ∞

−∞

dpφ̃∗(p)e−ipx/ h̄

=

∫ ∞

−∞

dxφ(x)
1
√

2π h̄

∫ ∞

−∞

dpφ̃∗(−p)eipx/ h̄

=

∫ ∞

−∞

dxφ(x)F −1(φ̃∗(−p))

(C.15)

This is exactly our desired result∫ ∞

−∞

dpφ̃(p)φ̃∗(p) =

∫ ∞

−∞

dxφ(x)φ∗(x) (C.16)

Hmm. Did not even need the convolution as the systems book did. Will have to look over
how they did this more closely. Regardless, this method was nicely direct.



D
A C H E AT S H E E T F O R F O U R I E R T R A N S F O R M C O N V E N T I O N S

d.1 a cheatsheet for different fourier integral notations

Damn. There are too many different notations for the Fourier transform. Examples are:

f̃ (k) =

∫ ∞

−∞

f (x) exp (−2πikx) dx

f̃ (k) =
1
√

2π

∫ ∞

−∞

f (x) exp (−ikx) dx

f̃ (p) =

√
1

2π h̄

∫ ∞

−∞

f (x) exp
(
−ipx

h̄

)
dx

(D.1)

There are probably many more, with other variations such as using hats over things instead
of twiddles, and so forth.

Unfortunately each of these have different numeric factors for the inverse transform. Having
just been bitten by rogue factors of 2π after innocently switching notations, it seems worthwhile
to express the Fourier transform with a general fudge factor in the exponential. Then it can be
seen at a glance what constants are required in the inverse transform given anybody’s particular
choice of the transform definition.

Where to put all the factors can actually be seen from the QM formulation since one is free
to treat h̄ as an arbitrary constant, but let us do it from scratch in a mechanical fashion without
having to think back to QM as a fundamental.

Suppose we define the Fourier transform as

f̃ (s) = κ

∫ ∞

−∞

f (x) exp (−iαsx) dx

f (x) = κ′
∫ ∞

−∞

f̃ (s) exp (iαxs) ds
(D.2)

Now, what factor do we need in the inverse transform to make things work out right? With
the Rigor Police on holiday, let us expand the inverse transform integral in terms of the original
transform and see what these numeric factors must then be to make this work out.
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Omitting temporarily the κ factors to be determined we have

f (x) ∝
∫ ∞

−∞

(∫ ∞

−∞

f (u) exp (−iαsu) du
)

exp (iαxs) ds

=

∫ ∞

−∞

f (u)du
∫ ∞

−∞

exp (iαs(x − u)) ds

=

∫ ∞

−∞

f (u)du lim
R→∞

2π
1

πα(x − u)
sin (αR(x − u))

=

∫ ∞

−∞

f (u)du2πδ (α(x − u))

=
1
α

∫ ∞

−∞

f (v/α)dv2πδ (αx − v)

=
2π
α

f ((αx)/α)

=
2π
α

f (x)

(D.3)

Note that to get the result above, after switching order of integration, and assuming that we
can take the principle value of the integrals, the usual ad-hoc sinc and exponential integral
identification of the delta function was made

PV
1

2π

∫ ∞

−∞

exp (isx) ds = lim
R→∞

1
2π

∫ R

−R
exp (isx) ds

= lim
R→∞

sin (Rx)
πx

≡ δ (x)

(D.4)

The end result is that we will need to fix

κκ′ =
α

2π
(D.5)

to have the transform pair produce the desired result. Our transform pair is therefore

f̃ (s) = κ

∫ ∞

−∞

f (x) exp (−iαsx) dx⇔ f (x) =
α

2πκ

∫ ∞

−∞

f̃ (s) exp (iαsx) ds (D.6)
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d.2 a survey of notations

From eq. (D.6) we can express the required numeric factors that accompany all the various
forward transforms conventions. Let us do a quick survey of the bookshelf, ignoring differences
in the i’s and j’s, differences in the transform variables, and so forth.

From my old systems and signals course, with the book [14] we have, κ = 1, and α = 2π

f̃ (s) =

∫ ∞

−∞

f (x) exp (−2πisx) dx

f (x) =

∫ ∞

−∞

f̃ (s) exp (2πisx) ds
(D.7)

The mathematician’s preference, and that of [1], and [3] appears to be the nicely symmetrical
version, with κ = 1/

√
2π, and α = 1

f̃ (s) =
1
√

2π

∫ ∞

−∞

f (x) exp (−isx) dx

f (x) =
1
√

2π

∫ ∞

−∞

f̃ (s) exp (isx) ds
(D.8)

From the old circuits course using [16], and also in the excellent text [22], we have κ = 1,
and α = 1

f̃ (s) =

∫ ∞

−∞

f (x) exp (−isx) dx

f (x) =
1

2π

∫ ∞

−∞

f̃ (s) exp (isx) ds
(D.9)

and finally, the QM specific version from [25], with α = p/ h̄, and κ = 1/
√

2π h̄ we have

f̃ (p) =
1
√

2π h̄

∫ ∞

−∞

f (x) exp
(
−

ipx
h̄

)
dx

f (x) =
1
√

2π h̄

∫ ∞

−∞

f̃ (p) exp
( ipx

h̄

)
dp

(D.10)





E
P RO J E C T I O N W I T H G E N E R A L I Z E D D OT P RO D U C T

Figure E.1: Visualizing projection onto a subspace

We can geometrically visualize the projection problem as in fig. E.1. Here the subspace can
be pictured as a plane containing a set of mutually perpendicular basis vectors, as if one has
visually projected all the higher dimensional vectors onto a plane.

For a vector x that contains some part not in the space we want to find the component in
the space p, or characterize the projection operation that produces this vector, and also find the
space of vectors that lie perpendicular to the space.

Expressed in terms of the Euclidean dot product this perpendicularity can be expressed ex-
plicitly as UTn = 0. This is why we say that n is in the null space of UT, N(UT) not the null
space of U itself (N(U)). One perhaps could say this is in the null or perpendicular space of the
set {ui}, but the typical preference to use columns as vectors makes this not entirely unnatural.

In a complex vector space with u · v = u∗v transposition no longer expresses this null space
concept, so the null space is the set of n, such that U∗n = 0, so one would say n ∈ N(U∗).
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One can generalize this projection and nullity to more general dot products. Let us examine
the projection matrix calculation with respect to a more arbitrary inner product. For an inner
product that is conjugate linear in the first variable, and linear in second variable we can write:

〈u, v〉 = u∗Av (E.1)

This is the most general complex bilinear form, and can thus represent any complex dot
product.

The problem is the same as above. We want to repeat the projection derivation done with
the Euclidean dot product, but be more careful with ordering of terms since we now using a
non-commutative dot (inner) product.

We are looking for vectors p =
∑

aiui, and e such that

x = p + e (E.2)

If the inner product defines the projection operation we have for any ui

0 = 〈ui, e〉
= 〈ui, x − p〉

=⇒

〈ui, x〉 = 〈ui,p〉

= 〈ui,
∑

j

a ju j〉

=
∑

j

a j〈ui,u j〉

(E.3)

In matrix form, this is[
〈ui, x〉

]
i
=

[
〈ui,u j〉

]
i j

[ai]i

Or

A = [ai]i =
1[

〈ui,u j〉
]
i j

[
〈ui, x〉

]
i

We can also write our projection in terms of A:

p =
[
u1 u2 · · · uk

]
A = UA
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Thus the projection vector can be written:

p = U
1[

〈ui,u j〉
]
i j

[
〈ui, x〉

]
i

In matrix form this is:

ProjU(x) =

(
U

1
U∗AU

U∗A
)

x (E.4)

Writing W∗ = U∗A, this is

ProjU(x) =

(
U

1
W∗U

W∗A
)

x

which is what the wikipedia article on projection calls an oblique projection. Q: Can any
oblique projection be expressed using just an alternate dot product?





