Peeter Joot
 peeter.joot@gmail.com

An observation about the geometry of Pauli x, y matrices

1.1 Motivation

The conventional form for the Pauli matrices is

$$
\begin{align*}
\sigma_{x} & =\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right] \\
\sigma_{y} & =\left[\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right] . \tag{1.1}\\
\sigma_{z} & =\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right] .
\end{align*}
$$

In [1] these forms are derived based on the commutation relations

$$
\begin{equation*}
\left[\sigma_{r}, \sigma_{s}\right]=2 i \epsilon_{r s t} \sigma_{t}, \tag{1.2}
\end{equation*}
$$

by defining raising and lowering operators $\sigma_{ \pm}=\sigma_{x} \pm i \sigma_{y}$ and figuring out what form the matrix must take. I noticed an interesting geometrical relation hiding in that derivation if σ_{+}is not assumed to be real.

1.2 Derivation

For completeness, I'll repeat the argument of [1], which builds on the commutation relations of the raising and lowering operators. Those are

$$
\begin{align*}
{\left[\sigma_{z}, \sigma_{ \pm}\right] } & =\sigma_{z}\left(\sigma_{x} \pm i \sigma_{y}\right)-\left(\sigma_{x} \pm i \sigma_{y}\right) \sigma_{z} \\
& =\left[\sigma_{z}, \sigma_{x}\right] \pm i\left[\sigma_{z}, \sigma_{y}\right] \\
& =2 i \sigma_{y} \pm i(-2 i) \sigma_{x} \\
& = \pm 2\left(\sigma_{x} \pm i \sigma_{y}\right) \tag{1.3}\\
& = \pm 2 \sigma_{ \pm},
\end{align*}
$$

and

$$
\begin{align*}
{\left[\sigma_{+}, \sigma_{-}\right] } & =\left(\sigma_{x}+i \sigma_{y}\right)\left(\sigma_{x}-i \sigma_{y}\right)-\left(\sigma_{x}-i \sigma_{y}\right)\left(\sigma_{x}+i \sigma_{y}\right) \\
& =-i \sigma_{x} \sigma_{y}+i \sigma_{y} \sigma_{x}-i \sigma_{x} \sigma_{y}+i \sigma_{y} \sigma_{x} \\
& =2 i\left[\sigma_{y}, \sigma_{x}\right] \tag{1.4}\\
& =2 i(-2 i) \sigma_{z} \\
& =4 \sigma_{z}
\end{align*}
$$

From these a matrix representation containing unknown values can be assumed. Let

$$
\sigma_{+}=\left[\begin{array}{ll}
a & b \tag{1.5}\\
c & d
\end{array}\right]
$$

The commutator with σ_{z} can be computed

$$
\begin{align*}
{\left[\sigma_{z}, \sigma_{+}\right] } & =\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right]\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]-\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right] \\
& =\left[\begin{array}{cc}
a & b \\
-c & -d
\end{array}\right]-\left[\begin{array}{ll}
a & -b \\
c & -d
\end{array}\right] \tag{1.6}\\
& =2\left[\begin{array}{cc}
0 & b \\
-c & 0
\end{array}\right]
\end{align*}
$$

Now compare this with eq. (1.3)

$$
\begin{align*}
2\left[\begin{array}{cc}
0 & b \\
-c & 0
\end{array}\right] & =2 \sigma_{+} \tag{1.7}\\
& =2\left[\begin{array}{ll}
a & b \\
d & d
\end{array}\right]
\end{align*}
$$

This shows that $a=0$, and $d=0$. Similarly the σ_{z} commutator with the lowering operator is

$$
\begin{align*}
{\left[\sigma_{z}, \sigma_{-}\right] } & =\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right]\left[\begin{array}{cc}
0 & -c^{*} \\
b^{*} & 0
\end{array}\right]-\left[\begin{array}{cc}
0 & -c^{*} \\
b^{*} & 0
\end{array}\right]\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right] \\
& =\left[\begin{array}{cc}
0 & -c^{*} \\
-b^{*} & 0
\end{array}\right]-\left[\begin{array}{cc}
0 & c^{*} \\
b^{*} & 0
\end{array}\right] \tag{1.8}\\
& =-2\left[\begin{array}{cc}
0 & c^{*} \\
b^{*} & 0
\end{array}\right]
\end{align*}
$$

Again comparing to eq. (1.3), we have

$$
\begin{align*}
-2\left[\begin{array}{cc}
0 & c^{*} \\
b^{*} & 0
\end{array}\right] & =-2 \sigma_{-} \tag{1.9}\\
& =-2\left[\begin{array}{cc}
0 & -c^{*} \\
b^{*} & 0
\end{array}\right]
\end{align*}
$$

so $c=0$. Computing the commutator of the raising and lowering operators fixes b

$$
\begin{align*}
{\left[\sigma_{+}, \sigma_{-}\right] } & =\left[\begin{array}{ll}
0 & b \\
0 & 0
\end{array}\right]\left[\begin{array}{ll}
0 & 0 \\
b^{*} & 0
\end{array}\right]-\left[\begin{array}{cc}
0 & 0 \\
b^{*} & 0
\end{array}\right]\left[\begin{array}{ll}
0 & b \\
0 & 0
\end{array}\right] \\
& =\left[\begin{array}{cc}
|b|^{2} & 0 \\
0 & 0
\end{array}\right]-\left[\begin{array}{lll}
0 & 00 & -|b|^{2}
\end{array}\right] \tag{1.10}\\
& =|b|^{2}\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right] \\
& =|b|^{2} \sigma_{z} .
\end{align*}
$$

From eq. (1.4) it must be that $|b|^{2}=4$, so the most general form of the raising operator is

$$
\sigma_{+}=2\left[\begin{array}{cc}
0 & e^{i \phi} \tag{1.11}\\
0 & 0
\end{array}\right]
$$

1.3 Observation

The conventional choice is to set $\phi=0$, but I found it interesting to see the form of σ_{x}, σ_{y} without that choice. That is

$$
\begin{gather*}
\sigma_{x}=\frac{1}{2}\left(\sigma_{+}+\sigma_{-}\right) \tag{1.12}\\
=\left[\begin{array}{cc}
0 & e^{i \phi} \\
e^{-i \phi} & 0
\end{array}\right] \\
\sigma_{y}=\frac{1}{2 i}\left(\sigma_{+}-\sigma_{-}\right) \\
=\left[\begin{array}{cc}
0 & -i e^{i \phi} \\
-i e^{-i \phi} & 0
\end{array}\right] \tag{1.13}\\
=\left[\begin{array}{cc}
0 & e^{i(\phi-\pi / 2)} \\
e^{-i(\phi-\pi / 2)} & 0
\end{array}\right] .
\end{gather*}
$$

Notice that the Pauli matrices σ_{x} and σ_{y} actually both have the same form as σ_{x}, but the phase of the complex argument of each differs by 90°. That 90° separation isn't obvious in the standard form eq. (1.1).

It's a small detail, but I thought it was kind of cool that the orthogonality of these matrix unit vector representations is built directly into the structure of their matrix representations.

Bibliography

[1] BR Desai. Quantum mechanics with basic field theory. Cambridge University Press, 2009. 1.1, 1.2

