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Part I

R E A D I N G A N D L E C T U R E N OT E S





1
F U N DA M E N TA L C O N C E P T S

1.1 classical mechanics

We’ll be talking about one body physics for most of this course. In classical mechanics we can
figure out the particle trajectories using both of (r,p, where

(1.1)

dr
dt

=
1
m

p

dp
dt

= ∇V

A two dimensional phase space as sketched in fig. 1.1 shows the trajectory of a point particle
subject to some equations of motion

Figure 1.1: One dimensional classical phase space example.

1.2 quantum mechanics

For this lecture, we’ll work with natural units, setting

h̄ = 1. (1.2)

3



4 fundamental concepts

In QM we are no longer allowed to think of position and momentum, but have to start asking
about state vectors |Ψ〉.

We’ll consider the state vector with respect to some basis, for example, in a position basis,
we write

(1.3)〈x|Ψ〉 = Ψ(x),

a complex numbered “wave function”, the probability amplitude for a particle in |Ψ〉 to be in
the vicinity of x.

We could also consider the state in a momentum basis

(1.4)〈p|Ψ〉 = Ψ(p),

a probability amplitude with respect to momentum p.
More precisely,

(1.5)|Ψ(x)|2dx ≥ 0

is the probability of finding the particle in the range (x, x + dx). To have meaning as a proba-
bility, we require

(1.6)
∫ ∞

−∞

|Ψ(x)|2dx = 1.

The average position can be calculated using this probability density function. For example

(1.7)〈x〉 =

∫ ∞

−∞

|Ψ(x)|2xdx,

or

(1.8)〈 f (x)〉 =

∫ ∞

−∞

|Ψ(x)|2 f (x)dx.

Similarly, calculation of an average of a function of momentum can be expressed as

(1.9)〈 f (p)〉 =

∫ ∞

−∞

|Ψ(p)|2 f (p)dp.

1.3 transformation from a position to momentum basis

We have a problem, if we which to compute an average in momentum space such as 〈p〉, when
given a wavefunction Ψ(x).

How do we convert

(1.10)Ψ(p)
?
↔ Ψ(x),
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or equivalently

(1.11)〈p|Ψ〉
?
↔ 〈x|Ψ〉 .

Such a conversion can be performed by virtue of an the assumption that we have a complete
orthonormal basis, for which we can introduce identity operations such as

(1.12)
∫ ∞

−∞

dp |p〉 〈p| = 1,

or

(1.13)
∫ ∞

−∞

dx |x〉 〈x| = 1

Some interpretations:

1. |x0〉 ↔ sits atx = x0

2. 〈x|x′〉 ↔ δ(x − x′)

3. 〈p|p′〉 ↔ δ(p − p′)

4. 〈x|p′〉 = eipx
√

V
, where V is the volume of the box containing the particle. We’ll define the

appropriate normalization for an infinite box volume later.

The delta function interpretation of the braket 〈p|p′〉 justifies the identity operator, since we
recover any state in the basis when operating with it. For example, in momentum space

(1.14)

1 |p〉 =

(∫ ∞

−∞

dp′
∣∣∣p′〉 〈p′

∣∣∣) |p〉
=

∫ ∞

−∞

dp′
∣∣∣p′〉 〈p′

∣∣∣p〉
=

∫ ∞

−∞

dp′
∣∣∣p′〉 δ(p − p′)

= |p〉 .

This also the determination of an integral operator representation for the delta function

(1.15)

δ(x − x′) =
〈
x
∣∣∣x′〉

=

∫
dp 〈x|p〉

〈
p
∣∣∣x′〉

=
1
V

∫
dpeipxe−ipx′ ,
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or

(1.16)δ(x − x′) =
1
V

∫
dpeip(x−x′).

Here we used the fact that 〈p|x〉 = 〈x|p〉∗.
FIXME: do we have a justification for that conjugation with what was defined here so far?
The conversion from a position basis to momentum space is now possible

(1.17)〈p|Ψ〉 = Ψ(p) =

∫ ∞

−∞

〈p|x〉 〈x|Ψ〉 dx =

∫ ∞

−∞

e−ipx

√
V

Ψ(x)dx.

The momentum space to position space conversion can be written as

(1.18)Ψ(x) =

∫ ∞

−∞

eipx

√
V

Ψ(p)dp.

Now we can go back and figure out the an expectation

(1.19)

〈p〉 =

∫
Ψ∗(p)Ψ(p)pdp

=

∫
dp

(∫ ∞

−∞

eipx

√
V

Ψ∗(x)dx
) (∫ ∞

−∞

e−ipx′

√
V

Ψ(x′)dx′
)

p

=

∫
dpdxdx′Ψ∗(x)

1
V

eip(x−x′)Ψ(x′)p

=

∫
dpdxdx′Ψ∗(x)

1
V

(
−i
∂eip(x−x′)

∂x

)
Ψ(x′)

=

∫
dpdxΨ∗(x)

(
−i

∂

∂x

)
1
V

∫
dx′eip(x−x′)Ψ(x′)

=

∫
dxΨ∗(x)

(
−i

∂

∂x

) ∫
dx′

(
1
V

∫
dpeip(x−x′)

)
Ψ(x′)

=

∫
dxΨ∗(x)

(
−i

∂

∂x

) ∫
dx′δ(x − x′)Ψ(x′)

=

∫
dxΨ∗(x)

(
−i

∂

∂x

)
Ψ(x)

Here we’ve essentially calculated the position space representation of the momentum opera-
tor, allowing identifications of the following form

(1.20)p↔ −i
∂

∂x

(1.21)p2 ↔ −
∂2

∂x2 .
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Alternate starting point. Most of the above results followed from the claim that 〈x|p〉 = eipx.
Note that this position space representation of the momentum operator can also be taken as
the starting point. Given that, the exponential representation of the position-momentum braket
follows

(1.22)〈x| P |p〉 = −i h̄
∂

∂x
〈x|p〉 ,

but 〈x| P |p〉 = p 〈x|p〉, providing a differential equation for 〈x|p〉

(1.23)p 〈x|p〉 = −i h̄
∂

∂x
〈x|p〉 ,

with solution

(1.24)ipx/ h̄ = ln 〈x|p〉 + const,

or

(1.25)〈x|p〉 ∝ eipx/ h̄.

1.4 matrix interpretation

1. Ket’s |Ψ〉 ↔ column vector

2. Bra’s 〈Ψ| ↔ (row vector)∗

3. Operators↔ matrices that act on vectors.

(1.26)p̂ |Ψ〉 →
∣∣∣Ψ′〉

1.5 time evolution

For a state subject to the equations of motion given by the Hamiltonian operator Ĥ

(1.27)i
∂

∂t
|Ψ〉 = Ĥ |Ψ〉 ,

the time evolution is given by

(1.28)|Ψ(t)〉 = e−iĤt |Ψ(0)〉 .
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1.6 review: basic concepts

We’ve reviewed the basic concepts that we will encounter in Quantum Mechanics.

1. Abstract state vector. |ψ〉

2. Basis states. |x〉

3. Observables, special Hermitian operators. We’ll only deal with linear observables.

4. Measurement.

We can either express the wave functions ψ(x) = 〈x|ψ〉 in terms of a basis for the observable,
or can express the observable in terms of the basis of the wave function (position or momentum
for example).

We saw that the position space representation of a momentum operator (also an observable)
was

(1.29)p̂→ −i h̄
∂

∂x
.

In general we can find the matrix element representation of any operator by considering its
representation in a given basis. For example, in a position basis, that would be

(1.30)
〈
x′
∣∣∣ Â |x〉 ↔ Axx′

The Hermitian property of the observable means that Axx′ = A∗x′x

(1.31)
∫

dx
〈
x′
∣∣∣ Â |x〉 〈x|ψ〉 =

〈
x′
∣∣∣φ〉↔ Ax′xψx = φx′ .

Example 1.1: Measurement example

Consider a polarization apparatus as sketched in fig. 1.2, where the output is of the form
Iout = Iin cos2 θ.
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Figure 1.2: Polarizer apparatus.

A general input state can be written in terms of each of the possible polarizations

(1.32)α |l〉 + β |↔〉 ∼ cos θ |l〉 + sin θ |↔〉

Here |α|2 is the probability that the input state is in the upwards polarization state, and
|β|2 is the probability that the input state is in the downwards polarization state.

The measurement of the polarization results in an output state that has a specific polar-
ization. That measurement is said to collapse the wavefunction.

When attempting a measurement, looking for a specific value, effects the state of the system,
and is call a strong or projective measurement. Such a measurement is

(i) Probabilistic.

(ii) Requires many measurements.

This measurement process results a determination of the eigenvalue of the operator. The
eigenvalue production of measurement is why we demand that operators be Hermitian.

It is also possible to try to do a weaker (perturbative) measurement, where some information
is extracted from the input state without completely altering it.

Time evolution

1. Schrödinger picture. The time evolution process is governed by a Schrödinger equation
of the following form

(1.33)i h̄
∂

∂t
|Ψ(t)〉 = Ĥ |Ψ(t)〉 .
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This Hamiltonian could be, for example,

(1.34)Ĥ =
p̂2

2m
+ V(x),

Such a representation of time evolution is expressed in terms of operators x̂, p̂, Ĥ, · · · that
are independent of time.

2. Heisenberg picture.

Suppose we have a state |Ψ(t)〉 and operate on this with an operator

(1.35)Â |Ψ(t)〉 .

This will have time evolution of the form

(1.36)Âe−iĤt/ h̄ |Ψ(0)〉 ,

or in matrix element form

(1.37)〈φ(t)| Â |Ψ(t)〉 = 〈φ(0)| eiĤt/ h̄Âe−iĤt/ h̄ |Ψ(0)〉 .

We work with states that do not evolve in time |φ(0)〉 , |Ψ(0)〉 , · · ·, but operators do evolve
in time according to

(1.38)Â(t) = eiĤt/ h̄Âe−iĤt/ h̄.

Density operator We can have situations where it is impossible to determine a single state
that describes the system. For example, given the gas in the room that you are sitting in, there
are things that we can measure, but it is impossible to describe the state that describes all the
particles and also impossible to construct a Hamiltonian that governs all the interactions of
those many many particles.

We need a probabilistic description to even describe such a complex system, and to be able
to deal with concepts like entanglement.

Suppose we have a complex system that can be partitioned into two subsets, left and right, as
sketched in fig. 1.3.

If the states in each partition can be enumerated separately, we can write the state of the
system as sums over the probability amplitudes that for the combined states.
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Figure 1.3: System partitioned into separate set of states.

(1.39)|Ψ〉 =
∑
m,n

Cm,n |m〉 |n〉

Here Cm,n is the probability amplitude to find the state in the combined state |m〉 |n〉.
As an example of such a system, we could investigate a two particle configuration where spin

up or spin down can be separately measured for each particle.

(1.40)|ψ〉 =
1
√

2
(|↑〉 |↓〉 + |↓〉 |↑〉)

Considering such a system we could ask questions such as

• What is the probability that the left half is in state m? This would be

(1.41)
∑

n

∣∣∣Cm,n
∣∣∣2

• Probability that the left half is in state m, and the probability that the right half is in state
n? That is

(1.42)
∣∣∣Cm,n

∣∣∣2
We define the density operator

(1.43)ρ̂ = |Ψ〉 〈Ψ| .

This is idempotent
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(1.44)ρ̂2 = (|Ψ〉 〈Ψ|) (|Ψ〉 〈Ψ|)
= |Ψ〉 〈Ψ|

An example of a partitioned system with four total states (two spin 1/2 particles) is sketched
in fig. 1.4.

Figure 1.4: Two spins.

An example of a partitioned system with eight total states (three spin 1/2 particles) is sketched
in fig. 1.5.

Figure 1.5: Three spins.

The density matrix

(1.45)ρ̂ = |Ψ〉 〈Ψ|

is clearly an operator as can be seen by applying it to a state

(1.46)ρ̂ |φ〉 = |Ψ〉 (〈Ψ|φ〉) .
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The quantity in braces is just a complex number.
After expanding the pure state |Ψ〉 in terms of basis states for each of the two partitions

(1.47)|Ψ〉 =
∑
m,n

Cm,n |m〉L |n〉R ,

With L and R implied for |m〉 , |n〉 indexed states respectively, this can be written

(1.48)|Ψ〉 =
∑
m,n

Cm,n |m〉 |n〉 .

The density operator is

(1.49)ρ̂ =
∑
m,n

Cm,nC∗m′,n′ |m〉 |n〉
∑
m′,n′

〈
m′

∣∣∣ 〈n′∣∣∣ .
Suppose we trace over the right partition of the state space, defining such a trace as the

reduced density operator ρ̂red

(1.50)

ρ̂red ≡ trR(ρ̂)
=

∑
ñ

〈ñ| ρ̂ |ñ〉

=
∑

ñ

〈ñ|

∑
m,n

Cm,n |m〉 |n〉


∑

m′,n′
C∗m′,n′

〈
m′

∣∣∣ 〈n′∣∣∣ |ñ〉
=

∑
ñ

∑
m,n

∑
m′,n′

Cm,nC∗m′,n′ |m〉 δñn
〈
m′

∣∣∣ δñn′

=
∑

ñ,m,m′
Cm,ñC∗m′,ñ |m〉

〈
m′

∣∣∣
Computing the matrix element of ρ̂red, we have

(1.51)

〈m̃| ρ̂red |m̃〉 =
∑

m,m′,ñ

Cm,ñC∗m′,ñ 〈m̃|m〉
〈
m′

∣∣∣m̃〉
=

∑
ñ

∣∣∣Cm̃,ñ
∣∣∣2.

This is the probability that the left partition is in state m̃.
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Figure 1.6: Magnetic moments from two spins.

1.7 average of an observable

Suppose we have two spin half particles. For such a system the total magnetization is

(1.52)S Total = S z
1 + S z

1,

as sketched in fig. 1.6.
The average of some observable is

(1.53)
〈
Â
〉

=
∑

m,n,m′,n′
C∗m,nCm′,n′ 〈m| 〈n| Â

∣∣∣n′〉 ∣∣∣m′〉 .
Consider the trace of the density operator observable product

(1.54)tr(ρ̂Â) =
∑
m,n

〈mn|Ψ〉 〈Ψ| Â |m, n〉 .

Let

(1.55)|Ψ〉 =
∑
m,n

Cmn |m, n〉 ,

so that

(1.56)

tr(ρ̂Â) =
∑

m,n,m′,n′,m′′,n′′
Cm′,n′C∗m′′,n′′

〈
mn

∣∣∣m′, n′〉 〈m′′, n′′∣∣∣ Â |m, n〉

=
∑

m,n,m′′,n′′
Cm,nC∗m′′,n′′

〈
m′′, n′′

∣∣∣ Â |m, n〉 .

This is just

〈Ψ| Â |Ψ〉 = tr(ρ̂Â). (1.57)
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1.8 left observables

Consider

(1.58)

〈Ψ| ÂL |Ψ〉 = tr(ρ̂ÂL)
= trL trR(ρ̂ÂL)
= trL

(
(trR ρ̂) ÂL)

)
= trL

(
ρ̂redÂL)

)
.

We see

(1.59)〈Ψ| ÂL |Ψ〉 = trL
(
ρ̂red,LÂL

)
.

We find that we don’t need to know the state of the complete system to answer questions
about portions of the system, but instead just need ρ̂, a “probability operator” that provides all
the required information about the partitioning of the system.

1.9 pure states vs . mixed states

For pure states we can assign a state vector and talk about reduced scenarios. For mixed states
we must work with reduced density matrices.

Example 1.2: Two particle spin half pure states

Consider

(1.60)|ψ1〉 =
1
√

2
(|↑↓〉 − |↓↑〉)

(1.61)|ψ2〉 =
1
√

2
(|↑↓〉 + |↑↑〉) .

For the first pure state the density operator is

(1.62)ρ̂ =
1
2

(|↑↓〉 − |↓↑〉) (〈↑↓| − 〈↓↑|)

What are the reduced density matrices?

