Peeter Joot
 peeter.joot@gmail.com

Impedance transformation

In our final problem set we used the impedance transformation for calculations related to a microslot antenna. This transformation wasn't familiar to me, and is apparently covered in the third year ECE fields class. I found a derivation of this in [1], but the idea is really simple and follows from the reflection coefficient calculation for a normal reflection configuration.

Consider a normal field reflection between two interfaces, as sketched in fig. 1.1.

Figure 1.1: Normal reflection and transmission between two media.
The fields are

$$
\begin{gather*}
\mathbf{E}^{\mathrm{i}}=\hat{\mathbf{x}} E_{0} e^{-j k_{1} z} \tag{1.1a}\\
\mathbf{H}^{\mathrm{i}}=\hat{\mathbf{y}} \frac{E_{0}}{\eta_{1}} e^{-j k_{1} z} \tag{1.1b}\\
\mathbf{E}^{\mathrm{r}}=\hat{\mathbf{x}} \Gamma E_{0} e^{j k_{1} z} \tag{1.1c}\\
\mathbf{H}^{\mathrm{r}}=-\hat{\mathbf{y}} \Gamma \frac{E_{0}}{\eta_{1}} e^{j k_{1} z} \tag{1.1d}
\end{gather*}
$$

$$
\begin{gather*}
\mathbf{E}^{\mathrm{t}}=\hat{\mathbf{x}} E_{0} T e^{-j k_{2} z} \tag{1.1e}\\
\mathbf{H}^{\mathrm{t}}=\hat{\mathbf{y}} \frac{E_{0}}{\eta_{1}} T e^{-j k_{2} z} . \tag{1.1f}
\end{gather*}
$$

The field orientations have been picked so that the tangential component of the electric field is $\hat{\mathbf{x}}$ oriented for all of the incident, reflected, and transmitted components. Requiring equality of the tangential field components at the interface gives

$$
\begin{gather*}
1+\Gamma=T \tag{1.2a}\\
\frac{1}{\eta_{1}}-\frac{\Gamma}{\eta_{1}}=\frac{T}{\eta_{2}} \tag{1.2b}
\end{gather*}
$$

Solving for the transmission coefficient gives

$$
\begin{align*}
T & =\frac{2}{1+\frac{\eta_{1}}{\eta_{2}}} \tag{1.3}\\
& =\frac{2 \eta_{2}}{\eta_{2}+\eta_{1}},
\end{align*}
$$

and for the reflection coefficient

$$
\begin{align*}
\Gamma & =T-1 \\
& =\frac{2 \eta_{2}-\eta_{1}-\eta_{2}}{\eta_{2}+\eta_{1}} \tag{1.4}\\
& =\frac{\eta_{2}-\eta_{1}}{\eta_{2}+\eta_{1}} .
\end{align*}
$$

The total fields in medium 1 at the point $z=-l$ are

$$
\begin{array}{r}
\mathbf{E}^{\mathrm{i}}+\mathbf{E}^{\mathrm{r}}=\hat{\mathbf{x}} E_{0}\left(e^{-j k_{1}(-l)}+\Gamma e^{j k_{1}(-l)}\right) \\
\mathbf{H}^{\mathrm{i}}+\mathbf{H}^{\mathrm{r}}=\hat{\mathbf{y}} \frac{E_{0}}{\eta_{1}}\left(e^{-j k_{1}(-l)}-\Gamma e^{j k_{1}(-l)}\right) . \tag{1.5b}
\end{array}
$$

The ratio of the electric field strength to the magnetic field strength is defined as the input impedance

$$
\begin{equation*}
\left.Z_{\mathrm{in}} \equiv \frac{E^{\mathrm{i}}+E^{\mathrm{r}}}{H^{\mathrm{i}}+H^{\mathrm{r}}}\right|_{z=-l} \tag{1.6}
\end{equation*}
$$

That is

$$
\begin{align*}
Z_{\text {in }} & =\eta_{1} \frac{e^{j k_{1} l}+\Gamma e^{-j k_{1} l}}{e^{j k_{1} l}-\Gamma e^{-j k_{1} l}} \\
& =\eta_{1} \frac{\left(\eta_{1}+\eta_{2}\right) e^{j k_{1} l}+\left(\eta_{2}-\eta_{1}\right) e^{-j k_{1} l}}{\left(\eta_{1}+\eta_{2}\right) e^{j_{1} l}-\left(\eta_{2}-\eta_{1}\right) e^{-j k_{1} l}} \tag{1.7}\\
& =\eta_{1} \frac{\eta_{2} \cos \left(k_{1} l\right)+\eta_{1} j \sin \left(k_{1} l\right)}{\eta_{2} j \sin \left(k_{1} l\right)+\eta_{1} \cos \left(k_{1} l\right)},
\end{align*}
$$

or

$$
\begin{equation*}
Z_{\mathrm{in}}=\eta_{1} \frac{\eta_{2}+j \eta_{1} \tan \left(k_{1} l\right)}{\eta_{1}+j \eta_{2} \tan \left(k_{1} l\right)} . \tag{1.8}
\end{equation*}
$$

Bibliography

[1] Constantine A Balanis. Advanced engineering electromagnetics, chapter Reflection and transmission. Wiley New York, 1989. 1

