# Peeter Joot <br> peeter.joot@gmail.com 

## Gauge transformation of free particle Hamiltonian

## Exercise 1.1

Given a gauge transformation of the free particle Hamiltonian to

$$
\begin{equation*}
H=\frac{1}{2 m} \boldsymbol{\Pi} \cdot \boldsymbol{\Pi}+e \phi, \tag{1.1}
\end{equation*}
$$

where

$$
\begin{equation*}
\boldsymbol{\Pi}=\mathbf{p}-\frac{e}{c} \mathbf{A}, \tag{1.2}
\end{equation*}
$$

calculate $m d \mathbf{x} / d t,\left[\Pi_{i}, \Pi_{j}\right]$, and $m d^{2} \mathbf{x} / d t^{2}$, where $\mathbf{x}$ is the Heisenberg picture position operator, and the fields are functions only of position $\phi=\phi(\mathbf{x}), \mathbf{A}=\mathbf{A}(\mathbf{x})$.

## Answer for Exercise 1.1

The final results for these calculations are found in [1], but seem worth deriving to exercise our commutator muscles.

Heisenberg picture velocity operator The first order of business is the Heisenberg picture velocity operator, but first note

$$
\begin{align*}
\boldsymbol{\Pi} \cdot \boldsymbol{\Pi} & =\left(\mathbf{p}-\frac{e}{c} \mathbf{A}\right) \cdot\left(\mathbf{p}-\frac{e}{c} \mathbf{A}\right)  \tag{1.3}\\
& =\mathbf{p}^{2}-\frac{e}{c}(\mathbf{A} \cdot \mathbf{p}+\mathbf{p} \cdot \mathbf{A})+\frac{e^{2}}{c^{2}} \mathbf{A}^{2} .
\end{align*}
$$

The time evolution of the Heisenberg picture position operator is therefore

$$
\begin{align*}
\frac{d \mathbf{x}}{d t} & =\frac{1}{i \hbar}[\mathbf{x}, H] \\
& =\frac{1}{i \hbar 2 m}\left[\mathbf{x}, \boldsymbol{\Pi}^{2}\right]  \tag{1.4}\\
& =\frac{1}{i \hbar 2 m}\left[\mathbf{x}, \mathbf{p}^{2}-\frac{e}{c}(\mathbf{A} \cdot \mathbf{p}+\mathbf{p} \cdot \mathbf{A})+\frac{e^{2}}{c^{2}} \mathbf{A}^{2}\right] \\
& =\frac{1}{i \hbar 2 m}\left(\left[\mathbf{x}, \mathbf{p}^{2}\right]-\frac{e}{c}[\mathbf{x}, \mathbf{A} \cdot \mathbf{p}+\mathbf{p} \cdot \mathbf{A}]\right) .
\end{align*}
$$

For the $\mathbf{p}^{2}$ commutator we have

$$
\begin{align*}
{\left[x_{r}, \mathbf{p}^{2}\right] } & =i \hbar \frac{\partial \mathbf{p}^{2}}{\partial p_{r}}  \tag{1.5}\\
& =2 i \hbar p_{r}
\end{align*}
$$

or

$$
\begin{equation*}
\left[\mathbf{x}, \mathbf{p}^{2}\right]=2 i \hbar \mathbf{p} \tag{1.6}
\end{equation*}
$$

Computing the remaining commutator, we've got

$$
\begin{align*}
{\left[x_{r}, \mathbf{p} \cdot \mathbf{A}+\mathbf{A} \cdot \mathbf{p}\right]=} & x_{r} p_{s} A_{s}-p_{s} A_{s} x_{r} \\
& +x_{r} A_{s} p_{s}-A_{s} p_{s} x_{r} \\
= & \left(\left[x_{r}, p_{s}\right]+p_{s} x_{r}\right) A_{s}-p_{s} A_{s} x_{r} \\
& +x_{r} A_{s} p_{s}-A_{s}\left(\left[p_{s}, x_{r}\right]+x_{r} p_{s}\right) \\
= & {\left[x_{r}, p_{s}\right] A_{s}+\underline{p_{s} A_{s} x_{r}}-p_{s} A_{s} x_{r} }  \tag{1.7}\\
& +x_{r} A_{s} p_{s}-x_{r} A_{s} p_{s}+A_{s}\left[x_{r}, p_{s}\right] \\
= & 2 i \hbar \delta_{r s} A_{s} \\
= & 2 i \hbar A_{r},
\end{align*}
$$

so

$$
\begin{equation*}
[\mathbf{x}, \mathbf{p} \cdot \mathbf{A}+\mathbf{A} \cdot \mathbf{p}]=2 i \hbar \mathbf{A} . \tag{1.8}
\end{equation*}
$$