(1.63)
ρ̂L = trR (ρ̂)

=
1
2

(−1)(−1) |↓〉 〈↓| +
1
2

(+1)(+1) |↑〉 〈↑| ,



16 fundamental concepts

so the matrix representation of this reduced density operator is

(1.64)ρ̂L =
1
2

1 0

0 1

 .
For the second pure state the density operator is

(1.65)ρ̂ =
1
2

(|↑↓〉 + |↑↑〉) (〈↑↓| + 〈↑↑|) .

This has a reduced density matrix

(1.66)

ρ̂L = trR (ρ̂)

=
1
2
|↑〉 〈↑| +

1
2
|↑〉 〈↑|

= |↑〉 〈↑| .

This has a matrix representation

(1.67)ρ̂L =

1 0

0 0

 .
In this second example, we have more information about the left partition. That will be

seen as a zero entanglement entropy in the problem set. In contrast we have less informa-
tion about the first state, and will find a non-zero positive entanglement entropy in that
case.

1.10 entropy when density operator has zero eigenvalues

In the class notes and the text [11] the Von Neumann entropy is defined as

(1.68)S = − tr(ρ ln ρ).

In one of our problems I had trouble evaluating this, having calculated a density operator
matrix representation

(1.69)ρ = E ∧ E−1,

where

(1.70)E =
1
√

2

1 1

1 −1

 ,
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and

(1.71)∧ =

1 0

0 0

 .
The usual method of evaluating a function of a matrix is to assume the function has a power

series representation, and that a similarity transformation of the form A = E ∧ E−1 is possible,
so that

(1.72)f (A) = E f (∧)E−1,

however, when attempting to do this with the matrix of eq. (1.69) leads to an undesirable
result

(1.73)ln ρ =
1
2

1 1

1 −1


ln 1 0

0 ln 0


1 1

1 −1

 .
The ln 0 makes the evaluation of this matrix logarithm rather unpleasant. To give meaning to

the entropy expression, we have to do two things, the first is treating the trace operation as a
higher precedence than the logarithms that it contains. That is

(1.74)

− tr(ρ ln ρ) = − tr(E ∧ E−1E ln∧E−1)
= − tr(E ∧ ln∧E−1)
= − tr(E−1E ∧ ln∧)
= − tr(∧ ln∧)
= −

∑
k

∧kk ln∧kk.

Now the matrix of the logarithm need not be evaluated, but we still need to give meaning to
∧kk ln∧kk for zero diagonal entries. This can be done by considering a limiting scenario

(1.75)
− lim

a→0
a ln a = − lim

x→∞
e−x ln e−x

= lim
x→∞

xe−x

= 0.

The entropy can now be expressed in the unambiguous form, summing over all the non-zero
eigenvalues of the density operator

S = −
∑
∧kk,0

∧kk ln∧kk. (1.76)
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1.11 problems

Exercise 1.1 Representation of 2 × 2 matrix with Pauli matrices. ([11] pr. 1.2)
Given an arbitrary 2×2 matrix X = a0 +σ ·a, show the relationships between aµ and tr (X), tr (σkX),
and Xi j.
Answer for Exercise 1.1

Observe that each of the Pauli matrices σk are traceless

σx =

0 1

1 0


σy =

0 −i

i 0


σz =

1 0

0 −1


, (1.77)

so tr (X) = 2a0. Note that tr (σkσm) = 2δkm, so tr (σkX) = 2ak.
Notationally, it would seem to make sense to define σ0 ≡ I, so that tr (σµX) = aµ. I don’t

know if that is common practice.
For the opposite relations, given

(1.78)

X = a0 + σ · a

=

1 0

0 1

 a0 +

0 1

1 0

 a1 +

0 −i

i 0

 a2 +

1 0

0 −1

 a3

=

a0 + a3 a1 − ia2

a1 + ia2 a0 − a3


=

X11 X12

X21 X22

 ,
so

a0 =
1
2
(X11 + X22)

a1 =
1
2
(X12 + X21)

a2 =
1
2i

(X21 − X12)

a3 =
1
2
(X11 − X22)

. (1.79)



1.11 problems 19

Exercise 1.2 Rotation transformation. ([11] pr. 1.3)

Determine the structure and determinant of the transformation

σ · a→ σ · a′ = exp (iσ · n̂φ/2)σ · a exp (−iσ · n̂φ/2) . (1.80)

Answer for Exercise 1.2
Knowing Geometric Algebra, this is recognized as a rotation transformation. In GA, i is

treated as a pseudoscalar (which commutes with all grades in R3), and the expression can be
reduced to one involving dot and wedge products. Let’s see how can this be reduced using only
the Pauli matrix toolbox.

First, consider the determinant of one of the exponentials. Showing that one such exponential
has unit determinant is sufficient. The matrix representation of the unit normal is

(1.81)

σ · n̂ = nx

0 1

1 0

 + ny

0 −i

i 0

 + nz

1 0

0 −1


=

 nz nx − iny

nx + iny −nz

 .
This is expected to have a unit square, and does

(1.82)

(σ · n̂)2 =

 nz nx − iny

nx + iny −nz


 nz nx − iny

nx + iny −nz


=

(
n2

x + n2
y + n2

z

) 1 0

0 1


= 1.

This allows for a cosine and sine expansion of the exponential, as in

(1.83)

exp (iσ · n̂θ) = cos θ + iσ · n̂ sin θ

= cos θ

1 0

0 1

 + i sin θ

 nz nx − iny

nx + iny −nz


=

 cos θ + inz sin θ (nx − iny) i sin θ

(nx + iny) i sin θ cos θ − inz sin θ

 .
This has determinant
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(1.84)

∣∣∣exp (iσ · n̂θ)
∣∣∣ = cos2 θ + n2

z sin2 θ −
(
−n2

x + −n2
y

)
sin2 θ

= cos2 θ +
(
n2

x + n2
y + n2

z

)
sin2 θ

= 1,

as expected.
Next step is to show that this transformation is a rotation, and determine the sense of the

rotation. Let C = cos φ/2, S = sin φ/2, so that

(1.85)

σ · a′ = exp (iσ · n̂φ/2)σ · a exp (−iσ · n̂φ/2)
= (C + iσ · n̂S )σ · a (C − iσ · n̂S )
= (C + iσ · n̂S ) (Cσ · a − iσ · aσ · n̂S )
= C2σ · a + σ · n̂σ · aσ · n̂S 2 + i (−σ · aσ · n̂ + σ · n̂σ · a) S C

=
1
2

(1 + cos φ)σ · a + σ · n̂σ · aσ · n̂
1
2

(1 − cos φ) + i [σ · n̂,σ · a]
1
2

sin φ

=
1
2
σ · n̂{σ · n̂,σ · a} +

1
2
σ · n̂ [σ · n̂,σ · a] cos φ +

1
2

i [σ · n̂,σ · a] sin φ.

Observe that the angle dependent portion can be written in a compact exponential form

(1.86)
σ · a′ =

1
2
σ · n̂{σ · n̂,σ · a} + (cos φ + iσ · n̂ sin φ)

1
2
σ · n̂ [σ · n̂,σ · a]

=
1
2
σ · n̂{σ · n̂,σ · a} + exp (iσ · n̂φ)

1
2
σ · n̂ [σ · n̂,σ · a] .

The anticommutator and commutator products with the unit normal can be identified as pro-
jections and rejections respectively. Consider the symmetric product first

(1.87)

1
2
{σ · n̂,σ · a} =

1
2

∑
nras (σrσs + σsσr)

=
1
2

∑
r,s

nras (σrσs + σsσr) +
1
2

∑
r

nrar2

= 2n̂ · a.

This shows that

(1.88)
1
2
σ · n̂{σ · n̂,σ · a} = (n̂ · a)σ · n̂,

which is the projection of a in the direction of the normal n̂. To show that the commutator
term is the rejection, consider the sum of the two
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(1.89)
1
2
σ · n̂{σ · n̂,σ · a} +

1
2
σ · n̂ [σ · n̂,σ · a] = σ · n̂σ · n̂σ · a

= σ · a,

so we must have

(1.90)σ · a − (n̂ · a)σ · n̂ =
1
2
σ · n̂ [σ · n̂,σ · a] .

This is the component of a that has the projection in the n̂ direction removed. Looking back
to eq. (1.86), the transformation leaves components of the vector that are colinear with the unit
normal unchanged, and applies an exponential operation to the component that lies in what
is presumed to be the rotation plane. To verify that this latter portion of the transformation
is a rotation, and to determine the sense of the rotation, let’s expand the factor of the sine of
eq. (1.85).

That is

(1.91)

i
2

[σ · n̂,σ · a] =
i
2

∑
nras [σr, σs]

=
i
2

∑
nras2iεrstσt

= −
∑

σtnrasεrst

= −σ · (n̂ × a)
= σ · (a × n̂) .

Since a × n̂ = (a − n̂(n̂ · a)) × n̂, this vector is seen to lie in the plane normal to n̂, but
perpendicular to the rejection of n̂ from a. That completes the demonstration that this is a
rotation transformation.

To understand the sense of this rotation, consider n̂ = ẑ, a = x̂, so

(1.92)σ · (a × n̂) = σ · (x̂ × ẑ)
= −σ · ŷ,

and

(1.93)σ · a′ = x̂ cos φ − ŷ sin φ,

showing that this rotation transformation has a clockwise sense.

Exercise 1.3 Some bra-ket manipulation problems. ([11] pr. 1.4)

Using braket logic expand
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a.

tr XY (1.94)

b.

(XY)† (1.95)

c.

ei f (A), (1.96)

where A is Hermitian with a complete set of eigenvalues.

d. ∑
a′

Ψa′(x′)∗Ψa′(x′′), (1.97)

where Ψa′(x′′) = 〈x′|a′〉.

Answer for Exercise 1.3

Part a.

(1.98)

tr XY =
∑

a

〈a| XY |a〉

=
∑
a,b

〈a| X |b〉 〈b|Y |a〉

=
∑
a,b

〈b|Y |a〉 〈a| X |b〉

=
∑
a,b

〈b|YX |b〉

= tr YX.
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Part b.

(1.99)

〈a| (XY)† |b〉 = (〈b| XY |a〉)∗

=
∑

c

(〈b| X |c〉 〈c|Y |a〉)∗

=
∑

c

(〈b| X |c〉)∗ (〈c|Y |a〉)∗

=
∑

c

(〈c|Y |a〉)∗ (〈b| X |c〉)∗

=
∑

c

〈a|Y† |c〉 〈c| X† |b〉

= 〈a|Y†X† |b〉 ,

so (XY)† = Y†X†.

Part c. Let’s presume that the function f has a Taylor series representation

(1.100)f (A) =
∑

r

brAr.

If the eigenvalues of A are given by

(1.101)A |as〉 = as |as〉 ,

this operator can be expanded like

(1.102)

A =
∑
as

A |as〉 〈as|

=
∑
as

as |as〉 〈as| ,

To compute powers of this operator, consider first the square

(1.103)

A2 =

=
∑
as

as |as〉 〈as|
∑
ar

ar |ar〉 〈ar |

=
∑
as,ar

asar |as〉 〈as| |ar〉 〈ar |

=
∑
as,ar

asar |as〉 δsr 〈ar |

=
∑
as

a2
s |as〉 〈as| .
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The pattern for higher powers will clearly just be

(1.104)Ak =
∑
as

ak
s |as〉 〈as| ,

so the expansion of f (A) will be

(1.105)

f (A) =
∑

r

brAr

=
∑

r

br

∑
as

ar
s |as〉 〈as|

=
∑
as

∑
r

brar
s

 |as〉 〈as|

=
∑
as

f (as) |as〉 〈as| .

The exponential expansion is

(1.106)

ei f (A) =
∑

t

it

t!
f t(A)

=
∑

t

it

t!

∑
as

f (as) |as〉 〈as|

t

=
∑

t

it

t!

∑
as

f t(as) |as〉 〈as|

=
∑
as

ei f (as) |as〉 〈as| .

Part d.

(1.107)

∑
a′

Ψa′(x′)∗Ψa′(x′′) =
∑
a′

〈
x′

∣∣∣a′〉∗ 〈x′′∣∣∣a′〉
=

∑
a′

〈
a′

∣∣∣x′〉 〈x′′∣∣∣a′〉
=

∑
a′

〈
x′′

∣∣∣a′〉 〈a′∣∣∣x′〉
=

〈
x′′

∣∣∣x′〉
= δ

(
x′′ − x′

)
.

Exercise 1.4 Operator matrix representation. ([11] pr. 1.5)



1.11 problems 25

a. Determine the matrix representation of |α〉 〈β| given a complete set of eigenvectors |ar〉.

b. Verify with |α〉 = |sz = h̄/2〉 , |sx = h̄/2〉.

Answer for Exercise 1.4

Part a. Forming the matrix element

(1.108)
〈
ar

∣∣∣ (|α〉 〈β|) ∣∣∣as〉 =
〈
ar

∣∣∣α〉 〈β∣∣∣as〉
=

〈
ar

∣∣∣α〉 〈as
∣∣∣β〉∗ ,

the matrix representation is seen to be

(1.109)

|α〉 〈β| ∼


〈
a1

∣∣∣ (|α〉 〈β|) ∣∣∣a1
〉 〈

a1
∣∣∣ (|α〉 〈β|) ∣∣∣a2

〉
· · ·〈

a2
∣∣∣ (|α〉 〈β|) ∣∣∣a1

〉 〈
a2

∣∣∣ (|α〉 〈β|) ∣∣∣a2
〉
· · ·

...
...

. . .


=


〈
a1

∣∣∣α〉 〈
a1

∣∣∣β〉∗ 〈
a1

∣∣∣α〉 〈
a2

∣∣∣β〉∗ · · ·〈
a2

∣∣∣α〉 〈
a1

∣∣∣β〉∗ 〈
a2

∣∣∣α〉 〈
a2

∣∣∣β〉∗ · · ·
...

...
. . .

 .
Part b. First compute the spin-z representation of |sx = h̄/2〉.

(1.110)(S x − h̄/2I)

ab
 =


 0 h̄/2

h̄/2 0

 −
 h̄/2 0

0 h̄/2


 =

ab
 =

h̄
2

−1 1

1 −1


ab

 ,
so |sx = h̄/2〉 ∝ (1, 1).
Normalized we have

|α〉 = |sz = h̄/2〉 =

10


|β〉 = |sz = h̄/2〉
1
√

2

11
 .

(1.111)

Using eq. (1.109) the matrix representation is

(1.112)

|α〉 〈β| ∼

(1)(1/
√

2)∗ (1)(1/
√

2)∗

(0)(1/
√

2)∗ (0)(1/
√

2)∗


=

1
√

2

1 1

0 0

 .
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This can be confirmed with direct computation

(1.113)

|α〉 〈β| =

10
 1
√

2

[
1 1

]
=

1
√

2

1 1

0 0

 .
Exercise 1.5 Eigenvalue of sum of kets. ([11] pr. 1.6)

Given eigenkets |i〉 , | j〉 of an operator A, what are the conditions that |i〉+ | j〉 is also an eigen-
vector?
Answer for Exercise 1.5

Let A |i〉 = i |i〉 , A | j〉 = j | j〉, and suppose that the sum is an eigenket. Then there must be a
value a such that

(1.114)A (|i〉 + | j〉) = a (|i〉 + | j〉) ,

so
(1.115)i |i〉 + j | j〉 = a (|i〉 + | j〉) .

Operating with 〈i| , 〈 j| respectively, gives

i = a

j = a,
(1.116)

so for the sum to be an eigenket, both of the corresponding energy eigenvalues must be
identical (i.e. linear combinations of degenerate eigenkets are also eigenkets).

Exercise 1.6 Null operator. ([11] pr. 1.7)
Given eigenkets |a′〉 of operator A

a. show that

∏
a′

(A − a′) (1.117)

is the null operator.

b. ∏
a′′,a′

(A − a′′)
a′ − a′′

(1.118)

c. Illustrate using S z for a spin 1/2 system.

