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Pauli matrix problems

Exercise 1.1 Representation of 2× 2 matrix with Pauli matrices. ([1] pr. 1.2)

Given an arbitrary 2× 2 matrix X = a0 + σ · a, show the relationships between aµ and Tr (X), Tr (σkX),
and Xij.

Answer for Exercise 1.1
Observe that each of the Pauli matrices σk are traceless

σx =
[

0 1
1 0

]
σy =

[
0 −i
i 0

]
σz =

[
1 0
0 −1

], (1.1)

so Tr (X) = 2a0. Note that Tr (σkσm) = 2δkm, so Tr (σkX) = 2ak.
Notationally, it would seem to make sense to define σ0 ≡ I, so that Tr (σµX) = aµ. I don’t know if

that is common practice.
For the opposite relations, given

(1.2)

X = a0 + σ · a

=
[

1 0
0 1

]
a0 +

[
0 1
1 0

]
a1 +

[
0 −i
i 0

]
a2 +

[
1 0
0 −1

]
a3

=
[

a0 + a3 a1 − ia2
a1 + ia2 a0 − a3

]
=
[

X11 X12
X21 X22

]
,

1



so
a0 =

1
2
(X11 + X22)

a1 =
1
2
(X12 + X21)

a2 =
1
2i

(X21 − X12)

a3 =
1
2
(X11 − X22)

. (1.3)

Exercise 1.2 Rotation transformation ([1] pr. 1.3)

Determine the structure and determinant of the transformation

σ · a→ σ · a′ = exp (iσ · n̂φ/2)σ · a exp (−iσ · n̂φ/2) . (1.4)

Answer for Exercise 1.2
Knowing Geometric Algebra, this is recognized as a rotation transformation. In GA, i is treated as

a pseudoscalar (which commutes with all grades in R3), and the expression can be reduced to one
involving dot and wedge products. Let’s see how can this be reduced using only the Pauli matrix
toolbox.

First, consider the determinant of one of the exponentials. Showing that one such exponential has
unit determinant is sufficient. The matrix representation of the unit normal is

(1.5)
σ · n̂ = nx

[
0 1
1 0

]
+ ny

[
0 −i
i 0

]
+ nz

[
1 0
0 −1

]
=
[

nz nx − iny
nx + iny −nz

]
.

This is expected to have a unit square, and does

(1.6)

(σ · n̂)2 =
[

nz nx − iny
nx + iny −nz

] [
nz nx − iny

nx + iny −nz

]
=
(

n2
x + n2

y + n2
z

) [
1 0
0 1

]
= 1.

This allows for a cosine and sine expansion of the exponential, as in

(1.7)

exp (iσ · n̂θ) = cos θ + iσ · n̂ sin θ

= cos θ

[
1 0
0 1

]
+ i sin θ

[
nz nx − iny

nx + iny −nz

]
=
[

cos θ + inz sin θ
(
nx − iny

)
i sin θ(

nx + iny
)

i sin θ cos θ − inz sin θ

]
.
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This has determinant

(1.8)
|exp (iσ · n̂θ)| = cos2 θ + n2

z sin2 θ −
(
−n2

x +−n2
y

)
sin2 θ

= cos2 θ +
(

n2
x + n2

y + n2
z

)
sin2 θ

= 1,

as expected.
Next step is to show that this transformation is a rotation, and determine the sense of the rotation.

Let C = cos φ/2, S = sin φ/2, so that

(1.9)

σ · a′ = exp
(
iσ · n̂φ/2

)
σ · a exp

(
−iσ · n̂φ/2

)
= (C + iσ · n̂S) σ · a (C − iσ · n̂S)
= (C + iσ · n̂S) (Cσ · a − iσ · aσ · n̂S)
= C2σ · a + σ · n̂σ · aσ · n̂S2 + i (−σ · aσ · n̂ + σ · n̂σ · a) SC

=
1
2
(
1 + cos φ

)
σ · a + σ · n̂σ · aσ · n̂1

2
(
1− cos φ

)
+ i [σ · n̂, σ · a]

1
2

sin φ

=
1
2

σ · n̂{σ · n̂, σ · a} +
1
2

σ · n̂ [σ · n̂, σ · a] cos φ +
1
2

i [σ · n̂, σ · a] sin φ.

Observe that the angle dependent portion can be written in a compact exponential form

(1.10)
σ · a′ =

1
2

σ · n̂{σ · n̂, σ · a} +
(
cos φ + iσ · n̂ sin φ

) 1
2

σ · n̂ [σ · n̂, σ · a]

=
1
2

σ · n̂{σ · n̂, σ · a} + exp
(
iσ · n̂φ

) 1
2

σ · n̂ [σ · n̂, σ · a] .

The anticommutator and commutator products with the unit normal can be identified as projec-
tions and rejections respectively. Consider the symmetric product first

(1.11)

1
2
{σ · n̂, σ · a} =

1
2 ∑ nras (σrσs + σsσr)

=
1
2 ∑

r 6=s
nras (σrσs + σsσr) +

1
2 ∑

r
nrar2

= 2n̂ · a.

This shows that
(1.12)

1
2

σ · n̂{σ · n̂, σ · a} = (n̂ · a) σ · n̂,

which is the projection of a in the direction of the normal n̂. To show that the commutator term is
the rejection, consider the sum of the two

(1.13)
1
2

σ · n̂{σ · n̂, σ · a} +
1
2

σ · n̂ [σ · n̂, σ · a] = σ · n̂σ · n̂σ · a
= σ · a,
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so we must have

(1.14)σ · a − (n̂ · a) σ · n̂ =
1
2

σ · n̂ [σ · n̂, σ · a] .

This is the component of a that has the projection in the n̂ direction removed. Looking back to
eq. (1.10), the transformation leaves components of the vector that are colinear with the unit normal
unchanged, and applies an exponential operation to the component that lies in what is presumed
to be the rotation plane. To verify that this latter portion of the transformation is a rotation, and to
determine the sense of the rotation, let’s expand the factor of the sine of eq. (1.9).

That is

(1.15)

i
2

[σ · n̂, σ · a]

=
i
2 ∑ nras [σr, σs]

=
i
2 ∑ nras2iεrstσt

= −∑ σtnrasεrst

= −σ · (n̂ × a)
= σ · (a × n̂) .

Since a× n̂ = (a− n̂(n̂ · a))× n̂, this vector is seen to lie in the plane normal to n̂, but perpendicular
to the rejection of n̂ from a. That completes the demonstration that this is a rotation transformation.

To understand the sense of this rotation, consider n̂ = ẑ, a = x̂, so

(1.16)σ · (a × n̂) = σ · (x̂ × ẑ)
= −σ · ŷ,

and
(1.17)σ · a′ = x̂ cos φ − ŷ sin φ,

showing that this rotation transformation has a clockwise sense.
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