F
M AT H E M AT I C A N OT E B O O K S

These Mathematica notebooks, some just trivial ones used to generate figures, others more
elaborate, and perhaps some even polished, can be found in

https://github.com/peeterjoot/mathematica/tree/master/.
The free Wolfram CDF player, is capable of read-only viewing these notebooks to some

extent.

• Sep 15, 2011 gabook/matrixVectorPotentialsTrig.nb

Some trig double angle reductions.

• Sep 15, 2011 gabook/pendulumDouble.nb

Generate some double pendulum figures.

• May 4, 2014 gabook/sphericalSurfaceAndVolumeElements.nb

In a 4D Euclidean space, this notebook calculates the spherical tangent space basis for
a spherical parameterization of span e2,e3,e4 and their duals on that volume. The duals
are calculated using the Geometric algebra methods, instead of matrix inversion. This
notebook uses clifford.m

• May 4, 2014 gabook/sphericalSurfaceAndVolumeElementsMinkowski.nb

In a 4D Minkowski space, this notebook calculates the spherical tangent space basis for
a spherical parameterization of span e2,e3,e4 and their duals on that volume. The duals
are calculated using the Geometric algebra methods, instead of matrix inversion. This
notebook uses clifford.m
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https://github.com/peeterjoot/mathematica/tree/master/
http://www.wolfram.com/cdf-player/
https://raw.github.com/peeterjoot/mathematica/master/gabook/matrixVectorPotentialsTrig.nb
https://raw.github.com/peeterjoot/mathematica/master/gabook/pendulumDouble.nb
https://raw.github.com/peeterjoot/mathematica/master/gabook/sphericalSurfaceAndVolumeElements.nb
https://raw.github.com/peeterjoot/mathematica/master/gabook/sphericalSurfaceAndVolumeElementsMinkowski.nb




G
F U RT H E R R E A D I N G

There is a wealth of information on the subject available online, but finding information at an
appropriate level may be difficult. Not all resources use the same notation or nomenclature, and
one can get lost in a sea of product operators. Some of the introductory material also assumes
knowledge of various levels of physics. This is natural since the algebra can be utilized well to
expresses many physics concepts. While natural, this can also be intimidating if one is unpre-
pared, so mathematics that one could potentially understand may be presented in a fashion that
is inaccessible.

g.1 geometric algebra for computer science book

The book Geometric Algebra For Computer Science. by Dorst, Fontijne, and Mann has one of
the best introductions to the subject that I have seen. It is also fairly inexpensive (
(60 Canadian). Compared for example to Hestenes’s “From Clifford Algebra to Geometric Cal-
culus” which I have seen listed on amazon.com with a default price of
)250, discounted to $150.

This book contains particularly good introductions to the dot and wedge products, both for
vectors, and the generalizations. How these can be applied and what they can be used to model
is covered excellently.

Compromises have been made in this book on the order to present information, and what
level of detail to use and when. Many proofs are deferred or placed only in the appendix. For
example, they introduce (define) a scalar product initially (denoted with an asterisk (*)), and
define this using a determinant without motivation. This allows for development of a working
knowledge of how to apply the subject.

Once an ability to apply has been developed they proceed with an axiomatic development.
I would consider an axiomatic approach to the subject very important since there is a sea of
identities associated with the algebra. Figuring out which ones are consequences of the others
can be difficult, if one starts with definitions that are not fundamental. One can easily go in
circles and wonder really are the basic rules (this was my first impression starting with the
Hestenes book “New Foundations for Classical Mechanics”. The book “Geometric Algebra
for Physicists” has an excellent axiomatic development. It however notably makes a similar
compromise first introducing the algebra with a dot plus wedge product formulation to develop
some familiarity.
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This book has three parts. The first is on the algebra, covering the generalized dot and wedge
products, rotors, projections, join, linear transformations as outermorphisms, and all the rest of
the basic material that one would expect. It does this excellently.

The second portion of this book is on the use of a 5D conformal model for 3D graphics
(adding a point at infinity on top of the normal extra viewport dimension that traditional graphics
applications use). I can not comment too much on this part of the book since I loaned it to a
friend after reading the first and last parts of the book.

The last part of the book is on implementation, and makes for an interesting read. Details on
their Gaigen implementation are discussed, as are performance and code size implications of
their implementation.

The only thing negative I have to say about this book is the unfortunate introduction of an
alternate notation for the generalized dot product (L and backwards L). This is distracting if one
started, like I did, with the Hestenes, Cambridge, or Baylis papers or books, and their notation
dominates the literature as far as I can tell. This does not take too long to adjust, since one
mostly just has to mentally substitute dots for L’s (although there are some subtle differences
where this transposition does not necessarily work).

g.2 gaviewer

Performing the GAViewer tutorial exercises is a great way to build some intuition to go along
with the math (putting the geometric back in the algebra).

There are specific GAViewer exercises that you can do independent of the book, and there is
also an excellent interactive tutorial 2003 Game Developer Lecture available here:

Interactive GA tutorial. UvA GA Website: Tutorials
(they have hijacked GAViewer here to use as presentation software, but you can go through

things at your own pace, and do things such as rotating viewpoints). Quite neat, and worth doing
just to play with the graphical cross product manipulation even if you decide not to learn GA.

g.3 other resources from dorst, fontijne , and mann

There are other web resources available associated with this book that are quite good. The best
of these is GAViewer, a graphical geometric calculator that was the product of some of the
research that generated this book.

See , or his paper itself .
Some other links:
Geometric algebra (Clifford algebra)
This is a good tutorial , as it focuses on the geometrical rather than have any tie to physics

(fun but more to know). The following looks like a slightly longer updated version:

http://www.science.uva.nl/ga/tutorials/
http://staff.science.uva.nl/~leo/clifford/index.html
http://staff.science.uva.nl/~leo/clifford/dorst-mann-I.pdf
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GA: a practical tool for efficient geometric representation (Dorst)

g.4 learning ga

Of the various GA primers and workbooks above, here are a couple specific documents that
are noteworthy, and some direct links to a few things that can be found by browsing that were
noteworthy. This is an interactive GA tutorial/presentation for a game programmers conference

that provides a really good intro and has a lot of examples that I found helpful to get an
intuitive feel for all the various product operations and object types. Even if you weare not trying
to learn GA, if you have done any traditional vector algebra/calculus, IMO its worthwhile to
download this just to just to see the animation of how the old cross product varies with changes
to the vectors. You have to download the GAViewer program (graphical vector calculator) to run
the presentation. Once you do that you can use it for other calculation examples, such as those
available in these examples of how to use GAViewer as a standalone tool.. Note that the book
the drills are from use a different notation for dot product (with a slightly different meaning and
uses an oriented L symbol dependent on the grades of the blades.

Jaap Suter’s GA primer. His website, which is referenced in various GA papers no longer (at
least obviously) has this primer on it any longer (Sept/2008).

Ian Bell’s introduction to GA
This author has a wide range of GA information, but looking at it will probably give you a

headache.
GA wikipedia
There are a number of comparisons here between GA identities and traditional vector identi-

ties, that may be helpful to get oriented.
- Maths - Clifford / Geometric Algebra - Martin Baker
A GA intro, a small part in the much larger Euclidean space website.
- As mentioned above there is a lot of learning GA content available in the Cambridge/Baylis/H-

estenes/Dorst/... sites.

g.5 cambridge

The Cambridge GA group has a number of Geometric Algebra publications, including the book
Geometric Algebra for Physicists
This book has an excellent introductory treatment of a number of basic GA concepts, a num-

ber of which are much easier to follow than similar content in Hestenes’s "New Foundations for
Classical Mechanics". When it comes to physics content in this book there are a lot of details
left out, so it is not the best for learning the physics itself if you are new to the topic in question.

http://staff.science.uva.nl/~leo/clifford/dorst-mann-I.pdf
http://www.science.uva.nl/ga/tutorials/
http://www.lomont.org/Math/GeometricAlgebra/Geometric%20Algebra%20Primer%20-%20Suter%20-%202003.pdf
http://www.jaapsuter.com/
http://www.iancgbell.clara.net/maths/geoalg.htm
http://en.wikipedia.org/wiki/Geometric_algebra.
http://www.mrao.cam.ac.uk/~cjld1/pages/book.htm
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Much of the content of their book is actually available online in their publications above, but
it is hard to beat coherent organization and a paper version that you can mark up.