Answer for Exercise 1.6
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Part a. Application of |a〉, the eigenket of A with eigenvalue a to any term A − a′ scales |a〉
by a − a′, so the product operating on |a〉 is

∏
a′

(A − a′) |a〉 =
∏

a′
(a − a′) |a〉 . (1.119)

Since |a〉 is one of the {|a′〉} eigenkets of A, one of these terms must be zero.

Part b. Again, consider the action of the operator on |a〉,

∏
a′′,a′

(A − a′′)
a′ − a′′

|a〉 =
∏

a′′,a′

(a − a′′)
a′ − a′′

|a〉 . (1.120)

If |a〉 = |a′〉, then
∏

a′′,a′
(A−a′′)
a′−a′′ |a〉 = |a〉, whereas if it does not, then it equals one of the a′′

energy eigenvalues. This is a representation of the Kronecker delta function

(1.121)
∏

a′′,a′

(A − a′′)
a′ − a′′

|a〉 ≡ δa′,a |a〉

Part c. For operator S z the eigenvalues are { h̄/2,− h̄/2}, so the null operator must be

(1.122)

∏
a′

(
A − a′

)
=

(
h̄
2

)2

1 0

0 −1

 −
1 0

0 1




1 0

0 −1

 +

1 0

0 1




=

0 0

0 −2


2 0

0 0


=

0 0

0 0


For the delta representation, consider the |±〉 states and their eigenvalue. The delta operators

are∏
a′′, h̄/2

(A − a′′)
h̄/2 − a′′

=
S z − (− h̄/2)I
h̄/2 − (− h̄/2)

=
1
2

(σz + I) =
1
2


1 0

0 −1

 +

1 0

0 1


 =

1
2

2 0

0 0

 =

1 0

0 0

 .
(1.123)

∏
a′′,− h̄/2

(A − a′′)
− h̄/2 − a′′

=
S z − ( h̄/2)I
− h̄/2 − h̄/2

=
1
2

(σz − I) =
1
2


1 0

0 −1

−
1 0

0 1


 =

1
2

0 0

0 −2

 =

0 0

0 1

 .
(1.124)
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These clearly have the expected delta function property acting on kets |+〉 = (1, 0)T, |−〉 =

(0, 1)T.

Exercise 1.7 Spin half general normal. ([11] pr. 1.9)

Construct |S · n̂; +〉, where n̂ = (cosα sin β, sinα sin β, cos β)T such that

(1.125)S · n̂ |S · n̂; +〉 =
h̄
2
|S · n̂; +〉 ,

Solve this as an eigenvalue problem.
Answer for Exercise 1.7

The spin operator for this direction is

(1.126)

S · n̂ =
h̄
2
σ · n̂

=
h̄
2

cosα sin β

0 1

1 0

 + sinα sin β

0 −i

i 0

 + cos β

1 0

0 −1




=
h̄
2

 cos β e−iα sin β

eiα sin β − cos β

 .
Observed that this is traceless and has a − h̄/2 determinant like any of the x, y, z spin opera-

tors.
Assuming that this has an h̄/2 eigenvalue (to be verified later), the eigenvalue problem is

(1.127)

0 = S · n̂ − h̄/2I

=
h̄
2

cos β − 1 e−iα sin β

eiα sin β − cos β − 1


= h̄

 − sin2 β
2 e−iα sin β

2 cos β
2

eiα sin β
2 cos β

2 − cos2 β
2


This has a zero determinant as expected, and the eigenvector (a, b) will satisfy

(1.128)
0 = − sin2 β

2
a + e−iα sin

β

2
cos

β

2
b

= sin
β

2

(
− sin

β

2
a + e−iαb cos

β

2

)

(1.129)

ab
 ∝

 cos β
2

eiα sin β
2

 .
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This is appropriately normalized, so the ket for S · n̂ is

(1.130)|S · n̂; +〉 = cos
β

2
|+〉 + eiα sin

β

2
|−〉 .

Note that the other eigenvalue is

(1.131)|S · n̂;−〉 = − sin
β

2
|+〉 + eiα cos

β

2
|−〉 .

It is straightforward to show that these are orthogonal and that this has the − h̄/2 eigenvalue.

Exercise 1.8 Two state Hamiltonian. ([11] pr. 1.10)

Solve the eigenproblem for

(1.132)H = a(|1〉 〈1| − |2〉 〈2| + |1〉 〈2| + |2〉 〈1|)

Answer for Exercise 1.8
In matrix form the Hamiltonian is

(1.133)H = a

1 1

1 −1

 .
The eigenvalue problem is

(1.134)

0 = |H − λI|
= (a − λ)(−a − λ) − a2

= (−a + λ)(a + λ) − a2

= λ2 − a2 − a2,

or

(1.135)λ = ±
√

2a.

An eigenket proportional to (α, β) must satisfy

(1.136)0 = (1 ∓
√

2)α + β,

so

(1.137)|±〉 ∝

 −1

1 ∓
√

2

 ,
or
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(1.138)

|±〉 =
1

2(2 −
√

2)

 −1

1 ∓
√

2


=

2 +
√

2
4

 −1

1 ∓
√

2

 .
That is

(1.139)|±〉 =
2 +
√

2
4

(
− |1〉 + (1 ∓

√
2) |2〉

)
.

Exercise 1.9 Spin half probability and dispersion. ([11] pr. 1.12, phy1520 2015 ps1.3)
A spin 1/2 system S · n̂, with n̂ = sin θx̂ + cos θẑ, is in state with eigenvalue h̄/2.

a. If S x is measured. What is the probability of getting + h̄/2?

b. Evaluate the dispersion in S x, that is,

〈
(S x − 〈S x〉)

2〉
. (1.140)

Answer for Exercise 1.9

Part a. In matrix form the spin operator for the system is

(1.141)

S · n̂ =
h̄
2

cos θ

1 0

0 −1

 + sin θ

0 1

1 0




=
h̄
2

cos θ sin θ

sin θ − cos θ


An eigenket |S · n̂; +〉 = (a, b)T must satisfy

(1.142)

0 = (cos θ − 1) a + sin θb

=

(
−2 sin2 θ

2

)
a + 2 sin

θ

2
cos

θ

2
b

= − sin
θ

2
a + cos

θ

2
b,

so the eigenstate is

(1.143)|S · n̂; +〉 =

cos θ
2

sin θ
2

 .
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Pick |S x;±〉 = 1√
2

 1

±1

 as the basis for the S x operator. Then, for the probability that the

system will end up in the + h̄/2 state of S x, we have

(1.144)

P = |〈S x; +|S · n̂; +〉|2

=

∣∣∣∣∣∣∣∣ 1
√

2

11

† cos θ

2

sin θ
2


∣∣∣∣∣∣∣∣
2

=
1
2

∣∣∣∣∣∣∣[1 1
] cos θ

2

sin θ
2


∣∣∣∣∣∣∣
2

=
1
2

(
cos

θ

2
+ sin

θ

2

)2

=
1
2

(
1 + 2 cos

θ

2
sin

θ

2

)
=

1
2

(1 + sin θ) .

This is a reasonable seeming result, with P ∈ [0, 1]. Some special values also further validate
this

θ = 0, |S · n̂; +〉 =

10
 = |S z; +〉 =

1
√

2
|S x; +〉 +

1
√

2
|S x;−〉

θ = π/2, |S · n̂; +〉 =
1
√

2

11
 = |S x; +〉

θ = π, |S · n̂; +〉 =

01
 = |S z;−〉 =

1
√

2
|S x; +〉 −

1
√

2
|S x;−〉 ,

(1.145)

where we see that the probabilities are in proportion to the projection of the initial state onto
the measured state |S x; +〉.

Part b. The S x expectation is
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(1.146)

〈S x〉 =
h̄
2

[
cos θ

2 sin θ
2

] 0 1

1 0


cos θ

2

sin θ
2


=

h̄
2

[
cos θ

2 sin θ
2

] sin θ
2

cos θ
2


=

h̄
2

2 sin
θ

2
cos

θ

2

=
h̄
2

sin θ.

Note that S 2
x = ( h̄/2)2I, so

(1.147)

〈
S 2

x

〉
=

(
h̄
2

)2 [
cos θ

2 sin θ
2

] cos θ
2

sin θ
2


=

(
h̄
2

)2

cos2 θ

2
+ sin2 θ

2

=

(
h̄
2

)2

.

The dispersion is

(1.148)

〈
(S x − 〈S x〉)2

〉
=

〈
S 2

x

〉
− 〈S x〉

2

=

(
h̄
2

)2 (
1 − sin2 θ

)
=

(
h̄
2

)2

cos2 θ.

At θ = π/2 the dispersion is 0, which is expected since |S · n̂; +〉 = |S x; +〉 at that point.
Similarly, the dispersion is maximized at θ = 0, π where the |S · n̂; +〉 component in the |S x; +〉

direction is minimized.

Exercise 1.10 Cascading Stern-Gerlach. ([11] pr. 1.13)

Three Stern-Gerlach type measurements are performed, the first that prepares the state in a
|S z; +〉 state, the next in a |S · n̂; +〉 state where n̂ = cos βẑ + sin βx̂, and the last performing a S z

h̄/2 state measurement, as illustrated in fig. 1.7.
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Figure 1.7: Cascaded Stern-Gerlach type measurements.

What is the intensity of the final sz = − h̄/2 beam? What is the orientation for the second
measuring apparatus to maximize the intensity of this beam?
Answer for Exercise 1.10

The spin operator for the second apparatus is

(1.149)

S · n̂ =
h̄
2

sin β

0 1

1 0

 + cos β

1 0

0 −1




=
h̄
2

cos β sin β

sin β − cos β

 .
The intensity of the final |S z;−〉 beam is

(1.150)P = |〈−|S · n̂; +〉 〈S · n̂; +|+〉|2,

(i.e. the second apparatus applies a projection operator |S · n̂; +〉 〈S · n̂; +| to the initial |+〉
state, and then the |−〉 states are selected out of that.

The S · n̂ eigenket is found to be

(1.151)|S · n̂; +〉 =

cos β
2

sin β
2

 ,
so
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(1.152)

P =

∣∣∣∣∣∣∣[0 1
] cos β

2

sin β
2

 [cos β
2 sin β

2

] 10

∣∣∣∣∣∣∣
2

=

∣∣∣∣∣cos
β

2
sin

β

2

∣∣∣∣∣2
=

∣∣∣∣∣12 sin β
∣∣∣∣∣2

=
1
4

sin2 β.

This is maximized when β = π/2, or n̂ = x̂. At this angle the state leaving the second
apparatus is

(1.153)

cos β
2

sin β
2

 [cos β
2 sin β

2

] 10
 =

1
2

11
 [1 1

] 10


=
1
2

11


=
1
2
|+〉 +

1
2
|−〉 ,

so the state after filtering the |−〉 states is 1
2 |−〉 with intensity (probability density) of 1/4

relative to a unit normalize input |+〉 state to the S · n̂ apparatus.

Exercise 1.11 Can anticommuting operators have a simultaneous eigenket? ([11] pr. 1.16)

Two Hermitian operators anticommute

(1.154){A, B} = AB + BA
= 0.

Is it possible to have a simultaneous eigenket of A and B? Prove or illustrate your assertion.
Answer for Exercise 1.11

Suppose that such a simultaneous non-zero eigenket |α〉 exists, then

(1.155)A |α〉 = a |α〉 ,

and

(1.156)B |α〉 = b |α〉

This gives
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(1.157)(AB + BA) |α〉 = (Ab + Ba) |α〉
= 2ab |α〉 .

If this is zero, one of the operators must have a zero eigenvalue. Knowing that we can con-
struct an example of such operators. In matrix form, let

(1.158a)A =


1 0 0

0 −1 0

0 0 a



(1.158b)B =


0 1 0

1 0 0

0 0 b

 .
These are both Hermitian, and anticommute provided at least one of a, b is zero. These have

a common eigenket

(1.159)|α〉 =


0

0

1

 .
A zero eigenvalue of one of the commuting operators may not be a sufficient condition for

such anticommutation.

Exercise 1.12 Degeneracy in non-commuting observables that both commute with the Hamiltonian. ([11] pr. 1.17)

Show that non-commuting operators that both commute with the Hamiltonian, have, in gen-
eral, degenerate energy eigenvalues. That is

[A,H] = [B,H] = 0, (1.160)

but

(1.161)[A, B] , 0.

a. Consider Lx, Lz and a central force Hamiltonian H = p2/2m + V(r) as examples.

b. Construct some simple matrix examples that illustrate the degeneracy conditions.

c. Prove the general case.

Answer for Exercise 1.12
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Part a. Let’s start with demonstrate these commutators act as expected in these cases.
With L = x × p, we have

Lx = ypz − zpy

Ly = zpx − xpz

Lz = xpy − ypx.

(1.162)

The Lx, Lz commutator is

[Lx, Lz] = [ypz − zpy, xpy − ypx]

= [ypz, xpy] − [ypz, ypx] − [zpy, xpy] + [zpy, ypx]

= xpz [y, py] + zpx [py, y]

= i h̄ (xpz − zpx)

= −i h̄Ly

(1.163)

cyclically permuting the indexes shows that no pairs of different L components commute. For
Ly, Lx that is

[Ly, Lx] = [zpx − xpz, ypz − zpy]

= [zpx, ypz] − [zpx, zpy] − [xpz, ypz] + [xpz, zpy]

= ypx [z, pz] + xpy [pz, z]

= i h̄ (ypx − xpy)

= −i h̄Lz,

(1.164)

and for Lz, Ly

[Lz, Ly] = [xpy − ypx, zpx − xpz]

= [xpy, zpx] − [xpy, xpz] − [ypx, zpx] + [ypx, xpz]

= zpy [x, px] + ypz [px, x]

= i h̄ (zpy − ypz)

= −i h̄Lx.

(1.165)

If these angular momentum components are also shown to commute with themselves (which
they do), the commutator relations above can be summarized as

[La, Lb] = i h̄εabcLc. (1.166)
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In the example to consider, we’ll have to consider the commutators with p2 and V(r). Picking
any one component of L is sufficient due to the symmetries of the problem. For example

[
Lx,p2

]
=

[
ypz − zpy, p2

x + p2
y + p2

z

]
=

[
ypz,��p

2
x + p2

y +�
�p2
z

]
−

[
zpy,��p

2
x +
�
�p2
y + p2

z

]
= pz

[
y, p2

y

]
− py

[
z, p2

z

]
= pz2i h̄py − py2i h̄pz

= 0.

(1.167)

How about the commutator of L with the potential? It is sufficient to consider one component
again, for example

[Lx,V ] = [ypz − zpy,V ]

= y [pz,V ] − z [py,V ]

= −i h̄y
∂V(r)
∂z

+ i h̄z
∂V(r)
∂y

= −i h̄y
∂V
∂r

∂r
∂z

+ i h̄z
∂V
∂r

∂r
∂y

= −i h̄y
∂V
∂r

z
r

+ i h̄z
∂V
∂r

y
r

= 0.

(1.168)

This has shown that all the components of L commute with a central force Hamiltonian, and
each different component of L do not commute. It does not demonstrate the degeneracy, but I
do recall that exists for this system.
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Part b. I thought perhaps the problem at hand would be easier if I were to construct some
example matrices representing operators that did not commute, but did commuted with a Hamil-
tonian. I came up with

A =

σz 0

0 1

 =


1 0 0

0 −1 0

0 0 1


B =

σx 0

0 1

 =


0 1 0

1 0 0

0 0 1


H =


0 0 0

0 0 0

0 0 1



(1.169)

This system has [A,H] = [B,H] = 0, and

(1.170)[A, B] =


0 2 0

−2 0 0

0 0 0


There is one shared eigenvector between all of A, B,H

(1.171)|3〉 =


0

0

1

 .
The other eigenvectors for A are

|a1〉 =


1

0

0


|a2〉 =


0

1

0

 ,
(1.172)
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and for B

|b1〉 =
1
√

2


1

1

0


|b2〉 =

1
√

2


1

−1

0

 ,
(1.173)

This clearly has the degeneracy sought.
Looking to [1], it appears that it is possible to construct an even simpler example. Let

A =

0 1

0 0


B =

1 0

0 0


H =

0 0

0 0

 .
(1.174)

Here [A, B] = −A, and [A,H] = [B,H] = 0, but the Hamiltonian isn’t interesting at all
physically.

