Heisenberg picture spin precession

Exercise 1.1 Heisenberg picture spin precession ([1] pr. 2.1)

For the spin Hamiltonian

$$H = -\frac{eB}{mc}S_z$$

$$= \omega S_z,$$
(1.1)

express and solve the Heisenberg equations of motion for $S_x(t)$, $S_y(t)$, and $S_z(t)$.

Answer for Exercise 1.1

The equations of motion are of the form

$$\frac{dS_{i}^{H}}{dt} = \frac{1}{i\hbar} \left[S_{i}^{H}, H \right]
= \frac{1}{i\hbar} \left[U^{\dagger} S_{i} U, H \right]
= \frac{1}{i\hbar} \left(U^{\dagger} S_{i} U H - H U^{\dagger} S_{i} U \right)
= \frac{1}{i\hbar} U^{\dagger} \left(S_{i} H - H S_{i} \right) U
= \frac{\omega}{i\hbar} U^{\dagger} \left[S_{i}, S_{z} \right] U.$$
(1.2)

These are

$$\frac{dS_x^{H}}{dt} = -\omega U^{\dagger} S_y U
\frac{dS_y^{H}}{dt} = \omega U^{\dagger} S_x U
\frac{dS_z^{H}}{dt} = 0.$$
(1.3)

To completely specify these equations, we need to expand U(t), which is

$$U(t) = e^{-iHt/\hbar}$$

$$= e^{-i\omega S_z t/\hbar}$$

$$= e^{-i\omega \sigma_z t/2}$$

$$= \cos(\omega t/2) - i\sigma_z \sin(\omega t/2)$$

$$= \begin{bmatrix} \cos(\omega t/2) - i\sin(\omega t/2) & 0 \\ 0 & \cos(\omega t/2) + i\sin(\omega t/2) \end{bmatrix}$$

$$= \begin{bmatrix} e^{-i\omega t/2} & 0 \\ 0 & e^{i\omega t/2} \end{bmatrix}.$$
(1.4)

The equations of motion can now be written out in full. To do so seems a bit silly since we also know that $S_x^H = U^\dagger S_x U$, $S_y^H U^\dagger S_x U$. However, if that is temporarily forgotten, we can show that the Heisenberg equations of motion can be solved for these too.

$$U^{\dagger}S_{x}U = \frac{\hbar}{2} \begin{bmatrix} e^{i\omega t/2} & 0 \\ 0 & e^{-i\omega t/2} \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} e^{-i\omega t/2} & 0 \\ 0 & e^{i\omega t/2} \end{bmatrix}$$

$$= \frac{\hbar}{2} \begin{bmatrix} 0 & e^{i\omega t/2} \\ e^{-i\omega t/2} & 0 \end{bmatrix} \begin{bmatrix} e^{-i\omega t/2} & 0 \\ 0 & e^{i\omega t/2} \end{bmatrix}$$

$$= \frac{\hbar}{2} \begin{bmatrix} 0 & e^{i\omega t} \\ e^{-i\omega t} & 0 \end{bmatrix}, \qquad (1.5)$$

and

$$U^{\dagger}S_{y}U = \frac{\hbar}{2} \begin{bmatrix} e^{i\omega t/2} & 0 \\ 0 & e^{-i\omega t/2} \end{bmatrix} \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix} \begin{bmatrix} e^{-i\omega t/2} & 0 \\ 0 & e^{i\omega t/2} \end{bmatrix}$$

$$= \frac{i\hbar}{2} \begin{bmatrix} 0 & -e^{i\omega t/2} \\ e^{-i\omega t/2} & 0 \end{bmatrix} \begin{bmatrix} e^{-i\omega t/2} & 0 \\ 0 & e^{i\omega t/2} \end{bmatrix}$$

$$= \frac{i\hbar}{2} \begin{bmatrix} 0 & -e^{i\omega t} \\ e^{-i\omega t} & 0 \end{bmatrix}.$$
(1.6)

The equations of motion are now fully specified

$$\frac{dS_{x}^{H}}{dt} = -\frac{i\hbar\omega}{2} \begin{bmatrix} 0 & -e^{i\omega t} \\ e^{-i\omega t} & 0 \end{bmatrix}$$

$$\frac{dS_{y}^{H}}{dt} = \frac{\hbar\omega}{2} \begin{bmatrix} 0 & e^{i\omega t} \\ e^{-i\omega t} & 0 \end{bmatrix}$$

$$\frac{dS_{z}^{H}}{dt} = 0.$$
(1.7)

Integration gives

$$S_{x}^{H} = \frac{\hbar}{2} \begin{bmatrix} 0 & e^{i\omega t} \\ e^{-i\omega t} & 0 \end{bmatrix} + C$$

$$S_{y}^{H} = \frac{\hbar}{2} \begin{bmatrix} 0 & -ie^{i\omega t} \\ ie^{-i\omega t} & 0 \end{bmatrix} + C$$

$$S_{z}^{H} = C.$$
(1.8)

The integration constants are fixed by the boundary condition $S_i^{H}(0) = S_i$, so

$$S_{x}^{H} = \frac{\hbar}{2} \begin{bmatrix} 0 & e^{i\omega t} \\ e^{-i\omega t} & 0 \end{bmatrix}$$

$$S_{y}^{H} = \frac{i\hbar}{2} \begin{bmatrix} 0 & -e^{i\omega t} \\ e^{-i\omega t} & 0 \end{bmatrix}$$

$$S_{z}^{H} = S_{z}.$$

$$(1.9)$$

Observe that these integrated values S_x^H , S_y^H match eq. (1.5), and eq. (1.6) as expected.

Bibliography

[1] Jun John Sakurai and Jim J Napolitano. *Modern quantum mechanics*. Pearson Higher Ed, 2014. 1.1