Some other online learning content from the Cambridge group includes
Introduction to Geometric Algebra
This is an HTML version of the Imaginary numbers are not real paper.
A nice starting point is lect1.pdf from the Cambridge PartIII physics course on GA applica-

tions . Only at the very end of this first pdf is any real physics content. taught to what sounds
like final year undergrad physics students. The first parts of this do not need much physics
knowledge.

g.6 baylis

Wiliam Baylis GA page
He uses a scalar plus vector multivector representation for relativity (APS, Algebra of Phys-

ical Space), and an associated conjugate length operation. You will find an intro relativity, GA
workbook, and some papers on GA applied to physics here. Also based on his APS approach is
the following wikibook:

Physics in the Language of Geometric Algebra. An Approach with the Algebra of Physical
Space

g.7 hestenes

Hestenes main page for GA is Geometric Calculus R & D Home Page
This includes a number of primers and introductions to the subject such as Geometric Algebra

Primer. As described in the Introduction page for this primer, this is a workbook, and reading
should not be passive.

Also available is his Oersted Lecture, which contains a good introduction.
If you do not have his “New Foundations of Classical Mechanics” book, you can find some

of the dot-product/wedge-product reduction formulas in the following non-metric treatment of
GA.

Also interesting is this Gauge Theory Gravity with Geometric Algebra paper. This has an
introduction to STA (Space Time Algebra) as used in the Cambridge books. This also shows
at a high level where one can go with a lot of these ideas (like the grad F = J formulation
of Maxwell’s equation, a multivector form that incorporates all of the traditional four vector
Maxwell’s equations). Nice teaser document if you intend to use GA for physics study, but hard
to read even the consumable bits because they are buried in among a lot of other higher level
math and physics.

http://www.mrao.cam.ac.uk/~clifford/introduction/index.html
http://www.mrao.cam.ac.uk/~clifford/publications/ps/imag_numbs.pdf
http://www.mrao.cam.ac.uk/~clifford/ptIIIcourse/GeometricAlgebraLectures.zip
http://www.mrao.cam.ac.uk/~clifford/ptIIIcourse/GeometricAlgebraLectures.zip
http://www.uwindsor.ca/users/b/baylis/main.nsf
http://en.wikibooks.org/wiki/Physics_in_the_Language_of_Geometric_Algebra._An_Approach_with_the_Algebra_of_Physical_Space
http://en.wikibooks.org/wiki/Physics_in_the_Language_of_Geometric_Algebra._An_Approach_with_the_Algebra_of_Physical_Space
http://modelingnts.la.asu.edu/
http://modelingnts.la.asu.edu/pdf/PrimerGeometricAlgebra.pdf
http://modelingnts.la.asu.edu/pdf/PrimerGeometricAlgebra.pdf
http://modelingnts.la.asu.edu/html/IntroPrimerGeometricAlgebra.html
http://modelingnts.la.asu.edu/pdf/OerstedMedalLecture.pdf
http://modelingnts.la.asu.edu/pdf/UGA.pdf
http://modelingnts.la.asu.edu/pdf/UGA.pdf
http://modelingnts.la.asu.edu/pdf/GTG.w.GC.FP.pdf
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Hestenes, Li and Rockwood in their paper New Algebraic Tools for Classical Geometry in G.
Sommer (ed.) Geom. Computing with Clifford Algebras (Springer, 2001) treat outermorphisms
and determinants in a separate subsection entitled "Outermorphism" of section 1.3 Linear Trans-
formations:

This is a comprehensive doc. Content includes:

• GA intro boilerplate.

• Projection and Rejection.

• Meet and Join.

• Reciprocal vectors (dual frame).

• Vector differentiation.

• Linear transformations.

• Determinants and outermorphisms.

• Rotations.

• Simplexes and boundaries

• Dual quaternions.

g.8 eckhard m . s . hitzer (university of fukui)

From Eckhard’s Geometric Algebra Topics.
Since these are all specific documents, and all at a fairly consumable level for a new learner,

I have listed them here specifically:

• Axioms of geometric algebra

• The use of quadratic forms in geometric algebra

• The geometric product and derived products

• Determinants in geometric algebra

• Gram-Schmidt orthogonalization in geometric algebra

• What is an imaginary number?

• Simplical calculus:

http://modelingnts.la.asu.edu/pdf/CompGeom-ch1.pdf
http://sinai.mech.fukui-u.ac.jp/gala2/
http://sinai.mech.fukui-u.ac.jp/gala2/GAtopics/axioms.pdf
http://sinai.mech.fukui-u.ac.jp/gala2/GAtopics/qform.pdf
http://sinai.mech.fukui-u.ac.jp/gala2/GAtopics/products.pdf
http://sinai.mech.fukui-u.ac.jp/gala2/GAtopics/det.pdf
http://sinai.mech.fukui-u.ac.jp/gala2/GAtopics/GS.pdf
http://sinai.mech.fukui-u.ac.jp/gala2/GAtopics/WhatIsi.pdf
http://sinai.mech.fukui-u.ac.jp/gcj/publications/mvdifcalc/mvdc.pdf
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g.9 electrodynamics

John Denker has a number of GA docs that all appear very readable. One such doc is:
Electromagnetism using Geometric Algebra versus Components
This is a nice little doc (there is also an HTML version, but it is very hard to read, and the

first time I saw it I actually missed a lot of content).
The oft repeated introduction to GA is not in this doc, so you have to know the basics first.

Denker takes the ∇F = J/cε0 equation and unpacks it in a brute force but understandable fash-
ion, and shows that these are identical to the vector differential form of Maxwell’s equations. A
few other E&M constructs are shown in their GA form (covariant form of Lorentz force equa-
tion, Lagrangian density, Stress tensor, Poynting Vector. There are also many good comments
on notation issues.

A cautionary note if you have read any of the Cambridge papers. This doc uses a -+++ metric
instead of the +— used in those docs.

Some other Denker GA papers:

• Magnetic field of a straight wire.

• Clifford Intro.

Very nice axiomatic introduction with excellent commentary. Also includes an STA intro.

• Complex numbers.

• Area and Volume.

• Rotations.

(have not read all these yet).
Richard E. Harke, An Introduction to the Mathematics of the Space-Time Algebra
This is a nice complete little doc (4̃0 pages), where many basic GA constructs are developed

axiomatically with associated proofs. This includes some simplical calculus and outermorphism
content, and eventually moves on to STA and Lorentz rotations.

g.10 misc

• A blog like subscription service that carries abstracts for various papers on or using Geo-
metric Algebra.

g.11 collections of other ga bookmarks

• Geomerics. Graphics software for Games, Geometric Algebra references and description.

http://www.av8n.com/physics/maxwell-ga.pdf
http://www.av8n.com/physics/straight-wire.pdf
http://www.av8n.com/physics/clifford-intro.pdf
http://www.av8n.com/physics/complex-clifford.pdf
http://www.av8n.com/physics/area-volume.pdf
http://www.av8n.com/physics/rotations.pdf
http://www.harke.org/ps/intro.ps.gz
http://gaupdate.wordpress.com/
http://www.geomerics.com/geometric-algebra.htm
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• Ramon González Calvet us GA links.

• R. W. Gray’s GA links.

• Cambridge groups GA urls.

g.12 exterior algebra and differential forms

• Grassmann Algebra Book

Pdf files of a book draft entitled Grassmann Algebra: Exploring applications of extended
vector algebra with Mathematica.