A less boring example builds on this. Let

A =


0 1 0

0 0 0

0 0 1


B =


1 0 0

0 0 0

0 0 1


H =


0 0 0

0 0 0

0 0 1

 .

(1.175)

Here [A, B] , 0, and [A,H] = [B,H] = 0. I don’t see a way for any exception to be con-
structed.
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Part c. The concrete examples above give some intuition for solving the more abstract prob-
lem. Suppose that we are working in a basis that simultaneously diagonalizes operator A and
the Hamiltonian H. To make life easy consider the simplest case where this basis is also an
eigenbasis for the second operator B for all but two of that operators eigenvectors. For such a
system let’s write

H |1〉 = ε1 |1〉

H |2〉 = ε2 |2〉

A |1〉 = a1 |1〉

A |2〉 = a2 |2〉 ,

(1.176)

where |1〉, and |2〉 are not eigenkets of B. Because B also commutes with H, we must have

(1.177)HB |1〉 = H |n〉 〈n| B |1〉
= εn |n〉 Bn1,

and

(1.178)
BH |1〉 = Bε1 |1〉

= ε1 |n〉 〈n| B |1〉
= ε1 |n〉 Bn1.

The commutator is

(1.179)[B,H] |1〉 = (ε1 − εn) |n〉 Bn1.

Similarly

(1.180)[B,H] |2〉 = (ε2 − εn) |n〉 Bn2.

For those kets |m〉 ∈ {|3〉 , |4〉 , · · ·} that are eigenkets of B, with B |m〉 = bm |m〉, we have

(1.181)
[B,H] |m〉 = Bεm |m〉 − Hbm |m〉

= bmεm |m〉 − εmbm |m〉
= 0.

If the commutator is zero, then we require all its matrix elements

〈1| [B,H] |1〉 = (ε1 − ε1) B11

〈2| [B,H] |1〉 = (ε1 − ε2) B21

〈1| [B,H] |2〉 = (ε2 − ε1) B12

〈2| [B,H] |2〉 = (ε2 − ε2) B22,

(1.182)
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to be zero. Because of eq. (1.181) only the matrix elements with respect to states |1〉 , |2〉 need
be considered. Two of the matrix elements above are clearly zero, regardless of the values of
B11, and B22, and for the other two to be zero, we must either have

• B21 = B12 = 0, or

• ε1 = ε2.

If the first condition were true we would have

(1.183)
B |1〉 = |n〉 〈n| B |1〉

= |n〉 Bn1

= |1〉 B11,

and B |2〉 = B22 |2〉. This contradicts the requirement that |1〉 , |2〉 not be eigenkets of B, leav-
ing only the second option. That second option means there must be a degeneracy in the system.

Exercise 1.13 Uncertainty relation. ([11] pr. 1.20)

Find the ket that maximizes the uncertainty product

(1.184)
〈
(∆S x)2

〉 〈(
∆S y

)2
〉
,

and compare to the uncertainty bound 1
4

∣∣∣∣〈[S x, S y]
〉∣∣∣∣2.

Answer for Exercise 1.13
To parameterize the ket space, consider first the kets that where both components are both

not zero, where a single complex number can parameterize the ket

(1.185)

|s〉 =

β′eiφ′

α′eiθ′


∝

 1

αeiθ


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The expectation values with respect to this ket are

(1.186)

〈S x〉 =
h̄
2

[
1 αe−iθ

] 0 1

1 0


 1

αeiθ


=

h̄
2

[
1 αe−iθ

] αeiθ

1


=

h̄
2
αeiθ + αe−iθ

=
h̄
2

2α cos θ

= h̄α cos θ.

(1.187)

〈
S y

〉
=

h̄
2

[
1 αe−iθ

] 0 −i

i 0


 1

αeiθ


=

i h̄
2

[
1 αe−iθ

] −αeiθ

1


=
−iα h̄

2
2i sin θ

= α h̄ sin θ.

The variances are

(1.188)

(∆S x)2 =

 h̄
2

−2α cos θ 1

1 −2α cos θ




2

=
h̄2

4

−2α cos θ 1

1 −2α cos θ


−2α cos θ 1

1 −2α cos θ


=

h̄2

4

4α2 cos2 θ + 1 −4α cos θ

−4α cos θ 4α2 cos2 θ + 1

 ,
and
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(1.189)

(
∆S y

)2
=

 h̄
2

−2α sin θ −i

i −2α sin θ




2

=
h̄2

4

−2α sin θ −i

i −2α sin θ


−2α sin θ −i

i −2α sin θ


=

h̄2

4

4α2 sin2 θ + 1 4αi sin θ

−4αi sin θ 4α2 sin2 θ + 1

 .
The uncertainty factors are

(1.190)

〈
(∆S x)2

〉
=

h̄2

4

[
1 αe−iθ

] 4α2 cos2 θ + 1 −4α cos θ

−4α cos θ 4α2 cos2 θ + 1


 1

αeiθ


=

h̄2

4

[
1 αe−iθ

]  4α2 cos2 θ + 1 − 4α2 cos θeiθ

−4α cos θ + 4α3 cos2 θeiθ + αeiθ


=

h̄2

4

(
4α2 cos2 θ + 1 − 4α2 cos θeiθ − 4α2 cos θe−iθ + 4α4 cos2 θ + α2

)
=

h̄2

4

(
4α2 cos2 θ + 1 − 8α2 cos2 θ + 4α4 cos2 θ + α2

)
=

h̄2

4

(
−4α2 cos2 θ + 1 + 4α4 cos2 θ + α2

)
=

h̄2

4

(
4α2 cos2 θ

(
α2 − 1

)
+ α2 + 1

)
,

and

(1.191)

〈(
∆S y

)2
〉

=
h̄2

4

[
1 αe−iθ

] 4α2 sin2 θ + 1 4αi sin θ

−4αi sin θ 4α2 sin2 θ + 1


 1

αeiθ


=

h̄2

4

[
1 αe−iθ

]  4α2 sin2 θ + 1 + 4α2i sin θeiθ

−4αi sin θ + 4α3 sin2 θeiθ + αeiθ


=

h̄2

4

(
4α2 sin2 θ + 1 + 4α2i sin θeiθ − 4α2i sin θe−iθ + 4α4 sin2 θ + α2

)
=

h̄2

4

(
−4α2 sin2 θ + 1 + 4α4 sin2 θ + α2

)
=

h̄2

4

(
4α2 sin2 θ

(
α2 − 1

)
+ α2 + 1

)
.

The uncertainty product can finally be calculated
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(1.192)

〈
(∆S x)2

〉 〈(
∆S y

)2
〉

=

(
h̄
2

)4 (
4α2 cos2 θ

(
α2 − 1

)
+ α2 + 1

) (
4α2 sin2 θ

(
α2 − 1

)
+ α2 + 1

)
=

(
h̄
2

)4 (
4α4 sin2 (2θ)

(
α2 − 1

)
+ 4α2

(
α4 − 1

)
+

(
α2 + 1

)2
)

The maximum occurs when f = sin2 2θ is extremized. Those points are

(1.193)
0 =

∂ f
∂θ

= 2 sin 2θ cos 2θ
= 4 sin 4θ.

Those points are at 4θ = πn, for integer n, or

θ =
π

4
n, n ∈ [0, 7], (1.194)

Minimums will occur when

(1.195)0 <
∂2 f
∂θ2

= 8 cos 4θ,

or

(1.196)n = 0, 2, 4, 6.

At these points sin2 2θ takes the values

(1.197)sin2
(
2
π

4
{0, 2, 4, 6}

)
= sin2 (π {0, 1, 2, 3})

∈ {0} ,

so the maximization of the uncertainty product can be reduced to that of

(1.198)
〈
(∆S x)2

〉 〈(
∆S y

)2
〉

=

(
h̄
2

)4 (
4α2

(
α4 − 1

)
+

(
α2 + 1

)2
)

We seek
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(1.199)

0 =
∂

∂α

(
4α2

(
α4 − 1

)
+

(
α2 + 1

)2
)

=
(
8α

(
α4 − 1

)
+ 16α5 + 4

(
α2 + 1

)
α
)

= 4α
(
2α4 − 2 + 4α4 + 4α2 + 4

)
= 8α

(
3α4 + 2α2 + 1

)
.

The only real root of this polynomial is α = 0, so the ket where both |+〉 and |−〉 are not zero
that maximizes the uncertainty product is

(1.200)|s〉 =

10


= |+〉 .

The search for this maximizing value excluded those kets proportional to

01
 = |−〉. Let’s see

the values of this uncertainty product at both |±〉, and compare to the uncertainty commutator.
First |s〉 = |+〉

(1.201)〈S x〉 =
[
1 0

] 0 1

1 0


10


= 0.

(1.202)
〈
S y

〉
=

[
1 0

] 0 −i

i 0


10


= 0.

so

(1.203)

〈
(∆S x)2

〉
=

(
h̄
2

)2 [
1 0

] 10


=

(
h̄
2

)2
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(1.204)

〈(
∆S y

)2
〉

=

(
h̄
2

)2 [
1 0

] 10


=

(
h̄
2

)2

.

For the commutator side of the uncertainty relation we have

(1.205)

1
4

∣∣∣∣〈[S x, S y
]〉∣∣∣∣2 =

1
4
|〈ih̄S z〉|

2

=

(
h̄
2

)4
∣∣∣∣∣∣∣[1 0

] 1 0

0 −1


10


∣∣∣∣∣∣∣
2

,

so for the |+〉 state we have an equality condition for the uncertainty relation

(1.206)

〈
(∆S x)2

〉 〈(
∆S y

)2
〉

=
1
4

∣∣∣∣〈[S x, S y
]〉∣∣∣∣2

=

(
h̄
2

)4

.

It’s reasonable to guess that the |−〉 state also matches the equality condition. Let’s check

(1.207)〈S x〉 =
[
0 1

] 0 1

1 0


01


= 0.

(1.208)
〈
S y

〉
=

[
0 1

] 0 −i

i 0


01


= 0.

so
〈
(∆S x)

2〉
=

〈
(∆S y)

2〉
=

(
h̄
2

)2
.

For the commutator side of the uncertainty relation will be identical, so the equality of
eq. (1.206) is satisfied for both |±〉. Note that it wasn’t explicitly verified that |−〉maximized the
uncertainty product, but I don’t feel like working through that second set of algebraic mess.

We can see by example that equality does not mean that the equality condition means that
the product is maximized. For example, it is straightforward to show that |S x;±〉 also satisfy
the equality condition of the uncertainty relation. However, in that case the product is not maxi-
mized, but is zero.
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Exercise 1.14 Degenerate ket space example. ([11] pr. 1.23)

Consider operators with representation

A =


a 0 0

0 −a 0

0 0 −a

 , B =


b 0 0

0 0 −ib

0 ib 0

 . (1.209)

Show that these both have degeneracies, commute, and compute a simultaneous ket space for
both operators.
Answer for Exercise 1.14

The eigenvalues and eigenvectors for A can be read off by inspection, with values of a,−a,−a,
and kets

|a1〉 =


1

0

0

 , |a2〉 =


0

1

0

 , |a3〉 =


0

0

1

 (1.210)

Notice that the lower-right 2 × 2 submatrix of B is proportional to σy, so it’s eigenvalues can
be formed by inspection

|b1〉 =


1

0

0

 , |b2〉 =
1
√

2


0

1

i

 , |b3〉 =
1
√

2


0

1

−i

 . (1.211)

Computing B |bi〉 shows that the eigenvalues are b, b,−b respectively.
Because of the two-fold degeneracy in the −a eigenvalues of A, any linear combination of

|a2〉 , |a3〉 will also be an eigenket. In particular,

|a2〉 + i |a3〉 = |b2〉

|a2〉 − i |a3〉 = |b3〉 ,
(1.212)

so the basis {|bi〉} is a simultaneous eigenspace for both A and B. Because there is a simulta-
neous eigenspace, the matrices must commute. This can be confirmed with direct computation
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(1.213)

AB = ab


1 0 0

0 −1 0

0 0 −1



1 0 0

0 0 −i

0 i 0


= ab


1 0 0

0 0 i

0 −i 0

 ,
and

(1.214)

BA = ab


1 0 0

0 0 −i

0 i 0



1 0 0

0 −1 0

0 0 −1


= ab


1 0 0

0 0 i

0 −i 0

 .

Exercise 1.15 Unitary transformation. ([11] pr. 1.26)

Construct the transformation matrix that maps between the S z diagonal basis, to the S x diag-
onal basis.
Answer for Exercise 1.15

Based on the definition

(1.215)U
∣∣∣a(r)

〉
=

∣∣∣b(r)
〉
,

the matrix elements can be computed

(1.216)
〈
a(s)

∣∣∣ U ∣∣∣a(r)
〉

=
〈
a(s)

∣∣∣b(r)
〉
,

that is
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(1.217)

U =


〈
a(1)

∣∣∣ U ∣∣∣a(1)
〉 〈

a(1)
∣∣∣ U ∣∣∣a(2)

〉〈
a(2)

∣∣∣ U ∣∣∣a(1)
〉 〈

a(2)
∣∣∣ U ∣∣∣a(2)

〉
=


〈
a(1)

∣∣∣b(1)
〉 〈

a(1)
∣∣∣b(2)

〉〈
a(2)

∣∣∣b(1)
〉 〈

a(2)
∣∣∣b(2)

〉

=
1
√

2


[
1 0

] 11
 [

1 0
]  1

−1

[
0 1

] 11
 [

0 1
]  1

−1




=

1
√

2

1 1

1 −1

 .
As a similarity transformation, we have

(1.218)

〈
b(r)

∣∣∣ S z
∣∣∣b(s)

〉
=

〈
b(r)

∣∣∣a(t)
〉 〈

a(t)
∣∣∣ S z

∣∣∣a(u)
〉 〈

a(u)
∣∣∣b(s)

〉
=

〈
a(r)

∣∣∣U〉†
a(t)

〈
a(t)

∣∣∣ S z
∣∣∣a(u)

〉 〈
a(u)

∣∣∣ U ∣∣∣a(s)
〉
,

or

(1.219)S ′z = U†S zU.

Let’s check that the computed similarity transformation does it’s job.

(1.220)

σ′z = U†σzU

=
1
2

1 1

1 −1


1 0

0 −1


1 1

1 −1


=

1
2

1 −1

1 1


1 1

1 −1


=

1
2

0 2

2 0


= σx.

The transformation matrix can also be computed more directly
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(1.221)

U = U
∣∣∣a(r)

〉 〈
a(r)

∣∣∣
=

∣∣∣b(r)
〉 〈

a(r)
∣∣∣

=
1
√

2

11
 [1 0

]
+

1
√

2

 1

−1

 [0 1
]

=
1
√

2

1 0

1 0

 +
1
√

2

0 1

0 −1


=

1
√

2

1 1

1 −1

 .
Exercise 1.16 One dimensional translation operator. ([11] pr. 1.28)

a. Evaluate the classical Poisson bracket

(1.222)
[
x, F(p)

]
classical

b. Evaluate the commutator

(1.223)
[
x, eipa/ h̄

]
c. Using the result in b, prove that

(1.224)eipa/ h̄
∣∣∣x′〉 ,

is an eigenstate of the coordinate operator x.

Answer for Exercise 1.16

Part a.

(1.225)

[
x, F(p)

]
classical =

∂x
∂x
∂F(p)
∂p

−
∂x
∂p

∂F(p)
∂x

=
∂F(p)
∂p

.

Part b. Having worked backwards through these problems, the answer for this one dimen-
sional problem can be obtained from eq. (1.246) and is

(1.226)
[
x, eipa/ h̄

]
= aeipa/ h̄.
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Part c.

(1.227)xeipa/ h̄
∣∣∣x′〉 =

([
x, eipa/ h̄

]
eipa/ h̄x+

) ∣∣∣x′〉 =
(
aeipa/ h̄ + eipa/ h̄x′

) ∣∣∣x′〉 =
(
a + x′

) ∣∣∣x′〉 .
This demonstrates that eipa/ h̄ |x′〉 is an eigenstate of x with eigenvalue a + x′.

