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An observation about the geometry of Pauli x,y matrices

1.1 Motivation

The conventional form for the Pauli matrices is
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In [1] these forms are derived based on the commutation relations

[Ur/ US] = 2i€5t0%, (1-2)

by defining raising and lowering operators 0+ = 0, & ic, and figuring out what form the matrix
must take. I noticed an interesting geometrical relation hiding in that derivation if ¢, is not assumed
to be real.

1.2  Derivation

For completeness, I'll repeat the argument of [1], which builds on the commutation relations of the
raising and lowering operators. Those are
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and
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From these a matrix representation containing unknown values can be assumed. Let
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The commutator with ¢, can be computed
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Now compare this with eq. (1.3)

This shows that 2 = 0, and d = 0. Similarly the ¢, commutator with the lowering operator is
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Again comparing to eq. (1.3), we have
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so ¢ = 0. Computing the commutator of the raising and lowering operators fixes b

o b][0 0] [0 0][0 b
0w, o-1= [0 0] [b* 0] - [b* 0] [0 0]
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From eq. (1.4) it must be that ]b|2 = 4, so the most general form of the raising operator is
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1.3 Observation

The conventional choice is to set ¢ = 0, but I found it interesting to see the form of oy, o, without that
choice. That is
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Notice that the Pauli matrices 0y and 0y actually both have the same form as oy, but the phase of
the complex argument of each differs by 90°. That 90° separation isn’t obvious in the standard form
eq. (1.1).

It’s a small detail, but I thought it was kind of cool that the orthogonality of these matrix unit vector
representations is built directly into the structure of their matrix representations.
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