This has some useful info. In particular, a great example of solving linear systems with
the wedge product.

• The Cornell Library Historical Mathematics Monographs - hyde on grassman

• A Geometric Approach to Differential Forms by David Bachman

g.13 software

• Gaigen 2

• CLICAL for Clifford Algebra Calculations

• nklein software. Geoma.

http://www.xtec.es/~rgonzal1/links.htm
http://www.rwgrayprojects.com/GeometricAlgebra/references.html
http://www.mrao.cam.ac.uk/~clifford/pages/links.htm
http://www.grassmannalgebra.info/grassmannalgebra/book/index.htm
http://historical.library.cornell.edu/cgi-bin/cul.math/docviewer?did=00540001&seq=15&frames=0&view=50
http://www.math.boun.edu.tr/instructors/ozturk/eskiders/fall04math488/bachman.pdf
http://staff.science.uva.nl/~fontijne/gaigen2.html
http://users.tkk.fi/~ppuska/mirror/Lounesto/CLICAL.htm
http://www.nklein.com/products/geoma/
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C H RO N O L O G I C A L I N D E X

• October 13, 2007 4 Comparison of many traditional vector and GA identities

• October 13, 2007 6 Torque

• October 16, 2007 7 Derivatives of a unit vector

• October 16, 2007 5 Cramer’s rule

• October 22, 2007 8 Radial components of vector derivatives

• January 1, 2008 14 More details on NFCM plane formulation

• January 29, 2008 9 Rotational dynamics

• February 2, 2008 15 Quaternions

• February 4, 2008 17 Legendre Polynomials

• February 15, 2008 51 Inertia Tensor

• February 19, 2008 29 Rotor Notes

• February 28, 2008 53 Exponential Solutions to Laplace Equation in RN

• March 9, 2008 10 Bivector Geometry

• March 9, 2008 11 Trivector geometry

• March 12, 2008 33 Exponential of a blade

• March 16, 2008 12 Multivector product grade zero terms

• March 17, 2008 25 Angle between geometric elements

• March 17, 2008 3 An earlier attempt to intuitively introduce the dot, wedge, cross, and
geometric products

• March 25, 2008 13 Blade grade reduction

• March 29, 2008 21 Reciprocal Frame Vectors
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510 chronological index

• March 31, 2008 38 Exterior derivative and chain rule components of the gradient

• April 1, 2008 26 Orthogonal decomposition take II

• April 11, 2008 22 Matrix review

• April 13, 2008 52 Satellite triangulation over sphere

• May 16, 2008 27 Matrix of grade k multivector linear transformations

• May 16, 2008 24 Projection and Moore-Penrose vector inverse

• May 16, 2008 23 Oblique projection and reciprocal frame vectors

• May 17, 2008 E Projection with generalized dot product

• June 6, 2008 50 Gradient and tensor notes

• June 10, 2008 46 Angular Velocity and Acceleration. Again

• July 8, 2008 47 Cross product Radial decomposition

• August 13, 2008 16 Cauchy Equations expressed as a gradient

• September 2, 2008 20 OuterMorphism Question

• November 1, 2008 30 Euler Angle Notes

• November 8, 2008 54 Hyper complex numbers and symplectic structure

• November 13, 2008 31 Spherical polar coordinates

• November 27, 2008 19 Some NFCM exercise solutions and notes

• November 30, 2008 32 Rotor interpolation calculation

• January 5, 2009 40 Vector Differential Identities

Translate some identities from the Feynman lectures into GA form. These apply in higher
dimensions with the GA formalism, and proofs of the generalized identities are derived.
Make a note of the last two identities that I wanted to work through. This is an incomplete
attempt at them. It was trickier than I expected, and probably why they were omitted from
Feynman’s text.
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• January 9, 2009 C Some Fourier transform notes

QM formulation, with hbar’s, of the Fourier transform pair, and Rayleigh Energy theorem,
as seen in the book "Quantum Mechanics Demystified". Very non-rigorous treatment,
good only for intuition. Also derive the Rayleigh Energy theorem used (but not proved)
in this text.

• January 13, 2009 49 Polar velocity and acceleration

Straight up column matrix vectors and complex number variants of radial motion deriva-
tives.

• January 21, 2009 D A cheatsheet for Fourier transform conventions

• February 26, 2009 39 Spherical and hyperspherical parametrization

Volume calculations for 1-sphere (circle), 2-sphere (sphere), 3-sphere (hypersphere). Fol-
lowup with a calculation of the differential volume element for the hypersphere (ie: Minkowski
spaces of signature (+,-,-,-). Plan to use these results in an attempt to reduce the 4D hy-
perbolic Green’s functions that we get from Fourier transforming Maxwell’s equation.

• March 13, 2009 18 Levi-Civitica summation identity

A summation identity given in Byron and Fuller, ch 1. Initial proof with a perl script, then
note equivalence to bivector dot product.

• April 28, 2009 37 Developing some intuition for Multivariable and Multivector Taylor
Series

Explicit expansion and Hessian matrix connection. Factor out the gradient from the direc-
tion derivative for a few different multivector spaces.

• Aug 31, 2009 34 Generator of rotations in arbitrary dimensions.

Similar to the exponential translation operator, the exponential operator that generates
rotations is derived. Geometric Algebra is used (with an attempt to make this somewhat
understandable without a lot of GA background). Explicit coordinate expansion is also
covered, as well as a comparison to how the same derivation technique could be done
with matrix only methods. The results obtained apply to Euclidean and other metrics and
also to all dimensions, both 2D and greater or equal to 3D (unlike the cross product form).

• Sept 20, 2009 35 Spherical Polar unit vectors in exponential form.

An exponential representation of spherical polar unit vectors. This was observed when
considering the bivector form of the angular momentum operator, and is reiterated here
independent of any quantum mechanical context.
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• Dec 1, 2009 41 Polar form for the gradient and Laplacian.

Explore a chain rule derivation of the polar form of the Laplacian, and the validity of my
old First year Professor’s statements about divergence of the gradient being the only way
to express the general Laplacian. His insistence that the grad dot grad not being generally
valid is reconciled here with reality, and the key is that the action on the unit vectors also
has to be considered.

• Mar 7, 2010 55 Newton’s method for intersection of curves in a plane.

Refresh my memory on Newton’s method. Then take the same idea and apply it to finding
the intersection of two arbitrary curves in a plane. This provides a nice example for the
use of the wedge product in linear system solutions. Curiously, the more general result
for the iteration of an intersection estimate is tidier and prettier than that of a curve with
a line.

• May 15, 2010 56 Center of mass of a toroidal segment.

Calculate the volume element for a toroidal segment, and then the center of mass. This is
a nice application of bivector rotation exponentials.

• Oct 20, 2010 42 Derivation of the spherical polar Laplacian

A derivation of the spherical polar Laplacian.

• Dec 27, 2010 28 Vector form of Julia fractal.

Vector form of Julia fractal.

• Jan 27, 2012 36 Infinitesimal rotations.

Derive the cross product result for infinitesimal rotations with and without GA.

• Mar 16, 2012 2 Geometric Algebra. The very quickest introduction.

• January 04, 2013 43 Tangent planes and normals in three and four dimensions

Figure out how to express a surface normal in 3d and a "volume" normal in 4d.

• May 17, 2014 44 Stokes theorem

New rewrite from scratch of Stokes theorem, properly treating curvilinear coordinates.