Exercise 1.17 Polynomial commutators. ([11] pr. 1.29)

a. For power series F,G, verify

[xk,G(p)] = i h̄
∂G
∂pk

, [pk, F(x)] = −i h̄
∂F
∂xk

. (1.228)

b. Evaluate
[
x2, p2

]
, and compare to the classical Poisson bracket

[
x2, p2

]
classical

.

Answer for Exercise 1.17

Part a. Let

G(p) =
∑
klm

aklm pk
1 pl

2 pm
3

F(x) =
∑
klm

bklmxk
1xl

2xm
3 .

(1.229)

It is simpler to work with a specific xk, say xk = y. The validity of the general result will still
be clear doing so. Expanding the commutator gives

(1.230)

[
y,G(p)

]
=

∑
klm

aklm
[
y, pk

1 pl
2 pm

3

]
=

∑
klm

aklm
(
ypk

1 pl
2 pm

3 − pk
1 pl

2 pm
3 y

)
=

∑
klm

aklm
(
pk

1ypl
2 pm

3 − pk
1ypl

2 pm
3

)
=

∑
klm

aklm pk
1

[
y, pl

2

]
pm

3 .

From eq. (1.244), we have
[
y, pl

2

]
= li h̄pl−1

2 , so

(1.231)

[
y,G(p)

]
=

∑
klm

aklm pk
1

[
y, pl

2

] (
li h̄pl−1

2

)
pm

3

= i h̄
∂G(p)
∂y

.
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It is straightforward to show that
[
p, xl

]
= −li h̄xl−1, allowing for a similar computation of the

momentum commutator

(1.232)

[
py, F(x)

]
=

∑
klm

bklm
[
py, xk

1xl
2xm

3

]
=

∑
klm

bklm
(
pyxk

1xl
2xm

3 − xk
1xl

2xm
3 py

)
=

∑
klm

bklm
(
xk

1 pyxl
2xm

3 − xk
1 pyxl

2xm
3

)
=

∑
klm

bklmxk
1

[
py, xl

2

]
xm

3

=
∑
klm

bklmxk
1

(
−li h̄xl−1

2

)
xm

3

= −i h̄
∂F(x)
∂py

.

Part b. It isn’t clear to me how the results above can be used directly to compute
[
x2, p2

]
.

However, when the first term of such a commutator is a mononomial, it can be expanded in
terms of an x commutator

(1.233)

[
x2,G(p)

]
= x2G −Gx2

= x (xG) −Gx2

= x ([x,G] + Gx) −Gx2

= x [x,G] + (xG) x −Gx2

= x [x,G] + ([x,G] +��Gx) x −��Gx2

= x [x,G] + [x,G] x.

Similarly,

(1.234)
[
x3,G(p)

]
= x2 [x,G] + x [x,G] x + [x,G] x2.

An induction hypothesis can be formed

(1.235)
[
xk,G(p)

]
=

k−1∑
j=0

xk−1− j [x,G] x j,

and demonstrated
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(1.236)

[
xk+1,G(p)

]
= xk+1G −Gxk+1

= x
(
xkG

)
−Gxk+1

= x
([

xk,G
]

+ Gxk
)
−Gxk+1

= x
[
xk,G

]
+ (xG) xk −Gxk+1

= x
[
xk,G

]
+ ([x,G] + Gx) xk −Gxk+1

= x
[
xk,G

]
+ [x,G] xk

= x
k−1∑
j=0

xk−1− j [x,G] x j + [x,G] xk

=

k−1∑
j=0

x(k+1)−1− j [x,G] x j + [x,G] xk

=

k∑
j=0

x(k+1)−1− j [x,G] x j. �

That was a bit overkill for this problem, but may be useful later. Application of this to the
problem gives

(1.237)

[
x2, p2

]
= x

[
x, p2

]
+

[
x, p2

]
x

= xi h̄
∂p2

∂x
+ i h̄

∂p2

∂x
x

= x2i h̄p + 2i h̄px
= i h̄ (2xp + 2px) .

The classical commutator is

(1.238)

[
x2, p2

]
classical

=
∂x2

∂x
∂p2

∂p
−
∂x2

∂p
∂p2

∂x
= 2x2p
= 2xp + 2px.

This demonstrates the expected relation between the classical and quantum commutators

[
x2, p2

]
= i h̄

[
x2, p2

]
classical

. (1.239)
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Exercise 1.18 Translation operator and position expectation. ([11] pr. 1.30)

The translation operator for a finite spatial displacement is given by

(1.240)T(l) = exp (−ip · l/ h̄) ,

where p is the momentum operator.

a. Evaluate

(1.241)[xi,T(l)] .

b. Demonstrate how the expectation value 〈x〉 changes under translation.

Answer for Exercise 1.18

Part a. For clarity, let’s set xi = y. The general result will be clear despite doing so.

(1.242)
[
y,T(l)

]
=

∑
k=0

1
k!

(
−i
h̄

) [
y, (p · l)k

]
.

The commutator expands as

(1.243)

[
y, (p · l)k

]
+ (p · l)k y = y (p · l)k

= y
(
pxlx + pyly + pzlz

)
(p · l)k−1

=
(
pxlxy + ypyly + pzlzy

)
(p · l)k−1

=
(
pxlxy + ly

(
pyy + i h̄

)
+ pzlzy

)
(p · l)k−1

= (p · l) y (p · l)k−1 + i h̄ly (p · l)k−1

= · · ·

= (p · l)k−1 y (p · l)k−(k−1) + (k − 1)i h̄ly (p · l)k−1

= (p · l)k y + ki h̄ly (p · l)k−1 .

In the above expansion, the commutation of y with px, pz has been used. This gives, for k , 0,

(1.244)
[
y, (p · l)k

]
= ki h̄ly (p · l)k−1 .

Note that this also holds for the k = 0 case, since y commutes with the identity operator.
Plugging back into the T commutator, we have

(1.245)

[
y,T(l)

]
=

∑
k=1

1
k!

(
−i
h̄

)
ki h̄ly (p · l)k−1

= ly
∑
k=1

1
(k − 1)!

(
−i
h̄

)
(p · l)k−1

= lyT(l).
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The same pattern clearly applies with the other xi values, providing the desired relation.

[x,T(l)] =

3∑
m=1

emlmT(l) = lT(l). (1.246)

Part b. Suppose that the translated state is defined as |αl〉 = T(l) |α〉. The expectation value
with respect to this state is

(1.247)

〈
x′

〉
= 〈αl| x |αl〉

= 〈α|T†(l)xT(l) |α〉
= 〈α|T†(l) (xT(l)) |α〉
= 〈α|T†(l) (T(l)x + lT(l)) |α〉
= 〈α|T†Tx + lT†T |α〉
= 〈α| x |α〉 + l 〈α|α〉
= 〈x〉 + l.

Exercise 1.19 Density matrix. (phy1520 2015 ps1.1)

Consider a spin-1/2 particle. The Hilbert space is two-dimensional, let us label the two states
as |↑〉 and |↓〉. Write down the 2 × 2 density matrix which corresponds to the following pure
states.

(i) |↑〉

(ii) 1√
2
(|↑〉 + |↓〉)

(iii) 1√
2
(|↑〉 + i |↓〉)

(iv) At time t = 0, let us start with the state 1√
2
(|↑〉 + i |↓〉), and consider time-evolution under

the Hamiltonian Ĥ = −BS z, where S z is the z-component of the spin operator. This leads
to eigenstates |↑〉with energy −B h̄/2, and |↓〉with energy +B h̄/2. The state 1√

2
(|↑〉 + i |↓〉)

is not an eigenstate of this Hamiltonian and it will evolve in time. Find the state and the
corresponding 2 × 2 density matrix of this system at a later time t.

Answer for Exercise 1.19
PROBLEM SET RELATED MATERIAL REDACTED IN THIS DOCUMENT.PLEASE

FEEL FREE TO EMAIL ME FOR THE FULL VERSION IF YOU AREN’T TAKING PHY1520.
. .

. .
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.
. . .

. .
. . .

. .
. .

. END-REDACTION

Exercise 1.20 Reduced density matrix. (phy1520 2015 ps1.2)

Consider two spin-1/2 particles, the Hilbert space is now 4-dimensional, with states |↑↑〉, |↑↓〉,
|↓↑〉, |↓↓〉. Let us consider the following pure states:

(i) 1
2 (|↑↑〉 − |↑↓〉 − |↓↓〉 + |↓↑〉)

(ii) 1√
2
(|↑↑〉 + |↓↓〉)

(iii) 1√
5
(|↑↑〉 + 2 |↓↓〉)

In each case, obtain the reduced 2 × 2 density matrix which describes the first spin, when
we trace over the second spin. The von Neumann entanglement entropy is defined via S vN =

− tr(ρR ln ρR) where ρR is the reduced density matrix you have obtained above and the tr now
refers to tracing over the first spin. Using the reduced density matrices you have obtained above,
compute the corresponding S vN, and simply explain your result in words. Consider the Renyi
entropy S n = 1

1−n ln
(
tr(ρn

R)
)
. Prove that S n→1 = S vN, and compute S n=2 for the above ρR.

Answer for Exercise 1.20
PROBLEM SET RELATED MATERIAL REDACTED IN THIS DOCUMENT.PLEASE

FEEL FREE TO EMAIL ME FOR THE FULL VERSION IF YOU AREN’T TAKING PHY1520.
. .

. .
.

. . .
. .

. . .
. .

. .
. END-REDACTION

Exercise 1.21 Ensembles for spin one half. ([11] pr. 3.10)
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a. Sakurai leaves it to the reader to verify that knowledge of the three ensemble averages
[S_x], [S_y],[S_z] is sufficient to reconstruct the density operator for a spin one half
system. Show this.

b. Show how the expectation values 〈S x〉 ,
〈
S y

〉
, 〈S x〉 fully determine the spin orientation

for a pure ensemble.

Answer for Exercise 1.21

Part a. I’ll do this in two parts, the first using a spin-up/down ensemble to see what form this
has, then the general case. The general case is a bit messy algebraically. After first attempting it
the hard way, I did the grunt work portion of that calculation in Mathematica, but then realized
it’s not so bad to do it manually.

Consider first an ensemble with density operator

(1.248)ρ = w+ |+〉 〈+| + w− |−〉 〈−| ,

where these are the S · (±ẑ) eigenstates. The traces are

(1.249)

tr(ρσx) = 〈+| ρσx |+〉 + 〈−| ρσx |−〉

= 〈+| ρ

0 1

1 0

 |+〉 + 〈−| ρ
0 1

1 0

 |−〉
= 〈+| (w+ |+〉 〈+| + w− |−〉 〈−|) |−〉 + 〈−| (w+ |+〉 〈+| + w− |−〉 〈−|) |+〉
= 〈+|w− |−〉 + 〈−|w+ |+〉

= 0,

(1.250)

tr(ρσy) = 〈+| ρσy |+〉 + 〈−| ρσy |−〉

= 〈+| ρ

0 −i

i 0

 |+〉 + 〈−| ρ
0 −i

i 0

 |−〉
= i 〈+| (w+ |+〉 〈+| + w− |−〉 〈−|) |−〉 − i 〈−| (w+ |+〉 〈+| + w− |−〉 〈−|) |+〉
= i 〈+|w− |−〉 − i 〈−|w+ |+〉

= 0,

and

(1.251)

tr(ρσz) = 〈+| ρσz |+〉 + 〈−| ρσz |−〉

= 〈+| ρ |+〉 − 〈−| ρ |−〉

= 〈+| (w+ |+〉 〈+| + w− |−〉 〈−|) |+〉 − 〈−| (w+ |+〉 〈+| + w− |−〉 〈−|) |−〉
= 〈+|w+ |+〉 − 〈−|w− |−〉
= w+ − w−.
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Since w+ + w− = 1, this gives

w+ =
1 + tr(ρσz)

2

w− =
1 − tr(ρσz)

2

(1.252)

Attempting to do a similar set of trace expansions this way for a more general spin basis turns
out to be a really bad idea and horribly messy. So much so that I resorted to spinOneHalfSym-
bolicManipulation.nb to do this symbolic work. However, it’s not so bad if the trace is done
completely in matrix form.

Using the basis

(1.253)

|S · n̂; +〉 =

 cos(θ/2)

sin(θ/2)eiφ


|S · n̂;−〉 =

sin(θ/2)e−iφ

− cos(θ/2)

 ,
the projector matrices are

(1.254)

|S · n̂; +〉 〈S · n̂; +| =

 cos(θ/2)

sin(θ/2)eiφ

 [cos(θ/2) sin(θ/2)e−iφ
]

=

 cos2(θ/2) cos(θ/2) sin(θ/2)e−iφ

sin(θ/2) cos(θ/2)eiφ sin2(θ/2)

 ,

(1.255)

|S · n̂;−〉 〈S · n̂;−| =

sin(θ/2)e−iφ

− cos(θ/2)

 [sin(θ/2)eiφ − cos(θ/2)
]

=

 sin2(θ/2) − cos(θ/2) sin(θ/2)e−iφ

− cos(θ/2) sin(θ/2)eiφ cos2(θ/2)


With C = cos(θ/2), S = sin(θ/2), a general density operator in this basis has the form

(1.256)

ρ = w+

 C2 CS e−iφ

S Ceiφ S 2

 + w−

 S 2 −CS e−iφ

−CS eiφ C2


=

 w+C2 + w−S 2 (w+ − w−)CS e−iφ

(w+ − w−)S Ceiφ w+S 2 + w−C2

 .
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The products with the Pauli matrices are

(1.257)

ρσx =

 w+C2 + w−S 2 (w+ − w−)CS e−iφ

(w+ − w−)S Ceiφ w+S 2 + w−C2


0 1

1 0


=

(w+ − w−)CS e−iφ w+C2 + w−S 2

w+S 2 + w−C2 (w+ − w−)S Ceiφ



(1.258)

ρσy =

 w+C2 + w−S 2 (w+ − w−)CS e−iφ

(w+ − w−)S Ceiφ w+S 2 + w−C2


0 −i

i 0


= i

(w+ − w−)CS e−iφ −w+C2 − w−S 2

w+S 2 + w−C2 −(w+ − w−)S Ceiφ



(1.259)

ρσz =

 w+C2 + w−S 2 (w+ − w−)CS e−iφ

(w+ − w−)S Ceiφ w+S 2 + w−C2


1 0

0 −1


=

 w+C2 + w−S 2 −(w+ − w−)CS e−iφ

(w+ − w−)S Ceiφ −(w+S 2 + w−C2)


The respective traces can be read right off the matrices

(1.260)

tr(ρσx) = (w+ − w−) sin θ cos φ

tr(ρσy) = (w+ − w−) sin θ sin φ

tr(ρσz) = (w+ − w−) cos θ

.

This gives

(1.261)(w+ − w−)n̂ =
(
tr(ρσx), tr(ρσy), tr(ρσz)

)
,

or

w± =
1 ±

√
tr2(ρσx) + tr2(ρσy) + tr2(ρσz)

2
. (1.262)

So, as claimed, it’s possible to completely describe the ensemble weight factors using the
ensemble averages of [S x], [S y], [S z]. I used the Pauli matrices instead, but the difference is just
an h̄/2 scaling adjustment.
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Alternate approach Another easier and trig free way to look at this problem is assume the
density operator’s representation is given by a 2 × 2 matrix with undetermined values

(1.263)ρ =

a b

c d


For such a representation we have

ρσx =

a b

c d


0 1

1 0

 =

b a

d c


ρσy =

a b

c d


0 −i

i 0

 = i

b −a

d −c


ρσz =

a b

c d


1 0

0 −1

 =

a −b

c −d


(1.264)

The ensemble averages can be read by inspection

[σx] = b + c

[σy] = i(b − c)

[σz] = a − d

(1.265)

Noting that tr
(
EAE−1

)
= tr

(
AE−1E

)
= tr (A), and that there must be a diagonal basis for

which 〈+|−〉 = 0 and

(1.266)ρ = w+ |+〉 〈+| + w− |−〉 〈−| ,

we must have

(1.267)
tr ρ = a + d

= w+ + w−
= 1.

