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Generalized Gaussian integrals

Both [3] and [4] use Gaussian integrals with both (negative) real, and imaginary arguments, which give the
impression that the following is true:

(1.1)
∫ ∞

−∞

exp
(
ax2

)
dx =

√
−π

a
,

even when a is not a real negative constant, and in particular, with values a = ±i. Clearly this doesn’t follow
by just making a substitution x → x/

√
a, since that moves the integration range onto a rotated path in the

complex plane when a is ±i. However, with some care, it can be shown that eq. (1.1) holds provided Re a ≤ 0.
The first special case is

∫ ∞
−∞

exp
(
−x2

)
dx =

√
π which is easy to derive using the usual square it and integrate

in circular coordinates trick.

Purely imaginary cases. Let’s handle the a = ±i cases next. These can be evaluated by considering integrals
over the contours of fig. 1.1, where the upper plane contour is used for a = i and the lower plane contour for
a = −i.

Figure 1.1: Contours for a = ±i.

Since there are no poles, the integral over either such contour is zero. Credit for figuring out how to tackle
that integral and what contour to use goes to Dr MV, on stackexchange [2].
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For the upper plane contour we have

(1.2)
0 =
�

exp
(
iz2

)
dz

=

∫ R

0
exp

(
ix2

)
dx +

∫ π/4

0
exp

(
iR2e2iθ

)
Rieiθdθ +

∫ 0

R
exp

(
i2t2

)
eiπ/4dt.

Observe that ie2iθ = i cos(2θ) − sin(2θ) which has a negative real part for all values of θ , 0. Provided the
contour is slightly deformed from the axis, that second integral has a term of the form ∼ Re−R2

which tends to
zero as R→ ∞. So in the limit, this is

(1.3)
∫ ∞

0
exp

(
ix2

)
dx =

√
πeiπ/4/2,

or
(1.4)

∫ ∞

−∞

exp
(
ix2

)
dx =

√
iπ,

a special case of eq. (1.1) as desired. For a = −i integrating around the lower plane contour, we have

(1.5)

0 =



exp
(
−iz2

)
dz

=

∫ R

0
exp

(
ix2

)
dx +

∫ −π/4

0
exp

(
−iR2e2iθ

)
Rieiθdθ +

∫ 0

R
exp

(
−i(−i)t2

)
e−iπ/4dt.

This time, in the second integral we also have −iR2e2iθ = iR2 cos(2θ)+ sin(2θ), which also has a negative real
part for θ ∈ (0, π/4]. Again the contour needs to be infinitesimally deformed1, placed just lower than the axis.

This time we find

(1.6)
∫ ∞

−∞

exp
(
−ix2

)
dx =

√
−iπ,

another special case of eq. (1.1).

Completely complex case. A similar trick can be used to evaluate the more general cases, but a bit of thought
is required to figure out the contours required. More precisely, while these contours will still have a wedge of
pie shape, as sketched in fig. 1.2, we have to figure out the angle subtended by the edge of this piece of pie.

To evaluate an integral consider

(1.7)
0 =

∮
exp

(
eiφz2

)
dz

=

∫ R

0
exp

(
eiφx2

)
dx +

∫ θ

0
exp

(
eiφR2e2iµ

)
Rieiµdµ +

∫ 0

R
exp

(
eiφe2iθt2

)
eiθdt,

1Distorting the contour in this fashion seems somewhat like handwaving. A better approach would probably follow [1] where Jordan’s
lemma is covered. It doesn’t look like Jordan’s lemma applies as is to this case, but the arguments look like they could be adapted
appropriately.
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Figure 1.2: Contours for complex a.

where φ ∈ (π/2, π)∪ (π, 3π/2). We have a hope of evaluating this last integral if φ + 2θ = π, or

(1.8)θ = (π − φ)/2,

giving

(1.9)
∫ R

0
exp

(
eiφx2

)
dx = ei(π−φ)/2

∫ R

0
exp

(
−t2

)
dt −

∫ θ

0
exp

(
R2 (cos (φ + 2µ) + i sin (φ + 2µ))

)
Rieiµdµ.

If the cosine is always negative on the chosen contours, then that integral will vanish in the R → ∞ limit.
This turns out to be the case, which can be confirmed by considering each of the contours in sequence. If the
upper plane contour is used to evaluate eq. (1.7) for the φ ∈ (π/2, π) case, we have

(1.10)θ ∈ (0, π/4).

Since φ + 2θ = π, we have

(1.11)φ + 2µ ∈ (π/2, π),

and find that the cosine is strictly negative on that contour for that range of φ. Picking the lower plane contour
for the φ ∈ (π, 3π/2) range, we have

(1.12)θ ∈ (−π/4, 0),

and so
(1.13)φ + 2µ ∈ (π/2, 3π/2).

For this range of φ the cosine on the lower plane contour is again negative as desired, so in the infinite R limit
we have

(1.14)
∫ ∞

0
exp

(
eiφx2

)
dx =

1
2

√
−πe−iφ.

The points at φ = π/2, π, 3π/2 were omitted, but we’ve found the same result at those points, completing the
verification of eq. (1.1) for all Re a ≤ 0.
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