• September 01, 2016 ?? Elliptic parameterization

• September 20, 2016 ?? Fundamental theorem of calculus

• September 26, 2016 ?? Green’s function for the gradient in Euclidean spaces.
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• September 29, 2016 ?? Helmholtz theorem

• October 12, 2016 ?? Corollaries to Stokes and Divergence theorems

• October 30, 2016 ?? math.se: What’s the difference between exterior, clifford, geometric,
... algebras
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1-form, 353

acceleration, 400
polar, 419

angular acceleration, 395
angular velocity, 65, 395

bivector, 73, 368
intersecting planes, 85
rotation, 85

blade
exponentiation, 245

body angular acceleration, 414

Cauchy equations, 123
Cayley Klein angle, 232
center of mass

toroidal segment, 463
chain rule, 295
change of basis, 424
circular motion, 72
complex numbers, 45, 290
contour integral, 291
contraction

Levi-Civitica tensor, 133
convolution, 487
coordinate

spherical, 354
Cramer’s rule, 49
cross product

introduction, 19
curl

curl, 313
divergence, 312

curvilinear basis, 339

curvilinear coordinate, 335
cyclic permutation, 375

derivative
unit vector, 400

differential forms, 335
directional derivative, 291
divergence

gradient, 312
divergence theorem, 360

2D, 362
3D, 364
4D, 366

dot product, 36
introduction, 19
symmetric sum, 37

dual, 480
dual basis, 339, 355
duality, 335

ellipse, 149
Euler angle, 225
exterior derivative, 295

Fourier transform, 485, 489

geometric product
introduction, 13, 19

grade reduction, 99
grade selection, 75
gradient, 123, 295, 421

curl, 312
divergence, 311
polar form, 318

Gram-Schmidt, 38
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Green’s theorem, 339

hypercomplex numbers, 451
hyperspherical parametrization, 299
hypervolume element, 113

identities, 31
inertial tensor, 429
intersection, 455

Jacobian, 424
Julia fractal, 203

Kepler’s laws, 70
kinetic energy, 407

Lagrange identity, 33
Laplace equation, 445
Laplacian

polar form, 318
spherical polar, 325

Legendre polynomial, 127
Levi-Civitica tensor, 133

manifold, 338
Mathematica, 355, 497
matrix, 169
metric

Euclidean, 345
Minkowski, 345

metric tensor, 422
Minkowski space, 357
Moore-Penrose inverse, 193

n-volume, 299
Newton’s method, 455
normal, 329

oblique projection, 181
outermorphism, 145

parallelepiped

volume, 35
parallelogram

area, 34, 40
plane

equation, 34
projection, 43
rejection, 43, 110
rotation, 47
wedge product, 109

plane projection
matrix, 171

projection, 193, 493
bivector, 82
matrix, 169, 175

pseudoscalar, 359, 362, 482

quaternion, 47, 119

Rayleigh’s Energy Theorem, 488
reciprocal basis, 338
reciprocal frame, 153, 181
reciprocal frame vectors, 338
rejection, 41

bivector, 82
relativistic physics, 359
rest frame, 414
rotation

generator, 83, 253
infinitesimal, 275

rotational frame, 407
rotor, 209

interpolation, 243

spherical parametrization, 299
spherical polar coordinates, 233
spherical polar unit vectors, 267
standard basis, 339
Stokes theorem, 335
summation convention, 473
symplectic structure, 451
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tangent plane, 329, 341
Taylor series, 281
tensor, 368, 421
torque, 53
triangulation, 439
trivector, 89, 369
two-form, 335

unit normal, 67
unit vector

derivative, 59

vector
inversion, 36
Laplacian, 314
plane projection, 111
radial component, 63

vector derivative, 426
vector identities, 311
vectors

angle between, 35, 195
velocity

polar, 419

wedge
determinant expansion, 33

wedge product, 37
antisymmetric sum, 37
introduction, 19





Part X

B I B L I O G R A P H Y





B I B L I O G R A P H Y

[1] D. Bohm. Quantum Theory. Courier Dover Publications, 1989. (Cited on pages 474
and 491.)

[2] John Browne. Grassman algebra book., chapter The Exterior Product. 2009. URL https:
//sites.google.com/site/grassmannalgebra/thegrassmannalgebrabook/

GrassmannAlgebraBook.pdf. [Online; accessed 22-May-2014]. (Cited on page 49.)

[3] F.W. Byron and R.W. Fuller. Mathematics of Classical and Quantum Physics. Dover
Publications, 1992. (Cited on pages 133, 281, 319, and 491.)

[4] D.B. Damiano and J.B. Little. A course in linear algebra. Harcourt Brace Jovanvich San
Diego, 1988. (Cited on page 430.)

[5] John Denker. Electromagnetism using Geometric Algebra., 2014. URL http://www.
av8n.com/physics/maxwell-ga.pdf. [Online; accessed 22-May-2014]. (Cited on
page 239.)

[6] John Denker. Magnetic field for a straight wire., 2014. URL http://www.av8n.com/
physics/straight-wire.pdf. [Online; accessed 11-May-2014]. (Cited on page 336.)

[7] C. Doran and A.N. Lasenby. Geometric algebra for physicists. Cambridge University
Press New York, Cambridge, UK, 1st edition, 2003. (Cited on pages 13, 137, 145, 225,
230, 254, 257, 281, 282, 288, 381, 386, 421, 429, and 473.)

[8] L. Dorst, D. Fontijne, and S. Mann. Geometric Algebra for Computer Science. Morgan
Kaufmann, San Francisco, 2007. (Cited on pages 13, 203, and 243.)

[9] R.P. Feynman, R.B. Leighton, and M.L. Sands. Feynman lectures on physics.[Lectures on
physics]. Addison-Wesley Publishing Company. Reading, Massachusetts, 1963. (Cited
on page 311.)

[10] H. Flanders. Differential Forms With Applications to the Physical Sciences. Courier Dover
Publications, 1989. (Cited on page 335.)

[11] D. Fleisch. Review of rectangular, cylindrical, and spherical coordinates, 2011. URL
http://www4.wittenberg.edu/maxwell/CoordinateSystemReview.pdf. [On-
line; accessed 22-May-2014]. (Cited on page 233.)

523

https://sites.google.com/site/grassmannalgebra/thegrassmannalgebrabook/GrassmannAlgebraBook.pdf
https://sites.google.com/site/grassmannalgebra/thegrassmannalgebrabook/GrassmannAlgebraBook.pdf
https://sites.google.com/site/grassmannalgebra/thegrassmannalgebrabook/GrassmannAlgebraBook.pdf
http://www.av8n.com/physics/maxwell-ga.pdf
http://www.av8n.com/physics/maxwell-ga.pdf
http://www.av8n.com/physics/straight-wire.pdf
http://www.av8n.com/physics/straight-wire.pdf
http://www4.wittenberg.edu/maxwell/CoordinateSystemReview.pdf


524 bibliography

[12] H. Goldstein. Classical mechanics. Cambridge: Addison-Wesley Press, Inc, 1st edition,
1951. (Cited on page 231.)

[13] David Jeffrey Griffiths and Reed College. Introduction to electrodynamics. Prentice hall
Upper Saddle River, NJ, 3rd edition, 1999. (Cited on pages 376, 377, 378, and 391.)

[14] S.S. Haykin. Communication systems. Wiley, 1994. (Cited on pages 487 and 491.)

[15] D. Hestenes. New Foundations for Classical Mechanics. Kluwer Academic Publishers,
1999. (Cited on pages 13, 127, 137, 149, 257, 284, and 479.)

[16] J.D. Irwin. Basic Engineering Circuit Analysis. MacMillian, 1993. (Cited on page 491.)

[17] JD Jackson. Classical Electrodynamics. John Wiley and Sons, 2nd edition, 1975. (Cited
on page 389.)

[18] Peeter Joot. Exploring physics with Geometric Algebra, Book II, chapter 4D Fourier trans-
forms applied to Maxwell’s equation. peeterjoot.com, 2009. URL http://peeterjoot.
com/archives/math2015/gabookII.pdf. [Online; accessed 08-December-2016].
(Cited on page 299.)