This provides one set of equations for each of b, c and a, d

[σx] = b + c

[σy] = i(b − c),
(1.268)

and

[σz] = a − d

1 = a + d.
(1.269)
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These have solutions

b =
[σx] − i[σy]

2

c =
[σx] + i[σy]

2

a =
1 + [σz]

2

d =
1 − [σz]

2
,

(1.270)

or

ρ =
1
2

 1 + [σz] [σx] − i[σy]

[σx] + i[σy] 1 − [σz]

 . (1.271)

The characteristic equation for this operator is

0 =

((
1
2
− λ

)
+

[σz]
2

) ((
1
2
− λ

)
−

[σz]
2

)
−

1
4
([σx] + i[σy]) ([σx] − i[σy]) , (1.272)

or

λ =
1 ±

√
[σx]2 + [σy]2 + [σz]2

2
, (1.273)

as found above.

Part b. Suppose that the system is in the state |S · n̂; +〉 as defined in eq. (1.253), then the
expectation values of σx, σy, σz with respect to this state are

(1.274)

〈σx〉 =
[
cos(θ/2) sin(θ/2)e−iφ

] 0 1

1 0


 cos(θ/2)

sin(θ/2)eiφ


=

[
cos(θ/2) sin(θ/2)e−iφ

] sin(θ/2)eiφ

cos(θ/2)


= sin θ cos φ,
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(1.275)

〈
σy

〉
=

[
cos(θ/2) sin(θ/2)e−iφ

] 0 −i

i 0


 cos(θ/2)

sin(θ/2)eiφ


= i

[
cos(θ/2) sin(θ/2)e−iφ

] − sin(θ/2)eiφ

cos(θ/2)


= sin θ sin φ,

(1.276)

〈σz〉 =
[
cos(θ/2) sin(θ/2)e−iφ

] 1 0

0 −1


 cos(θ/2)

sin(θ/2)eiφ


=

[
cos(θ/2) sin(θ/2)e−iφ

]  cos(θ/2)

− sin(θ/2)eiφ


= cos θ.

So we have

n̂ =
(
〈σx〉 ,

〈
σy

〉
, 〈σz〉

)
. (1.277)

The spin direction is completely determined by this vector of expectation values (or equiva-
lently, the expectation values of S x, S y, S z).
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Q UA N T U M DY NA M I C S

2.1 classical harmonic oscillator

Recall the classical Harmonic oscillator equations in their Hamiltonian form

(2.1a)
dx
dt

=
p
m

(2.1b)
dp
dt

= −kx.

With

x(t = 0) = x0

p(t = 0) = p0

k = mω2,

(2.2)

the solutions are ellipses in phase space

(2.3a)x(t) = x0 cos(ωt) +
p0

mω
sin(ωt)

(2.3b)p(t) = p0 cos(ωt) − mωx0 sin(ωt).

After a suitable scaling of the variables, these elliptical orbits can be transformed into circular
trajectories.

2.2 quantum harmonic oscillator

(2.4)Ĥ =
p̂2

2m
+

1
2

kx̂2

Set

X̂ =

√
mω

h̄
x̂ (2.5a)

63
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P̂ =

√
1

mω h̄
p̂ (2.5b)

The commutators after this change of variables goes from

[x̂, p̂] = i h̄, (2.6)

to [
X̂, P̂

]
= i. (2.7)

The Hamiltonian takes the form

(2.8)
Ĥ =

h̄ω
2

(
X̂2 + P̂2

)
= h̄ω

((
X̂ − iP̂
√

2

) (
X̂ + iP̂
√

2

)
+

1
2

)
.

Define ladder operators (raising and lowering operators respectively)

(2.9a)â† =
X̂ − iP̂
√

2

(2.9b)â =
X̂ + iP̂
√

2

so

(2.10)Ĥ = h̄ω
(
â†â +

1
2

)
.

We can show

(2.11)
[
â, â†

]
= 1,

and

N |n〉 ≡ â†a = n |n〉 , (2.12)

where n ≥ 0 is an integer. Recall that

(2.13)â |0〉 = 0,
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and

(2.14)〈X| X + iP |0〉 = 0.

With

(2.15)〈x|0〉 = Ψ0(x),

we can show

(2.16)
1
√

2

(
X +

∂

∂X

)
Ψ0(X) = 0.

Also recall that

(2.17a)â |n〉 =
√

n |n − 1〉

(2.17b)â† |n〉 =
√

n + 1 |n + 1〉

2.3 coherent states

Coherent states for the quantum harmonic oscillator are the eigenkets for the creation and anni-
hilation operators

(2.18a)â |z〉 = z |z〉

(2.18b)â† |z̃〉 = z̃ |z̃〉 ,

where

(2.19)|z〉 =

∞∑
n=0

cn |n〉 ,

and z is allowed to be a complex number.
Looking for such a state, we compute

(2.20)
â |z〉 =

∞∑
n=1

cnâ |n〉

=

∞∑
n=1

cn
√

n |n − 1〉

compare this to
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(2.21)

z |z〉 = z
∞∑

n=0

cn |n〉

=

∞∑
n=1

cn
√

n |n − 1〉

=

∞∑
n=0

cn+1
√

n + 1 |n〉 ,

so

(2.22)cn+1
√

n + 1 = zcn

This gives

(2.23)cn+1 =
zcn
√

n + 1

c1 = c0z

c2 =
zc1
√

2
=

z2c0
√

2
...

(2.24)

or

(2.25)cn =
zn

√
n!
.

So the desired state is

(2.26)|z〉 = c0

∞∑
n=0

zn

√
n!
|n〉 .

Also recall that

(2.27)|n〉 =

(
â†

)n

√
n!
|0〉 ,

which gives

(2.28)|z〉 = c0

∞∑
n=0

(
zâ†

)n

n!
|0〉

= c0ezâ† |0〉 .
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The normalization is

(2.29)c0 = e−|z|
2/2.

While we have 〈n1|n2〉 = δn1,n2 , these |z〉 states are not orthonormal. Figuring out that this
overlap

(2.30)〈z1|z2〉 , 0,

will be left for homework.

2.4 coherent state time evolution

We don’t know much about these coherent states. For example does a coherent state at time zero
evolve to a coherent state?

(2.31)|z〉
?
→ |z(t)〉

It turns out that these questions are best tackled in the Heisenberg picture, considering

(2.32)e−iĤt/ h̄ |z〉 .

For example, what is the average of the position operator

(2.33)〈z| eiĤt/ h̄ x̂e−iĤt/ h̄ |z〉 =

∞∑
n,n′=0

〈n| c∗neiEnt/ h̄
(
a + a†

) √
h̄

mω
cn′eiEn′ t/ h̄ |n〉 .

This is very messy to attempt. Instead if we know how the operator evolves we can calculate

(2.34)〈z| x̂H(t) |z〉 ,

that is

(2.35)〈x̂〉 (t) = 〈z| x̂H(t) |z〉 ,

and for momentum

(2.36)〈p̂〉 (t) = 〈z| p̂H(t) |z〉 .

The question to ask is what are the expansions of

(2.37a)âH(t) = eiĤt/ h̄âe−iĤt/ h̄.

(2.37b)â†H(t) = eiĤt/ h̄â†e−iĤt/ h̄.
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The question to ask is how do these operators ask on the basis states

(2.38)

âH(t) |n〉 = eiĤt/ h̄âe−iĤt/ h̄ |n〉
= eiĤt/ h̄âe−itω(n+1/2) |n〉
= e−itω(n+1/2)eiĤt/ h̄ √n |n − 1〉
=
√

ne−itω(n+1/2)eitω(n−1/2) |n − 1〉
=
√

ne−iωt |n − 1〉
= e−iωt |n〉 .

So we have found

(2.39)
âH(t) = ae−iωt

â†H(t) = a†eiωt

2.5 expectation with respect to coherent states

A coherent state for the SHO H =
(
N + 1

2

)
h̄ω was given by

a |z〉 = z |z〉 , (2.40)

where we showed that

|z〉 = c0eza† |0〉 . (2.41)

In the Heisenberg picture we found

aH(t) = eiHt/ h̄ae−iHt/ h̄ = ae−iωt

a†H(t) = eiHt/ h̄a†e−iHt/ h̄ = a†eiωt.
(2.42)

Recall that the position and momentum representation of the ladder operators was

a =
1
√

2

x̂
√

mω
h̄

+ ip̂

√
1

m h̄ω


a† =

1
√

2

x̂
√

mω
h̄
− ip̂

√
1

m h̄ω

 ,
(2.43)
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or equivalently

x̂ =
(
a + a†

) √
h̄

2mω

p̂ = i
(
a† − a

) √
m h̄ω

2
.

(2.44)

Given this we can compute expectation value of position operator

(2.45)

〈z| x̂ |z〉 =

√
h̄

2mω
〈z|

(
a + a†

)
|z〉

=
(
z + z∗

) √
h̄

2mω

= 2 Re z

√
h̄

2mω
.

Similarly

(2.46)
〈z| p̂ |z〉 = i

√
m h̄ω

2
〈z|

(
a† − a

)
|z〉

=

√
m h̄ω

2
2 Im z.

How about the expectation of the Heisenberg position operator? That is

(2.47)

〈z| x̂H(t) |z〉 =

√
h̄

2mω
〈z|

(
a + a†

)
|z〉

=

√
h̄

2mω

(
ze−iωt + z∗eiωt

)
=

√
h̄

2mω
((

z + z∗
)

cos(ωt) − i
(
z − z∗

)
sin(ωt)

)
=

√
h̄

2mω

〈x(0)〉

√
2mω

h̄
cos(ωt) − i 〈p(0)〉 i

√
2mω

h̄
sin(ωt)


= 〈x(0)〉 cos(ωt) +

〈p(0)〉
mω

sin(ωt).

We find that the average of the Heisenberg position operator evolves in time in exactly the
same fashion as position in the classical Harmonic oscillator. This phase space like trajectory is
sketched in fig. 2.1.

In the text it is shown that we have the same structure for the Heisenberg operator itself,
before taking expectations
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Figure 2.1: Phase space like trajectory.

(2.48)x̂H(t) = x(0) cos(ωt) +
p(0)
mω

sin(ωt).

Where the coherent states become useful is that we will see that the second moments of
position and momentum are not time dependent with respect to the coherent states. Such states
remain localized.

2.6 coherent state uncertainty

First note that using the commutator relationship we have

(2.49)
〈z| aa† |z〉 = 〈z|

([
a, a†

]
+ a†a

)
|z〉

= 〈z|
(
1 + a†a

)
|z〉 .

For the second moment we have

(2.50)

〈z| x̂2 |z〉 =
h̄

2mω
〈z|

(
a + a†

) (
a + a†

)
|z〉

=
h̄

2mω
〈z|

(
a2 + (a†)

2
+ aa† + a†a

)
|z〉

=
h̄

2mω
〈z|

(
a2 + (a†)

2
+ 2a†a + 1

)
|z〉

=
h̄

2mω

(
z2 + (z∗)2

+ 2z∗z + 1
)
|z〉

=
h̄

2mω
(
z + z∗

)2
+

h̄
2mω

.
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We find

(2.51)σ2
x =

h̄
2mω

,

and

(2.52)σ2
p =

m h̄ω
2

so

(2.53)σ2
xσ

2
p =

h̄2

4
,

or

(2.54)σxσp =
h̄
2
.

This is the minimum uncertainty.

2.7 quantum field theory

In Quantum Field theory the ideas of isolated oscillators is used to model particle creation. The
lowest energy state (a no particle, vacuum state) is given the lowest energy level, with each
additional quantum level modeling a new particle creation state as sketched in fig. 2.2.

Figure 2.2: QFT energy levels.

We have to imagine many oscillators, each with a distinct vacuum energy ∼ k2 . The Har-
monic oscillator can be used to model the creation of particles with h̄ω energy differences from
that “vacuum energy”.
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2.8 charged particle in a magnetic field

In the classical case ( with SI units or c = 1 ) we have
(2.55)F = qE + qv × B.

Alternately, we can look at the Hamiltonian view of the system, written in terms of potentials
(2.56)B = ∇ × A,

(2.57)E = −∇φ −
∂A
∂t
.

Note that the curl form for the magnetic field implies one of the required Maxwell’s equations
∇ ·B = 0.

Ignoring time dependence of the potentials, the Hamiltonian can be expressed as

(2.58)H =
1

2m
(p − qA)2 + qφ.

In this Hamiltonian the vector p is called the canonical momentum, the momentum conjugate
to position in phase space.

It is left as an exercise to show that the Lorentz force equation results from application of the
Hamiltonian equations of motion, and that the velocity is given by v = (p − qA)/m.

For quantum mechanics, we use the same Hamiltonian, but promote our position, momentum
and potentials to operators.

(2.59)Ĥ =
1

2m

(
p̂ − qÂ(r, t)

)2
+ qφ̂(r, t).

2.9 gauge invariance

Can we say anything about this before looking at the question of a particle in a magnetic field?
Recall that the we can make a gauge transformation of the form

(2.60a)A→ A + ∇χ

(2.60b)φ→ φ −
∂χ

∂t
Does this notion of gauge invariance also carry over to the Quantum Hamiltonian. After

gauge transformation we have

(2.61)Ĥ′ =
1

2m
(p̂ − qA − q∇χ)2 + q

(
φ −

∂χ

∂t

)
Now we are in a mess, since this function χ can make the Hamiltonian horribly complicated.

We don’t see how gauge invariance can easily be applied to the quantum problem. Next time
we will introduce a transformation that resolves some of this mess.
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Particle with E,B fields We express our fields with vector and scalar potentials

(2.62)E,B→ A, φ

and apply a gauge transformed Hamiltonian

(2.63)H =
1

2m
(p − qA)2 + qφ.

Recall that in classical mechanics we have

(2.64)p − qA = mv

where p is not gauge invariant, but the classical momentum mv is.
If given a point in phase space we must also specify the gauge that we are working with.
For the quantum case, temporarily considering a Hamiltonian without any scalar potential,

but introducing a gauge transformation

(2.65)A→ A + ∇χ,

which takes the Hamiltonian from

(2.66)H =
1

2m
(p − qA)2 ,

to

(2.67)H =
1

2m
(p − qA − q∇χ)2 .

We care that the position and momentum operators obey

(2.68)
[
r̂i, p̂ j

]
= i h̄δi j.

We can apply a transformation that keeps r the same, but changes the momentum

(2.69)
r̂′ = r̂
p̂′ = p̂ − q∇χ(r)

This maps the Hamiltonian to

(2.70)H =
1

2m
(
p′ − qA − q∇χ

)2 ,

We want to check if the commutator relationships have the desired structure, that is

(2.71)

[
r′i , r

′
j

]
= 0[

p′i , p′j
]

= 0
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This is confirmed in exercise 2.3.
Another thing of interest is how are the wave functions altered by this change of variables?

The wave functions must change in response to this transformation if the energies of the Hamil-
tonian are to remain the same.

Considering a plane wave specified by

(2.72)eik·r,

where we alter the momentum by

(2.73)k→ k − e∇χ.

This takes the plane wave to

(2.74)ei(k−q∇χ)·r.

We want to try to find a wave function for the new Hamiltonian

(2.75)H′ =
1

2m
(
p′ − qA − q∇χ

)2 ,

of the form

(2.76)ψ′(r) ?
= eiθ(r)ψ(r),

where the new wave function differs from a wave function for the original Hamiltonian by
only a position dependent phase factor.

Let’s look at the action of the Hamiltonian on the new wave function

(2.77)H′ψ′(r).

Looking at just the first action

(2.78)(−i h̄∇ − qA − q∇χ) eiθ(r)ψ(r) = eiθ (−i h̄∇ − qA − q∇χ)ψ(r) + (−i h̄i∇θ) eiθψ(r)
= eiθ (−i h̄∇ − qA − q∇χ + h̄∇θ)ψ(r).

