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Phasor form of (extended) Maxwell’s equations in Geometric Algebra

Separate examinations of the phasor form of Maxwell’s equation (with electric charges and current
densities), and the Dual Maxwell’s equation (i.e. allowing magnetic charges and currents) were just
performed. Here the structure of these equations with both electric and magnetic charges and cur-
rents will be examined.

1.1 Space time split

The vector curl and divergence form of Maxwell’s equations are

(1.1a)∇ × E = −∂B
∂t
−M

(1.1b)∇ ×H = J +
∂D
∂t

(1.1c)∇ ·D = ρ

(1.1d)∇ · B = ρm.

In phasor form these are

(1.2a)∇ × E = −jkcB−M

(1.2b)∇ ×H = J + jkcD

(1.2c)∇ ·D = ρ

(1.2d)∇ · B = ρm.

Switching to E = D/ε0, B = µ0H fields (even though these aren’t the primary fields in engineering),
gives

(1.3a)∇ × E = −jk(cB)−M
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(1.3b)∇ × (cB) =
J

ε0c
+ jkE

(1.3c)∇ · E = ρ/ε0

(1.3d)∇ · (cB) = cρm.

Finally, using

(1.4)fg = f · g + If× g,

the divergence and curl contributions of each of the fields can be grouped

(1.5a)∇E = ρ/ε0 −
(

jk(cB) + M
)

I

(1.5b)∇(cBI) = cρm I −
(

J
ε0c

+ jkE
)

,

or

(1.6)∇ (E + cBI) = ρ/ε0 −
(

jk(cB) + M
)

I + cρm I −
(

J
ε0c

+ jkE
)

.

Regrouping gives Maxwell’s equations including both electric and magnetic sources

(∇ + jk) (E + cBI) =
1

ε0c
(cρ− J) + (cρm −M) I. (1.7)

1.2 Covariant form

It was observed that these can be put into a tidy four vector form by premultiplying by γ0, where

J = γµ Jµ = (cρ, J) (1.8a)

M = γµ Mµ = (cρm, M) (1.8b)

∇ = γ0 (∇ + jk) = γk∂k + jkγ0, (1.8c)

That gives

∇ (E + cBI) =
J

ε0c
+ MI. (1.9)
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1.3 Trial potential solution

When there were only electric sources, it was observed that potential solutions were of the form
E + cBI ∝ ∇ ∧ A, whereas when there was only magnetic sources it was observed that potential
solutions were of the form E + cBI ∝ (∇ ∧ F)I. It seems reasonable to attempt a trial solution that
contains both such contributions, say

E + cBI = ∇∧ Ae + (∇∧ Am) I. (1.10)

Without any loss of generality Lorentz gauge conditions can be imposed on the four-vector fields
Ae, Am. Those conditions are

∇ · Ae = ∇ · Am = 0. (1.11)

Since ∇X = ∇ · X +∇∧ X, for any four vector X, the trial solution eq. (1.10) is reduced to

E + cBI = ∇Ae +∇Am I. (1.12)

Maxwell’s equation is now

(1.13)

J
ε0c

+ MI = ∇2 (Ae + Am I)

= γ0
(
∇ + jk

)
γ0

(
∇ + jk

)
(Ae + Am I)

=
(
−∇ + jk

) (
∇ + jk

)
(Ae + Am I)

= −
(
∇2 + k2) (Ae + Am I) .

Notice how tidily this separates into vector and trivector components. Those are

(1.14a)−
(
∇2 + k2) Ae =

J
ε0c

(1.14b)−
(
∇2 + k2) Am = M.

The result is a single Helmholtz equation for each of the electric and magnetic four-potentials, and
both can be solved completely independently. This was claimed in class, but now the underlying
reason is clear.

1.4 Lorentz gauge application to Helmholtz

Because a single frequency phasor relationship was implied the scalar components of each of these
four potentials is determined by the Lorentz gauge condition. For example
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(1.15)

0 = ∇ ·
(

Aeejkct
)

=
(

γ0 1
c

∂

∂t
+ γk ∂

∂xk

)
·
(

γ0A0
eejkct + γm Am

e ejkct
)

=
(

γ0 jk + γr ∂

∂xr

)
·
(
γ0A0

e + γs As
e
)

ejkct

=
(

jkA0
e + ∇ · Ae

)
ejkct,

so

(1.16)A0
e =

j
k
∇ · Ae.

The same sort of relationship will apply to the magnetic potential too. This means that the Helmholtz
equations can be solved in the three vector space as

(1.17a)
(
∇2 + k2)Ae = − J

ε0c

(1.17b)
(
∇2 + k2)Am = −M.

1.5 Recovering the fields

Relative to the observer frame implicitly specified by γ0, here’s an expansion of the curl of the electric
four potential

(1.18)

∇ ∧ Ae =
1
2

(∇Ae − Ae∇)

=
1
2
(
γ0

(
∇ + jk

)
γ0

(
A0

e − Ae
)
− γ0

(
A0

e − Ae
)

γ0
(
∇ + jk

))
=

1
2
((
−∇ + jk

) (
A0

e − Ae
)
−

(
A0

e + Ae
) (

∇ + jk
))

=
1
2
(
−2∇A0

e +���jkA0
e −���jkA0

e + ∇Ae − Ae∇ − 2jkAe
)

= −
(
∇A0

e + jkAe
)

+ ∇ ∧ Ae

In the above expansion when the gradients appeared on the right of the field components, they are
acting from the right (i.e. implicitly using the Hestenes dot convention.)

The electric and magnetic fields can be picked off directly from above, and in the units implied by
this choice of four-potential are

Ee = −
(
∇A0

e + jkAe
)

= −j
(

1
k
∇∇ ·Ae + kAe

)
(1.19a)

cBe = ∇×Ae. (1.19b)
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For the fields due to the magnetic potentials

(1.20)(∇ ∧ Ae) I = −
(
∇A0

e + jkAe
)

I −∇ × Ae,

so the fields are

cBm = −
(
∇A0

m + jkAm
)

= −j
(

1
k
∇∇ ·Am + kAm

)
(1.21a)

Em = −∇×Am. (1.21b)

Including both electric and magnetic sources the fields are

E = −∇×Am − j
(

1
k
∇∇ ·Ae + kAe

)
(1.22a)

cB = ∇×Ae − j
(

1
k
∇∇ ·Am + kAm

)
(1.22b)
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