[19] Peeter Joot. Exploring physics with Geometric Algebra, Book II, chapter Poisson and
retarded Potential Green’s functions from Fourier kernels. peeterjoot.com, 2009. URL
http://peeterjoot.com/archives/math2015/gabookII.pdf. [Online; accessed
08-December-2016]. (Cited on page 299.)

[20] Peeter Joot. Exploring physics with Geometric Algebra, Book II, chapter Bivector form of
quantum angular momentum operator. peeterjoot.com, 2009. URL http://peeterjoot.
com/archives/math2015/gabookII.pdf. [Online; accessed 08-December-2016].
(Cited on page 267.)

[21] Anthony Lasenby and Chris Doran. Physical Applications of Geometric Algebra. Hand-
out 4. Groups, Bivectors, and Hamiltonian Mechanics. URL http://www.mrao.cam.
ac.uk/~clifford/ptIIIcourse/course99/handouts/hout04.ps.gz. [Online; ac-
cessed 22-May-2014]. (Cited on page 451.)

[22] W.R. Le Page and W.R. LePage. Complex Variables and the Laplace Transform for Engi-
neers. Courier Dover Publications, 1980. (Cited on pages 476, 486, and 491.)

[23] A. Macdonald. Linear and Geometric Algebra. CreateSpace Independent Publishing
Platform, 2011. (Cited on page 147.)

[24] A. Macdonald. Vector and Geometric Calculus. CreateSpace Independent Publishing
Platform, 2012. (Cited on pages 336 and 381.)

http://peeterjoot.com/archives/math2015/gabookII.pdf
http://peeterjoot.com/archives/math2015/gabookII.pdf
http://peeterjoot.com/archives/math2015/gabookII.pdf
http://peeterjoot.com/archives/math2015/gabookII.pdf
http://peeterjoot.com/archives/math2015/gabookII.pdf
http://www.mrao.cam.ac.uk/~clifford/ptIIIcourse/course99/handouts/hout04.ps.gz
http://www.mrao.cam.ac.uk/~clifford/ptIIIcourse/course99/handouts/hout04.ps.gz


bibliography 525

[25] D. McMahon. Quantum Mechanics Demystified. McGraw-Hill Professional, 2005. (Cited
on pages 485, 487, and 491.)

[26] Joseph A. Minahan. Joe’s Relatively Small Book of Special Relativity, chapter Ten-
sors. 2011. URL http://www.physics.uu.se/teorfys/sites/fysast.uu.se.
teorfys/files/specrel.pdf. [Online; accessed 22-May-2014]. (Cited on page 238.)

[27] S.L. Salas and E. Hille. Calculus: one and several variables. Wiley New York, 1990.
(Cited on pages 59, 70, 329, and 403.)

[28] M. Schwartz. Principles of Electrodynamics. Dover Publications, 1987. (Cited on
page 339.)

[29] Garret Sobczyk and Omar León Sánchez. Fundamental theorem of calculus. Advances in
Applied Clifford Algebras, 21(1):221–231, 2011. URL http://arxiv.org/abs/0809.
4526. (Cited on page 381.)

[30] Prof. William J Spence. Special relativity, four vectors, .. covariant and contravariant vec-
tors, tensors , 2012. URL http://qmplus.qmul.ac.uk/pluginfile.php/301050/
mod_resource/content/2/EMT7new.pdf. [Online; accessed 22-May-2014]. (Cited
on page 238.)

[31] Dr. David Tong. Classical Mechanics., 2012. URL http://www.damtp.cam.ac.uk/
user/tong/dynamics.htm. [Online; accessed 22-May-2014]. (Cited on page 407.)

[32] M. Zeilik and S. Gregory. Introductory Astronomy & Astrophysics fourth edition. New
York, NY: Thomson Learning. Inc, 1998. (Cited on page 233.)

http://www.physics.uu.se/teorfys/sites/fysast.uu.se.teorfys/files/specrel.pdf
http://www.physics.uu.se/teorfys/sites/fysast.uu.se.teorfys/files/specrel.pdf
http://arxiv.org/abs/0809.4526
http://arxiv.org/abs/0809.4526
http://qmplus.qmul.ac.uk/pluginfile.php/301050/mod_resource/content/2/EMT7new.pdf
http://qmplus.qmul.ac.uk/pluginfile.php/301050/mod_resource/content/2/EMT7new.pdf
http://www.damtp.cam.ac.uk/user/tong/dynamics.htm
http://www.damtp.cam.ac.uk/user/tong/dynamics.htm

	Copyright
	Document Version
	Dedication
	Preface
	Contents
	List of Figures

	Basics and Geometry
	1 Introductory concepts
	1.1 The Axioms
	1.2 Contraction and the metric
	1.3 Symmetric sum of vector products
	1.4 Antisymmetric product of two vectors (wedge product)
	1.5 Expansion of the wedge product of two vectors
	1.6 Vector product in exponential form
	1.7 Pseudoscalar
	1.8 FIXME: orphaned

	2 Geometric Algebra. The very quickest introduction
	2.1 Motivation
	2.2 Axioms
	2.3 By example. The 2D case
	2.4 Pseudoscalar
	2.5 Rotations

	3 An (earlier) attempt to intuitively introduce the dot, wedge, cross, and geometric products
	3.1 Motivation
	3.2 Introduction
	3.3 What is multiplication?
	3.3.1 Rules for multiplication of numbers
	3.3.2 Rules for multiplication of vectors with the same direction

	3.4 Axioms
	3.5 dot product
	3.6 Coordinate expansion of the geometric product
	3.7 Some specific examples to get a feel for things
	3.8 Antisymmetric part of the geometric product
	3.9 Yes, but what is that wedge product thing

	4 Comparison of many traditional vector and GA identities
	4.1 Three dimensional vector relationships vs N dimensional equivalents
	4.1.1 wedge and cross products are antisymmetric
	4.1.2 wedge and cross products are zero when identical
	4.1.3 wedge and cross products are linear
	4.1.4 In general, cross product is not associative, but the wedge product is
	4.1.5 Wedge and cross product relationship to a plane
	4.1.6 norm of a vector
	4.1.7 Lagrange identity
	4.1.8 determinant expansion of cross and wedge products
	4.1.9 Equation of a plane
	4.1.10 Projective and rejective components of a vector
	4.1.11 Area (squared) of a parallelogram is norm of cross product
	4.1.12 Angle between two vectors
	4.1.13 Volume of the parallelepiped formed by three vectors

	4.2 Some properties and examples
	4.2.1 Inversion of a vector
	4.2.2 dot and wedge products defined in terms of the geometric product
	4.2.3 The dot product
	4.2.4 The wedge product
	4.2.5 Note on symmetric and antisymmetric dot and wedge product formulas
	4.2.6 Reversing multiplication order. Dot and wedge products compared to the real and imaginary parts of a complex number
	4.2.7 Orthogonal decomposition of a vector
	4.2.8 A quicker way to the end result
	4.2.9 Area of parallelogram spanned by two vectors
	4.2.10 Expansion of a bivector and a vector rejection in terms of the standard basis
	4.2.11 Projection and rejection of a vector onto and perpendicular to a plane
	4.2.12 Product of a vector and bivector. Defining the "dot product" of a plane and a vector
	4.2.13 Complex numbers
	4.2.14 Rotation in an arbitrarily oriented plane
	4.2.15 Quaternions
	4.2.16 Cross product as outer product


	5 Cramer's rule
	5.1 Cramer's rule, determinants, and matrix inversion can be naturally expressed in terms of the wedge product
	5.1.1 Two variables example
	5.1.2 A numeric example


	6 Torque
	6.1 Expanding the result in terms of components
	6.2 Geometrical description
	6.3 Slight generalization. Application of the force to a lever not in the plane
	6.4 expressing torque as a bivector
	6.5 Plane common to force and vector
	6.6 Torque as a bivector