If we choose

(2.79)θ =
qχ
h̄
,

then we are left with

(2.80)(−i h̄∇ − qA − q∇χ) eiθ(r)ψ(r) = eiθ (−i h̄∇ − qA)ψ(r).

Let M = −i h̄∇ − qA, and act again with (−i h̄∇ − qA − q∇χ)



2.9 gauge invariance 75

(2.81)
(−i h̄∇ − qA − q∇χ) eiθMψ = eiθ (−i h̄i∇θ − qA − q∇χ) eiθMψ + eiθ (−i h̄∇) Mψ

= eiθ (−i h̄∇ − qA + ∇ ( h̄θ − qχ)) Mψ

= eiθM2ψ.

Restoring factors of m, we’ve shown that for a choice of h̄θ − qχ, we have

(2.82)
1

2m
(−i h̄∇ − qA − q∇χ)2 eiθψ = eiθ 1

2m
(−i h̄∇ − qA)2 ψ.

When ψ is an energy eigenfunction, this means

H′eiθψ = eiθHψ = eiθEψ = E(eiθψ). (2.83)

We’ve found a transformation of the wave function that has the same energy eigenvalues as
the corresponding wave functions for the original untransformed Hamiltonian.

In summary

H′ =
1

2m
(p − qA − q∇χ)2

ψ′(r) = eiθ(r)ψ(r), where θ(r) = qχ(r)/ h̄
(2.84)

Aharonov-Bohm effect Consider a periodic motion in a fixed ring as sketched in fig. 2.3.

Figure 2.3: Particle confined to a ring.

Here the displacement around the perimeter is s = Rφ and the Hamiltonian

H = −
h̄2

2m
∂2

∂s2 = −
h̄2

2mR2

∂2

∂φ2 . (2.85)
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Now assume that there is a magnetic field squeezed into the point at the origin, by virtue of a
flux at the origin

B = Φ0δ(r)ẑ. (2.86)

We know that

∮
A · dl = Φ0, (2.87)

so that

A =
Φ0

2πr
φ̂. (2.88)

The Hamiltonian for the new configuration is

H = −

(
−i h̄∇ − q

Φ0

2πr
φ̂

)2

= −
1

2m

(
−i h̄

1
R
∂

∂φ
− q

Φ0

2πR

)2

. (2.89)

Here the replacement r → R makes use of the fact that this problem as been posed with the
particle forced to move around the ring at the fixed radius R.

For this transformed Hamiltonian, what are the wave functions?

(2.90)ψ(φ)′ ?
= einφ.

(2.91)

Hψ =
1

2m

(
−i h̄

1
R

(in) − q
Φ0

2πR

)2

einφ

=
1

2m

(
h̄n
R
− q

Φ0

2πR

)2

En

einφ.

This is very unclassical, since the energy changes in a way that depends on the flux, because
particles are seeing magnetic fields that are not present at the point of the particle.

This is sketched in fig. 2.4.
we see that there are multiple points that the energies hit the minimum levels
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Figure 2.4: Energy variation with flux.

Figure 2.5: Two slit interference with magnetic whisker.
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problem set note. In the problem set we’ll look at interference patterns for two slit electron
interference like that of fig. 2.5, where a magnetic whisker that introduces flux is added to the
configuration.

Aharonov-Bohm effect (cont.) Why do we have the zeros at integral multiples of h/q? Con-
sider a particle in a circular trajectory as sketched in fig. 2.6

Figure 2.6: Circular trajectory.

FIXME: Prof mentioned:

(2.92)φloop = q
hp/q

h̄
= 2πp

... I’m not sure what that was about now.
In classical mechanics we have

(2.93)
∮

pdq

The integral zero points are related to such a loop, but the qA portion of the momentum
p − qA needs to be considered.

Superconductors After cooling some materials sufficiently, superconductivity, a complete
lack of resistance to electrical flow can be observed. A resistivity vs temperature plot of such a
material is sketched in fig. 2.7.

Just like He4 can undergo Bose condensation, superconductivity can be explained by a hybrid
Bosonic state where electrons are paired into one state containing integral spin.

The Little-Parks experiment puts a superconducting ring around a magnetic whisker as sketched
in fig. 2.8.

This experiment shows that the effective charge of the circulating charge was 2e, validating
the concept of Cooper-pairing, the Bosonic combination (integral spin) of electrons in super-
conduction.
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Figure 2.7: Superconductivity with comparison to superfluidity.

Figure 2.8: Little-Parks superconducting ring.

Motion around magnetic field

(2.94)ωc =
eB
m

We work with what is now called the Landau gauge

(2.95)A = (0, Bx, 0)

This gives

(2.96)
B = ∇ × A

=
(
∂xAy − ∂yAx

)
ẑ

= Bẑ.

An alternate gauge choice, the symmetric gauge, is

(2.97)A =

(
−

By
2
,

Bx
2
, 0

)
,

that also has the same magnetic field

(2.98)

B = ∇A
=

(
∂xAy − ∂yAx

)
ẑ

=

(B
2
−

(
−

B
2

))
ẑ

= Bẑ.
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We expect the physics for each to have the same results, although the wave functions in one
gauge may be more complicated than in the other.

Our Hamiltonian is

(2.99)
H =

1
2m

(p − eA)2

=
1

2m
p̂2

x +
1

2m

(
p̂y − eBx̂

)2

We can solve after noting that

(2.100)
[
p̂y,H

]
= 0

means that

(2.101)Ψ(x, y) = eikyyφ(x)

The eigensystem

(2.102)Hψ(x, y) = Eφ(x, y),

becomes

(2.103)
(

1
2m

p̂2
x +

1
2m

(
h̄ky − eBx̂

)2
)
φ(x) = Eφ(x).

This reduced Hamiltonian can be rewritten as

(2.104)
Hx =

1
2m

p2
x +

1
2m

e2B2
(
x̂ −

h̄ky

eB

)2

≡
1

2m
p2

x +
1
2

mω2 (x̂ − x0)2

where

(2.105)
1

2m
e2B2 =

1
2

mω2,

or

(2.106)ω =
eB
m

≡ ωc.

and



2.9 gauge invariance 81

Figure 2.9: Energy levels, and Energy vs flux.

(2.107)x0 =
h̄
ky

eB.

But what is this x0? Because ky is not really specified in this problem, we can consider that
we have a zero point energy for every ky, but the oscillator position is shifted for every such
value of ky. For each set of energy levels fig. 2.9 we can consider that there is a different zero
point energy for each possible ky.

This is an infinitely degenerate system with an infinite number of states for any given energy
level.

This tells us that there is a problem, and have to reconsider the assumption that any ky is
acceptable.

To resolve this we can introduce periodic boundary conditions, imagining that a square is
rotated in space forming a cylinder as sketched in fig. 2.10.

Figure 2.10: Landau degeneracy region.

Requiring quantized momentum

(2.108)kyLy = 2πn,

or

ky =
2πn
Ly

, n ∈ Z, (2.109)

gives

(2.110)x0(n) =
h̄

eB
2πn
Ly

,

with x0 ≤ Lx. The range is thus restricted to
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(2.111)
h̄

eB
2πnmax

Ly
= Lx,

or

(2.112)nmax = LxLy

area

eB
2π h̄

That is

(2.113)
nmax =

Φtotal

h/e

=
Φtotal

Φ0
.

Attempting to measure Hall-effect systems, it was found that the Hall conductivity was quan-
tized like

(2.114)σxy = p
e2

h
.

This quantization is explained by these Landau levels, and this experimental apparatus pro-
vides one of the more accurate ways to measure the fine structure constant.

2.10 diagonalizating the quantum harmonic oscillator

Many authors pull the definitions of the raising and lowering (or ladder) operators out of their
butt with no attempt at motivation. This is pointed out nicely in [4] by Eli along with one
justification based on factoring the Hamiltonian.

In [12] is a small exception to the usual presentation. In that text, these operators are defined
as usual with no motivation. However, after the utility of these operators has been shown, the
raising and lowering operators show up in a context that does provide that missing motivation
as a side effect. It doesn’t look like the author was trying to provide a motivation, but it can be
interpreted that way.

When seeking the time evolution of Heisenberg-picture position and momentum operators,
we will see that those solutions can be trivially expressed using the raising and lowering op-
erators. No special tools nor black magic is required to find the structure of these operators.
Unfortunately, we must first switch to both the Heisenberg picture representation of the posi-
tion and momentum operators, and also employ the Heisenberg equations of motion. Neither
of these last two fit into standard narrative of most introductory quantum mechanics treatments.
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We will also see that these raising and lowering “operators” could also be introduced in classi-
cal mechanics, provided we were attempting to solve the SHO system using the Hamiltonian
equations of motion.

I’ll outline this route to finding the structure of the ladder operators below. Because these are
encountered trying to solve the time evolution problem, I’ll first show a simpler way to solve
that problem. Because that simpler method depends a bit on lucky observation and is somewhat
unstructured, I’ll then outline a more structured procedure that leads to the ladder operators
directly, also providing the solution to the time evolution problem as a side effect.

The starting point is the Heisenberg equations of motion. For a time independent Hamiltonian
H, and a Heisenberg operator A(H), those equations are

(2.115)
dA(H)

dt
=

1
i h̄

[
A(H),H

]
.

Here the Heisenberg operator A(H) is related to the Schrödinger operator A(S ) by

(2.116)A(H) = U†A(S )U,

where U is the time evolution operator. For this discussion, we need only know that U com-
mutes with H, and do not need to know the specific structure of that operator. In particular, the
Heisenberg equations of motion take the form

(2.117)

dA(H)

dt
=

1
i h̄

[
A(H),H

]
=

1
i h̄

[
U†A(S )U,H

]
=

1
i h̄

(
U†A(S )UH − HU†A(S )U

)
=

1
i h̄

(
U†A(S )HU − U†HA(S )U

)
=

1
i h̄

U†
[
A(S ),H

]
U.

The Hamiltonian for the harmonic oscillator, with Schrödinger-picture position and momen-
tum operators x, p is

(2.118)H =
p2

2m
+

1
2

mω2x2,

so the equations of motions are
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(2.119)

dx(H)

dt
=

1
i h̄

U† [x,H] U

=
1
i h̄

U†
[
x,

p2

2m

]
U

=
1

2mi h̄
U†

(
i h̄
∂p2

∂p

)
U

=
1
m

U†pU

=
1
m

p(H),

and

(2.120)

dp(H)

dt
=

1
i h̄

U†
[
p,H

]
U

=
1
i h̄

U†
[
p,

1
2

mω2x2
]

U

=
mω2

2i h̄
U†

(
−i h̄

∂x2

∂x

)
U

= −mω2U†xU
= −mω2x(H).

In the Heisenberg picture the equations of motion are precisely those of classical Hamiltonian
mechanics, except that we are dealing with operators instead of scalars

(2.121)

dp(H)

dt
= −mω2x(H)

dx(H)

dt
=

1
m

p(H).

In the text the ladder operators are used to simplify the solution of these coupled equations,
since they can decouple them. That’s not really required since we can solve them directly in
matrix form with little work

(2.122)
d
dt

p(H)

x(H)

 =

0 −mω2

1
m 0


p(H)

x(H)

 ,
or, with length scaled variables
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(2.123)

d
dt

 p(H)

mω

x(H)

 =

0 −ω

ω 0


 p(H)

mω

x(H)


= −iω

0 −i

i 0


 p(H)

mω

x(H)


= −iωσy

 p(H)

mω

x(H)

 .
Writing y =

 p(H)

mω

x(H)

, the solution can then be written immediately as

(2.124)

y(t) = exp
(
−iωσyt

)
y(0)

=
(
cos (ωt) I − iσy sin (ωt)

)
y(0)

=

 cos (ωt) sin (ωt)

− sin (ωt) cos (ωt)

 y(0),

or

(2.125)

p(H)(t)
mω

= cos (ωt)
p(H)(0)

mω
+ sin (ωt) x(H)(0)

x(H)(t) = − sin (ωt)
p(H)(0)

mω
+ cos (ωt) x(H)(0).

This solution depends on being lucky enough to recognize that the matrix has a Pauli matrix
as a factor (which squares to unity, and allows the exponential to be evaluated easily.)

If we hadn’t been that observant, then the first tool we’d have used instead would have been
to diagonalize the matrix. For such diagonalization, it’s natural to work in completely dimen-
sionless variables. Such a non-dimensionalisation can be had by defining

(2.126)x0 =

√
h̄

mω
,

and dividing the working (operator) variables through by those values. Let z = 1
x0

y, and
τ = ωt so that the equations of motion are

(2.127)
dz
dτ

=

0 −1

1 0

 z.

This matrix can be diagonalized as
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(2.128)

A =

0 −1

1 0


= V

 i 0

0 −i

 V−1,

where

(2.129)V =
1
√

2

 i −i

1 1

 .
The equations of motion can now be written

(2.130)
d
dτ

(
V−1z

)
=

 i 0

0 −i

 (V−1z
)
.

This final change of variables V−1z decouples the system as desired. Expanding that gives

(2.131)

V−1z =
1
√

2

−i 1

i 1


 p(H)

x0mω
x(H)

x0


=

1
√

2x0

−i p(H)

mω + x(H)

i p(H)

mω + x(H)


=

a†a
 ,

where

(2.132)
a† =

√
mω
2 h̄

(
−i

p(H)

mω
+ x(H)

)
a =

√
mω
2 h̄

(
i
p(H)

mω
+ x(H)

)
.

Lo and behold, we have the standard form of the raising and lowering operators, and can
write the system equations as

(2.133)

da†

dt
= iωa†

da
dt

= −iωa.
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It is actually a bit fluky that this matched exactly, since we could have chosen eigenvectors
that differ by constant phase factors, like

(2.134)V =
1
√

2

 ieiφ −ieiψ

1eiφ eiψ

 ,
so

(2.135)

V−1z =
e−i(φ+ψ)
√

2

−ieiψ eiψ

ieiφ eiφ


 p(H)

x0mω
x(H)

x0


=

1
√

2x0

−ieiφ p(H)

mω + eiφx(H)

ieiψ p(H)

mω + eiψx(H)


=

eiφa†

eiψa

 .
To make the resulting pairs of operators Hermitian conjugates, we’d want to constrain those

constant phase factors by setting φ = −ψ. If we were only interested in solving the time evolu-
tion problem no such additional constraints are required.

The raising and lowering operators are seen to naturally occur when seeking the solution
of the Heisenberg equations of motion. This is found using the standard technique of non-
dimensionalisation and then seeking a change of basis that diagonalizes the system matrix. Be-
cause the Heisenberg equations of motion are identical to the classical Hamiltonian equations
of motion in this case, what we call the raising and lowering operators in quantum mechan-
ics could also be utilized in the classical simple harmonic oscillator problem. However, in a
classical context we wouldn’t have a justification to call this more than a change of basis.

2.11 constant magnetic solenoid field

In [11] the following vector potential

(2.136)A =
Bρ2

a

2ρ
φ̂,

is introduced in a discussion on the Aharonov-Bohm effect, for configurations where the
interior field of a solenoid is either a constant B or zero.

I wasn’t able to make sense of this since the field I was calculating was zero for all ρ , 0
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(2.137)

B = ∇ × A

=

(
ρ̂∂ρ + ẑ∂z +

φ̂

ρ
∂φ

)
×

Bρ2
a

2ρ
φ̂

=

(
ρ̂∂ρ +

φ̂

ρ
∂φ

)
×

Bρ2
a

2ρ
φ̂

=
Bρ2

a

2
ρ̂ × φ̂∂ρ

(
1
ρ

)
+

Bρ2
a

2ρ
φ̂

ρ
× ∂φφ̂

=
Bρ2

a

2ρ2

(
−ẑ + φ̂ × ∂φφ̂

)
.

Note that the ρ partial requires that ρ , 0. To expand the cross product in the second term let
j = e1e2, and expand using a Geometric Algebra representation of the unit vector

(2.138)

φ̂ × ∂φφ̂ = e2e jφ ×
(
e2e1e2e jφ

)
= −e1e2e3

〈
e2e jφ(−e1)e jφ

〉
2

= e1e2e3e2e1

= e3

= ẑ.