Assembling these results gives

$$
\begin{equation*}
\frac{d \mathbf{x}}{d t}=\frac{1}{m}\left(\mathbf{p}-\frac{e}{c} \mathbf{A}\right)=\frac{1}{m} \boldsymbol{\Pi} \tag{1.9}
\end{equation*}
$$

as asserted in the text.
Kinetic Momentum commutators

$$
\begin{align*}
{\left[\Pi_{r}, \Pi_{s}\right] } & =\left[p_{r}-e A_{r} / c, p_{s}-e A_{s} / c\right] \\
& =\left[p_{1}, p_{s}\right]-\frac{e}{c}\left(\left[p_{r}, A_{s}\right]+\left[A_{r}, p_{s}\right]\right)+\frac{e^{2}}{c^{2}}\left[A_{1}, A_{s}\right] . \\
& =-\frac{e}{c}\left((-i \hbar) \frac{\partial A_{s}}{\partial x_{r}}+(i \hbar) \frac{\partial A_{r}}{\partial x_{s}}\right)  \tag{1.10}\\
& =-\frac{i e \hbar}{c}\left(-\frac{\partial A_{s}}{\partial x_{r}}+\frac{\partial A_{r}}{\partial x_{s}}\right) . \\
& =-\frac{i e \hbar}{c} \epsilon_{t s r} B_{t},
\end{align*}
$$

or

$$
\begin{equation*}
\left[\Pi_{r}, \Pi_{s}\right]=\frac{i e \hbar}{c} \epsilon_{r s t} B_{t} \tag{1.11}
\end{equation*}
$$

Quantum Lorentz force For the force equation we have

$$
\begin{align*}
m \frac{d^{2} \mathbf{x}}{d t^{2}} & =\frac{d \boldsymbol{\Pi}}{d t} \\
& =\frac{1}{i \hbar}[\boldsymbol{\Pi}, H]  \tag{1.12}\\
& =\frac{1}{i \hbar 2 m}\left[\boldsymbol{\Pi}, \boldsymbol{\Pi}^{2}\right]+\frac{1}{i \hbar}[\boldsymbol{\Pi}, e \phi] .
\end{align*}
$$

For the $\phi$ commutator consider one component

$$
\begin{align*}
{\left[\Pi_{r}, e \phi\right] } & =e\left[p_{r}-\frac{e}{c} A_{r}, \phi\right] \\
& =e\left[p_{r}, \phi\right]  \tag{1.13}\\
& =e(-i \hbar) \frac{\partial \phi}{\partial x_{r}},
\end{align*}
$$

or

$$
\begin{equation*}
\frac{1}{i \hbar}[\boldsymbol{\Pi}, e \phi]=-e \boldsymbol{\nabla} \phi=e \mathbf{E} . \tag{1.14}
\end{equation*}
$$

For the $\Pi^{2}$ commutator I initially did this the hard way (it took four notebook pages, plus two for a false start.) Realizing that I didn't use eq. (1.11) for that expansion was the clue to doing this more expediently.

Considering a single component

$$
\begin{align*}
{\left[\Pi_{r}, \Pi^{2}\right] } & =\left[\Pi_{r}, \Pi_{s} \Pi_{s}\right] \\
& =\Pi_{r} \Pi_{s} \Pi_{s}-\Pi_{s} \Pi_{s} \Pi_{r} \\
& =\left(\left[\Pi_{r}, \Pi_{s}\right]+\Pi_{s} \Pi_{r}\right) \Pi_{s}-\Pi_{s}\left(\left[\Pi_{s}, \Pi_{r}\right]+\Pi_{r} \Pi_{s}\right)  \tag{1.15}\\
& =i \frac{e}{c} \frac{e}{c} \epsilon_{r s t}\left(B_{t} \Pi_{s}+\Pi_{s} B_{t}\right)
\end{align*}
$$

or

$$
\begin{align*}
\frac{1}{i \hbar 2 m}\left[\boldsymbol{\Pi}, \boldsymbol{\Pi}^{2}\right] & =\frac{e}{2 m c} \epsilon_{r s t} \mathbf{e}_{r}\left(B_{t} \Pi_{s}+\Pi_{s} B_{t}\right)  \tag{1.16}\\
& =\frac{e}{2 m c}(\boldsymbol{\Pi} \times \mathbf{B}-\mathbf{B} \times \boldsymbol{\Pi}) .
\end{align*}
$$

Putting all the pieces together we've got the quantum equivalent of the Lorentz force equation

$$
\begin{equation*}
m \frac{d^{2} \mathbf{x}}{d t^{2}}=e \mathbf{E}+\frac{e}{2 c}\left(\frac{d \mathbf{x}}{d t} \times \mathbf{B}-\mathbf{B} \times \frac{d \mathbf{x}}{d t}\right) \tag{1.17}
\end{equation*}
$$

While this looks equivalent to the classical result, all the vectors here are Heisenberg picture operators dependent on position.

## Bibliography

[1] Jun John Sakurai and Jim J Napolitano. Modern quantum mechanics. Pearson Higher Ed, 2014. 1