	7 Derivatives of a unit vector
	7.1 First derivative of a unit vector
	7.1.1 Expressed with the cross product

	7.2 Equivalent result utilizing the geometric product
	7.2.1 Taking dot products
	7.2.2 Taking wedge products
	7.2.3 Another view


	8 Radial components of vector derivatives
	8.1 first derivative of a radially expressed vector
	8.2 Second derivative of a vector

	9 Rotational dynamics
	9.1 GA introduction of angular velocity
	9.1.1 Speed in terms of linear and rotational components
	9.1.2 angular velocity. Prep
	9.1.3 angular velocity. Summarizing
	9.1.4 Explicit perpendicular unit vector
	9.1.5 acceleration in terms of angular velocity bivector
	9.1.6 Kepler's laws example
	9.1.7 Circular motion


	10 Bivector Geometry
	10.1 Motivation
	10.2 Components of grade two multivector product
	10.2.1 Sign change of each grade term with commutation
	10.2.2 Dot, wedge and grade two terms of bivector product

	10.3 Intersection of planes
	10.3.1 Vector along line of intersection in 3D Euclidean spaces
	10.3.2 Applying this result to ND Euclidean spaces

	10.4 Components of a grade two multivector
	10.4.1 Closer look at the grade two term
	10.4.2 Projection and Rejection
	10.4.3 Grade two term as a generator of rotations
	10.4.4 Angle between two intersecting planes
	10.4.5 Rotation of an arbitrarily oriented plane

	10.5 A couple of reduction formula equivalents from 3D vector geometry

	11 Trivector geometry
	11.1 Motivation
	11.2 Grade components of a trivector product
	11.2.1 Grade 6 term
	11.2.2 Grade 4 term
	11.2.3 Grade 2 term
	11.2.4 Grade 0 term
	11.2.5 combining results
	11.2.6 Intersecting trivector cases


	12 Multivector product grade zero terms
	13 Blade grade reduction
	13.1 General triple product reduction formula
	13.2 reduction of grade of dot product of two blades
	13.2.1 Pause to reflect

	13.3 trivector dot product
	13.4 Induction on the result
	13.4.1 dot product of like grade terms as determinant
	13.4.2 Unlike grades
	13.4.3 Perform the induction


	14 More details on NFCM plane formulation
	14.1 Wedge product formula for a plane
	14.1.1 Examining this equation in more details
	14.1.2 Rejection from a plane product expansion
	14.1.3 Orthonormal decomposition of a vector with respect to a plane
	14.1.4 Alternate derivation of orthonormal planar decomposition

	14.2 Generalization of orthogonal decomposition to components with respect to a hypervolume
	14.2.1 Hypervolume element and its inverse written in terms of a spanning orthonormal set
	14.2.2 Expanding the product
	14.2.3 Special note. Interpretation for projection and rejective components of a line
	14.2.4 Explicit expansion of projective and rejective components

	14.3 Verification that projective and rejective components are orthogonal

	15 Quaternions
	15.1 quaternion as generator of dot and cross product

	16 Cauchy Equations expressed as a gradient
	16.1 Verify we still have the Cauchy equations hiding in the gradient

	17 Legendre Polynomials
	17.1  Putting things in standard Legendre polynomial form
	17.2  Scaling standard form Legendre polynomials
	17.3  Note on NFCM Legendre polynomial notation

	18 Levi-Civitica summation identity
	18.1 Motivation
	18.2 A mechanical proof
	18.3 Proof using bivector dot product

	19 Some NFCM exercise solutions and notes
	19.0.1 Exercise 1.3
	19.1 Sequential proofs of required identities
	19.1.1 Split of symmetric and antisymmetric parts of the vector product
	19.1.2 bivector dot with vector reduction
	19.1.3 vector bivector dot product reversion


	20 Outermorphism Question
	20.1 
	20.1.1 bivector outermorphism
	20.1.2 Induction
	20.1.3 Can the induction be avoided?

	20.2 Appendix. Messy reduction for induction
	20.3 New observation


	Projection
	21 Reciprocal Frame Vectors
	21.1 Approach without Geometric Algebra
	21.1.1 Orthogonal to one vector
	21.1.2 Vector orthogonal to two vectors in direction of a third
	21.1.3 Generalization. Inductive Hypothesis
	21.1.4 Scaling required for reciprocal frame vector
	21.1.5 Example. 3D case. Perpendicular to two vectors

	21.2 Derivation with GA
	21.3 Pseudovector from rejection
	21.3.1 back to reciprocal result

	21.4 Components of a vector
	21.4.1 Reciprocal frame vectors by solving coordinate equation

	21.5 Components of a bivector
	21.5.1 Compare to GAFP
	21.5.2 Direct expansion of bivector in terms of reciprocal frame vectors


	22 Matrix review
	22.1 Motivation
	22.2 Subspace projection in matrix notation
	22.2.1 Projection onto line
	22.2.2 Projection onto plane (or subspace)
	22.2.3 Simplifying case. Orthonormal basis for column space
	22.2.4 Numerical expansion of left pseudoscalar matrix with matrix
	22.2.5 Return to analytic treatment

	22.3 Matrix projection vs. Geometric Algebra
	22.3.1 General projection matrix
	22.3.2 Projection matrix full column rank requirement
	22.3.3 Projection onto orthonormal columns

	22.4 Proof of omitted details and auxiliary stuff
	22.4.1 That we can remove parenthesis to form projection matrix in line projection equation
	22.4.2 Any invertible scaling of column space basis vectors does not change the projection


	23 Oblique projection and reciprocal frame vectors
	23.1 Motivation
	23.2 Using GA. Oblique projection onto a line
	23.3 Oblique projection onto a line using matrices
	23.4 Oblique projection onto hyperplane
	23.4.1 Non metric solution using wedge products
	23.4.2 hyperplane directed projection using matrices

	23.5 Projection using reciprocal frame vectors
	23.5.1 example/verification

	23.6 Directed projection in terms of reciprocal frames
	23.6.1 Calculation efficiency

	23.7 Followup

	24 Projection and Moore-Penrose vector inverse
	24.1 Projection and Moore-Penrose vector inverse
	24.1.1 matrix of wedge project transformation?


	25 Angle between geometric elements
	25.1 Calculation for a line and a plane

	26 Orthogonal decomposition take II
	26.1 Lemma. Orthogonal decomposition

	27 Matrix of grade k multivector linear transformations
	27.1 Motivation
	27.2 Content

	28 Vector form of Julia fractal
	28.1 Motivation
	28.2 Guts


	Rotation
	29 Rotor Notes
	29.1 Rotations strictly in a plane
	29.1.1 Identifying a plane with a bivector. Justification
	29.1.2 Components of a vector in and out of a plane

	29.2 Rotation around normal to arbitrarily oriented plane through origin
	29.3 Rotor equation in terms of normal to plane
	29.3.1 Vector rotation in terms of dot and cross products only

	29.4 Giving a meaning to the sign of the bivector
	29.5 Rotation between two unit vectors
	29.6 Eigenvalues, vectors and coordinate vector and matrix of the rotation linear transformation
	29.7 matrix for rotation linear transformation

	30 Euler Angle Notes
	30.1 Removing the rotors from the exponentials
	30.2 Expanding the rotor product
	30.3 With composition of rotation matrices (done wrong, but with discussion and required correction)
	30.4 Relation to Cayley-Klein parameters
	30.5 Omitted details
	30.5.1 Cayley Klein details


	31 Spherical polar coordinates
	31.1 Motivation
	31.2 Notes
	31.2.1 Conventions
	31.2.2 The unit vectors
	31.2.3 An alternate pictorial derivation of the unit vectors
	31.2.4 Tensor transformation
	31.2.5 Gradient after change of coordinates

	31.3 Transformation of frame vectors vs. coordinates
	31.3.1 Example. Two dimensional plane rotation
	31.3.2 Inverse relations for spherical polar transformations
	31.3.3 Transformation of coordinate vector under spherical polar rotation


