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Gauge transformation of free particle Hamiltonian

Exercise 1.1
Given a gauge transformation of the free particle Hamiltonian to
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where

M=p-— EA, (1.2)

calculate mdx/dt, [I1;,11;], and md?x/dt?, where x is the Heisenberg picture position operator, and
the fields are functions only of position ¢ = $(x), A = A(x).

Answer for Exercise 1.1

The final results for these calculations are found in [1], but seem worth deriving to exercise our
commutator muscles.

Heisenberg picture velocity operator ~ The first order of business is the Heisenberg picture velocity op-
erator, but first note
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The time evolution of the Heisenberg picture position operator is therefore
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For the p? commutator we have

or
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Computing the remaining commutator, we’ve got
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Assembling these results gives

as asserted in the text.
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Kinetic Momentum commutators
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Quantum Lorentz force  For the force equation we have
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For the ¢ commutator consider one component
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For the IT? commutator I initially did this the hard way (it took four notebook pages, plus two for
a false start.) Realizing that I didn’t use eq. (1.11) for that expansion was the clue to doing this more
expediently.
Considering a single component
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Putting all the pieces together we’ve got the quantum equivalent of the Lorentz force equation
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While this looks equivalent to the classical result, all the vectors here are Heisenberg picture oper-
ators dependent on position.
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