	32 Rotor interpolation calculation
	33 Exponential of a blade
	33.1 Motivation
	33.2 Vector Exponential
	33.2.1 Vector Exponential derivative

	33.3 Bivector Exponential
	33.3.1 bivector magnitude derivative
	33.3.2 Unit bivector derivative
	33.3.3 combining results

	33.4 Quaternion exponential derivative
	33.4.1 bivector with only one degree of freedom


	34 Generator of rotations in arbitrary dimensions
	34.1 Motivation
	34.2 Setup and conventions
	34.3 Rotor examples
	34.4 The rotation operator
	34.5 Coordinate expansion
	34.6 Matrix treatment

	35 Spherical Polar unit vectors in exponential form
	35.1 Motivation
	35.2 The rotation and notation
	35.3 Application of the rotor. The spherical polar unit vectors
	35.4 A consistency check
	35.5 Area and volume elements
	35.6 Line element
	35.6.1 Line element using an angle and unit bivector parameterization
	35.6.2 Allowing the magnitude to vary


	36 Infinitesimal rotations
	36.1 Motivation
	36.2 With geometric algebra
	36.3 Without geometric algebra


	Calculus
	37 Developing some intuition for Multivariable and Multivector Taylor Series
	37.1 Single variable case, and generalization of it
	37.2 Directional Derivatives
	37.3 Proof of the multivector Taylor expansion
	37.4 Explicit expansion for a scalar function
	37.5 Gradient with non-Euclidean basis
	37.6 Work out Gradient for a few specific multivector spaces

	38 Exterior derivative and chain rule components of the gradient
	38.1 Gradient formulation in terms of reciprocal frames
	38.2 Allowing the basis to vary according to a parametrization

	39 Spherical and hyperspherical parametrization
	39.1 Motivation
	39.2 Euclidean n-volume
	39.2.1 Parametrization
	39.2.2 Volume elements
	39.2.3 Some volume computations
	39.2.4 Range determination

	39.3 Minkowski metric sphere
	39.3.1 2D hyperbola
	39.3.2 3D hyperbola
	39.3.3 Summarizing the hyperbolic vector parametrization
	39.3.4 Volume elements

	39.4 Summary
	39.4.1 Vector parametrization
	39.4.2 Volume elements


	40 Vector Differential Identities
	40.1 Divergence of a gradient
	40.2 Curl of a gradient is zero
	40.3 Gradient of a divergence
	40.4 Divergence of curl
	40.5 Curl of a curl
	40.6 Laplacian of a vector
	40.7 Zero curl implies gradient solution
	40.8 Zero divergence implies curl solution

	41 Was Professor Dmitrevsky right about insisting the Laplacian is not generally gradient dotted with gradient
	41.1 Dedication
	41.2 Motivation
	41.3 The gradient in polar form
	41.4 Polar form Laplacian for the plane

	42 Derivation of the spherical polar Laplacian
	42.1 Motivation
	42.2 Our rotation multivector
	42.3 Expressions for the unit vectors
	42.4 Derivatives of the unit vectors
	42.5 Expanding the Laplacian

	43 Tangent planes and normals in three and four dimensions
	43.1 Motivation
	43.2 3D surface
	43.3 4D surface

	44 Stokes' theorem
	44.1 Curvilinear coordinates
	44.2 Green's theorem
	44.3 Stokes theorem, two volume vector field
	44.4 Stokes theorem, three variable volume element parameterization
	44.5 Stokes theorem, four variable volume element parameterization
	44.6 Duality and its relation to the pseudoscalar.
	44.7 Divergence theorem.
	44.8 Volume integral coordinate representations
	44.9 Final remarks
	44.10 Problems

	45 Fundamental Theorem of Geometric Calculus
	45.1 Fundamental Theorem of Geometric Calculus
	45.2 Green's function for the gradient in Euclidean spaces.
	45.3 Problems


	General Physics
	46 Angular Velocity and Acceleration (Again)
	46.1 Angular velocity
	46.2 Angular acceleration
	46.3 Expressing these using traditional form (cross product)
	46.4 Examples (perhaps future exercises?)
	46.4.1 Unit vector derivative
	46.4.2 Direct calculation of acceleration
	46.4.3 Expand the omega omega triple product


	47 Cross product Radial decomposition
	47.1 Starting point
	47.2 Acceleration

	48 Kinetic Energy in rotational frame
	48.1 Motivation
	48.2 With matrix formulation
	48.3 With rotor
	48.4 Acceleration in rotating coordinates
	48.5 Allow for a wobble in rotational plane
	48.5.1 Body angular acceleration in terms of rest frame

	48.6 Revisit general rotation using matrices
	48.7 Equations of motion from Lagrange partials

	49 Polar velocity and acceleration
	49.1 Motivation
	49.2 With complex numbers
	49.3 Plane vector representation

	50 Gradient and tensor notes
	50.1 Motivation
	50.1.1 Raised and lowered indices. Coordinates of vectors with non-orthonormal frames
	50.1.2 Metric tensor
	50.1.3 Metric tensor relations to coordinates
	50.1.4 Metric tensor as a Jacobian
	50.1.5 Change of basis
	50.1.6 Inverse relationships
	50.1.7 Vector derivative
	50.1.8 Why a preference for index upper vector and coordinates in the gradient?


	51 Inertial Tensor
	51.1 orthogonal decomposition of a function mapping a blade to a blade
	51.2 coordinate transformation matrix for a couple other linear transformations
	51.3 Equation 3.126 details
	51.4 Just for fun. General dimension component expansion of inertia tensor terms
	51.5 Example calculation. Masses in a line
	51.6 Example calculation. Masses in a plane

	52 Satellite triangulation over sphere
	52.1 Motivation and preparation
	52.2 Solution
	52.3 matrix formulation
	52.4 Question. Order of latitude and longitude rotors?

	53 Exponential Solutions to Laplace Equation in ND
	53.1 The problem
	53.1.1 One dimension
	53.1.2 Two dimensions
	53.1.3 Verifying it is a solution
	53.1.4 Solution for an arbitrarily oriented plane
	53.1.5 Characterization in real numbers


	54 Hyper complex numbers and symplectic structure
	54.1 On 4.2 Hermitian Norms and Unitary Groups
	54.2 5.1 Conservation Theorems and Flows

	55 Newton's method for intersection of curves in a plane
	55.1 Motivation
	55.2 Root finding as the intersection with a horizontal
	55.3 Intersection with a line
	55.4 Intersection of two curves
	55.5 Followup

	56 Center of mass of a toroidal segment
	56.1 Motivation
	56.2 Volume element
	56.3 Center of mass
	56.4 Center of mass for a circular wire segment


	Appendices
	Appendix
	A Notation and definitions
	A.1 Coordinates and basis vectors
	A.2 Electromagnetism
	A.3 Differential operators
	A.4 Misc

	B Some helpful identities
	C Some Fourier transform notes
	C.1 Motivation
	C.2 Verify transform pair
	C.3 Parseval's theorem
	C.3.1 Convolution
	C.3.2 Conjugation
	C.3.3 Rayleigh's Energy Theorem


	D A cheatsheet for Fourier transform conventions
	D.1 A cheatsheet for different Fourier integral notations
	D.2 A survey of notations

	E Projection with generalized dot product
	F Mathematica notebooks
	G Further reading
	G.1 Geometric Algebra for Computer Science Book
	G.2 GAViewer
	G.3 Other resources from Dorst, Fontijne, and Mann
	G.4 Learning GA
	G.5 Cambridge
	G.6 Baylis
	G.7 Hestenes
	G.8 Eckhard M. S. Hitzer (University of Fukui)
	G.9 Electrodynamics
	G.10 Misc
	G.11 Collections of other GA bookmarks
	G.12 Exterior Algebra and differential forms
	G.13 Software


	Chronology
	H Chronological Index

	Index
	Bibliography
	Bibliography