So, provided ρ , 0, B = 0.
The errata [10] provides the clarification, showing that a ρ > ρa constraint is required for this

potential to produce the desired results. Continuity at ρ = ρa means that in the interior (or at
least on the boundary) we must have one of

(2.139)A =
Bρa

2
φ̂,

or

(2.140)A =
Bρ
2
φ̂.

The first doesn’t work, but the second does

(2.141)

B = ∇ × A

=

(
ρ̂∂ρ + ẑ∂z +

φ̂

ρ
∂φ

)
×

Bρ
2
φ̂

=
B
2
ρ̂ × φ̂ +

Bρ
2
φ̂

ρ
× ∂φφ̂

= Bẑ.
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So the vector potential that we want for a constant Bẑ field in the interior ρ < ρa of a cylin-
drical space, we need

(2.142)A =


Bρ2

a
2ρ φ̂ if ρ ≥ ρa

Bρ
2 φ̂ if ρ < ρa.

An example of the magnitude of potential is graphed in fig. 2.11.

Figure 2.11: Vector potential for constant field in cylindrical region.

2.12 lagrangian for magnetic portion of lorentz force

In [11] it is claimed in an Aharonov-Bohm discussion that a Lagrangian modification to include
electromagnetism is

(2.143)L → L +
e
c

v · A.

That can’t be the full Lagrangian since there is no φ term, so what exactly do we get?
If you have somehow, like I did, forgot the exact form of the Euler-Lagrange equations (i.e.

where do the dots go), then the derivation of those equations can come to your rescue. The
starting point is the action

(2.144)S =

∫
L(x, ẋ, t)dt,

where the end points of the integral are fixed, and we assume we have no variation at the end
points. The variational calculation is
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(2.145)

δS =

∫
δL(x, ẋ, t)dt

=

∫ (
∂L

∂x
δx +

∂L

∂ẋ
δẋ

)
dt

=

∫ (
∂L

∂x
δx +

∂L

∂ẋ
δ

dx
dt

)
dt

=

∫ (
∂L

∂x
−

d
dt

(
∂L

∂ẋ

))
δxdt + δx

∂L

∂ẋ
.

The boundary term is killed after evaluation at the end points where the variation is zero. For
the result to hold for all variations δx, we must have

∂L

∂x
=

d
dt

(
∂L

∂ẋ

)
. (2.146)

Now lets apply this to the Lagrangian at hand. For the position derivative we have

(2.147)
∂L

∂xi
=

e
c

v j
∂A j

∂xi
.

For the canonical momentum term, assuming A = A(x) we have

(2.148)

d
dt
∂L

∂ẋi
=

d
dt

(
mẋi +

e
c

Ai

)
= mẍi +

e
c

dAi

dt

= mẍi +
e
c
∂Ai

∂x j

dx j

dt
.

Assembling the results, we’ve got

(2.149)
0 =

d
dt
∂L

∂ẋi
−
∂L

∂xi

= mẍi +
e
c
∂Ai

∂x j

dx j

dt
−

e
c

v j
∂A j

∂xi
,

or

(2.150)

mẍi =
e
c

v j
∂A j

∂xi
−

e
c
∂Ai

∂x j
v j

=
e
c

v j

(
∂A j

∂xi
−
∂Ai

∂x j

)
=

e
c

v jBkεi jk.
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In vector form that is

mẍ =
e
c

v ×B. (2.151)

So, we get the magnetic term of the Lorentz force. Also note that this shows the Lagrangian
(and the end result), was not in SI units. The 1/c term would have to be dropped for SI.

2.13 problems

Exercise 2.1 Lorentz force from classical electrodynamic Hamiltonian.
Given the classical Hamiltonian

(2.152)H =
1

2m
(p − qA)2 + qφ.

apply the Hamiltonian equations of motion

dp
dt

= −
∂H
∂q

dq
dt

=
∂H
∂p

,

(2.153)

to show that this is the Hamiltonian that describes the Lorentz force equation, and to find the
velocity in terms of the canonical momentum and vector potential.
Answer for Exercise 2.1

The particle velocity follows easily

(2.154)

v =
dr
dt

=
∂H
∂p

=
1
m

(p − qA) .

For the Lorentz force we can proceed in the coordinate representation

(2.155)

dpk

dt
= −

∂H
∂xk

= −
2

2m
(pm − qAm)

∂

∂xk
(pm − qAm) − q

∂φ

∂xk

= qvm
∂Am

∂xk
− q

∂φ

∂xk
,
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We also have

(2.156)

dpk

dt
=

d
dt

(mxk + qAk)

= m
d2xk

dt2 + q
∂Ak

∂xm

dxm

dt
+ q

∂Ak

∂t
.

Putting these together we’ve got

(2.157)

m
d2xk

dt2 = qvm
∂Am

∂xk
− q

∂φ

∂xk
,−q

∂Ak

∂xm

dxm

dt
− q

∂Ak

∂t

= qvm

(
∂Am

∂xk
−
∂Ak

∂xm

)
+ qEk

= qvmεkmsBs + qEk,

or

(2.158)m
d2x
dt2 = qekvmεkmsBs + qEk

= qv × B + qE.

Exercise 2.2 Show gauge invariance of the magnetic and electric fields.

After the gauge transformation of eq. (2.60) show that the electric and magnetic fields are
unaltered.
Answer for Exercise 2.2

For the magnetic field the transformed field is

(2.159)

B′ = ∇ × (A + ∇χ)
= ∇ × A + ∇ × (∇χ)
= ∇ × A
= B.

(2.160)

E′ = −
∂A′

∂t
− ∇φ′

= −
∂

∂t
(A + ∇χ) − ∇

(
φ −

∂χ

∂t

)
= −

∂A
∂t
− ∇φ

= E.
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Exercise 2.3 Gauge transformation.

Show that after a transformation of position and momentum of the following form

(2.161)
r̂′ = r̂
p̂′ = p̂ − q∇χ(r)

all the commutators have the expected values.
Answer for Exercise 2.3

The position commutators don’t need consideration. Of interest is the momentum-position
commutators

(2.162)

[
p̂′k, x̂

′
k

]
=

[
p̂k − q∂kχ, x̂k

]
=

[
p̂k, x̂k

]
− q

[
∂kχ, x̂k

]
=

[
p̂k, x̂k

]
,

and the momentum commutators

(2.163)

[
p̂′k, p̂′j

]
=

[
p̂k − q∂kχ, p̂ j − q∂ jχ

]
=

[
p̂k, p̂ j

]
− q

([
∂kχ, p̂ j

]
+

[
p̂k, ∂ jχ

])
.

That last sum of commutators is

(2.164)
[
∂kχ, p̂ j

]
+

[
p̂k, ∂ jχ

]
= −i h̄

(
∂(∂ jχ)
∂k

−
∂(∂kχ)
∂ j

)
= 0.

We’ve shown that

(2.165)
[ p̂′k, x̂

′
k] = [ p̂k, x̂k][

p̂′k, p̂′j
]

= [ p̂k, p̂ j] .

All the other commutators clearly have the desired transformation properties.

Exercise 2.4 Heisenberg picture spin precession. ([11] pr. 2.1)

For the spin Hamiltonian

(2.166)H = −
eB
mc

S z

= ωS z,

express and solve the Heisenberg equations of motion for S x(t), S y(t), and S z(t).
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Answer for Exercise 2.4
The equations of motion are of the form

(2.167)

dS H
i

dt
=

1
i h̄

[
S H

i ,H
]

=
1
i h̄

[
U†S iU,H

]
=

1
i h̄

(
U†S iUH − HU†S iU

)
=

1
i h̄

U† (S iH − HS i) U

=
ω

i h̄
U†

[
S i, S z

]
U.

These are

(2.168)

dS H
x

dt
= −ωU†S yU

dS H
y

dt
= ωU†S xU

dS H
z

dt
= 0.

To completely specify these equations, we need to expand U(t), which is

(2.169)

U(t) = e−iHt/ h̄

= e−iωS zt/ h̄

= e−iωσzt/2

= cos (ωt/2) − iσz sin (ωt/2)

=

cos (ωt/2) − i sin (ωt/2) 0

0 cos (ωt/2) + i sin (ωt/2)


=

e−iωt/2 0

0 eiωt/2

 .
The equations of motion can now be written out in full. To do so seems a bit silly since we

also know that S H
x = U†S xU, S H

y U†S xU. However, if that is temporarily forgotten, we can show
that the Heisenberg equations of motion can be solved for these too.
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(2.170)

U†S xU =
h̄
2

eiωt/2 0

0 e−iωt/2


0 1

1 0


e−iωt/2 0

0 eiωt/2


=

h̄
2

 0 eiωt/2

e−iωt/2 0


e−iωt/2 0

0 eiωt/2


=

h̄
2

 0 eiωt

e−iωt 0

 ,
and

(2.171)

U†S yU =
h̄
2

eiωt/2 0

0 e−iωt/2


0 −i

i 0


e−iωt/2 0

0 eiωt/2


=

i h̄
2

 0 −eiωt/2

e−iωt/2 0


e−iωt/2 0

0 eiωt/2


=

i h̄
2

 0 −eiωt

e−iωt 0

 .
The equations of motion are now fully specified

(2.172)

dS H
x

dt
= −

i h̄ω
2

 0 −eiωt

e−iωt 0


dS H

y

dt
=

h̄ω
2

 0 eiωt

e−iωt 0


dS H

z

dt
= 0.

Integration gives

(2.173)

S H
x =

h̄
2

 0 eiωt

e−iωt 0

 + C

S H
y =

h̄
2

 0 −ieiωt

ie−iωt 0

 + C

S H
z = C.

The integration constants are fixed by the boundary condition S H
i (0) = S i, so
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(2.174)

S H
x =

h̄
2

 0 eiωt

e−iωt 0


S H

y =
i h̄
2

 0 −eiωt

e−iωt 0


S H

z = S z.

Observe that these integrated values S H
x , S

H
y match eq. (2.170), and eq. (2.171) as expected.

Exercise 2.5 Dynamics of non-Hermitian Hamiltonian. ([11] pr. 2.2)

Revisiting an earlier Hamiltonian, but assuming it was entered incorrectly as

(2.175)H = H11 |1〉 〈1| + H22 |2〉 〈2| + H12 |1〉 〈2| .

What principle is now violated? Illustrate your point explicitly by attempting to solve the
most general time-dependent problem using an illegal Hamiltonian of this kind. You may as-
sume that H11 = H22 for simplicity.
Answer for Exercise 2.5

In matrix form this Hamiltonian is

(2.176)

H =

〈1|H |1〉 〈1|H |2〉
〈2|H |1〉 〈2|H |2〉


=

H11 H12

0 H22

 .
This is not a Hermitian operator. What is the physical implication of this non-Hermicity?

Consider the simpler case where H11 = H22. Such a Hamiltonian has the form

(2.177)H =

a b

0 a

 .
This has only one unique eigenvector ( (1, 0), but we can still solve the time evolution equa-

tion

(2.178)i h̄
∂U
∂t

= HU,

since for constant H, we have

(2.179)U = e−iHt/ h̄.
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To exponentiate, note that we have

(2.180)

a b

0 a


n

=

an nan−1b

0 an

 .
To prove the induction, the n = 2 case follows easily

(2.181)

a b

0 a


a b

0 a

 =

a2 2ab

0 a2

 ,
as does the general case

(2.182)

an nan−1b

0 an


a b

0 a

 =

an+1 (n + 1)anb

0 an+1

 .
The exponential sum is thus

(2.183)eHτ =

eaτ 0 + bτ
1! + 2abτ2

2! + 3a2bτ3

3! + · · ·

0 eaτ

 .
That sum simplifies to

(2.184)

bτ
0!

+
abτ2

1!
+

a2bτ3

2!
+ · · ·

= bτ
(
1 +

aτ
1!

+
(aτ)2

2!
+ · · ·

)
= bτeaτ.

The exponential is thus

(2.185)

eHτ =

eaτ bτeaτ

0 eaτ


=

1 bτ

0 1

 eaτ.

In particular

(2.186)
U = e−iHt/ h̄

=

1 −ibt/ h̄

0 1

 e−iat/ h̄.
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We can verify that this is a solution to eq. (2.178). The left hand side is

(2.187)

i h̄
∂U
∂t

= i h̄

−ia/ h̄ −ib/ h̄ + (−ibt/ h̄)(−ia/ h̄)

0 −ia/ h̄

 e−iat/ h̄

=

a b − iabt/ h̄

0 a

 e−iat/ h̄,

and for the right hand side

(2.188)

HU =

a b

0 a


1 −ibt/ h̄

0 1

 e−iat/ h̄

=

a b − iabt/ h̄

0 a

 e−iat/ h̄

= i h̄
∂U
∂t
. �

While the Schrödinger is satisfied, we don’t have the unitary inversion physical property that
is desired for the time evolution operator U. Namely

(2.189)

U†U =

 1 0

ibt/ h̄ 1

 eiat/ h̄

1 −ibt/ h̄

0 1

 e−iat/ h̄

=

 1 −ibt/ h̄

ibt/ h̄ (bt)2/ h̄2

 , I.

We required U†U = I for the time evolution operator, but don’t have that property for this
non-Hermitian Hamiltonian.

Exercise 2.6 Time evolution of spin half probability and dispersion. ([11] pr. 2.3)
A spin 1/2 system S · n̂, with n̂ = sin βx̂ + cos βẑ, is in state with eigenvalue h̄/2, acted on by

a magnetic field of strength B in the +z direction.

a. If S x is measured at time t, what is the probability of getting + h̄/2?

b. Evaluate the dispersion in S x as a function of t, that is,

〈
(S x − 〈S x〉)

2〉
. (2.190)

c. Check your answers for β→ 0, π/2 to see if they make sense.

Answer for Exercise 2.6
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Part a. The spin operator in matrix form is

(2.191)

S · n̂ =
h̄
2

(σz cos β + σx sin β)

=
h̄
2


1 0

0 −1

 cos β +

0 1

1 0

 sin β


=

h̄
2

cos β sin β

sin β − cos β

 .
The |S · n̂; +〉 eigenstate is found from

(2.192)(S · n̂ − h̄/2)

ab
 = 0,

or

(2.193)

0 = (cos β − 1) a + sin βb
=

(
−2 sin2(β/2)

)
a + 2 sin(β/2) cos(β/2)b

= (− sin(β/2)) a + cos(β/2)b,

or

(2.194)|S · n̂; +〉 =

cos(β/2)

sin(β/2)

 .
The Hamiltonian is

H = −
eB
mc

S z = −
eB h̄
2mc

σz, (2.195)

so the time evolution operator is

(2.196)U = e−iHt/ h̄

= e
ieBt
2mcσz .

Let ω = eB/(2mc), so

(2.197)

U = eiσzωt

= cos(ωt) + iσz sin(ωt)

=

1 0

0 1

 cos(ωt) + i

1 0

0 −1

 sin(ωt)

=

eiωt 0

0 e−iωt

 .
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The time evolution of the initial state is

(2.198)

|S · n̂; +〉 (t) = U |S · n̂; +〉 (0)

=

eiωt 0

0 e−iωt


cos(β/2)

sin(β/2)


=

 cos(β/2)eiωt

sin(β/2)e−iωt

 .
The probability of finding the state in |S · x̂; +〉 at time t (i.e. measuring S x and finding h̄/2)

is

(2.199)

|〈S · x̂; +|S · n̂; +〉|2 =

∣∣∣∣∣∣∣ 1
√

2

[
1 1

]  cos(β/2)eiωt

sin(β/2)e−iωt


∣∣∣∣∣∣∣
2

=
1
2

∣∣∣cos(β/2)eiωt + sin(β/2)e−iωt
∣∣∣2

=
1
2
(1 + 2 cos(β/2) sin(β/2) cos(2ωt))

=
1
2
(1 + sin(β) cos(2ωt)) .

Part b. To calculate the dispersion first note that

(2.200)
S 2

x =

(
h̄
2

)2
0 1

1 0

 2

=

(
h̄
2

)2

,

so only the first order expectation is non-trivial to calculate. That is

(2.201)

〈S x〉 =
h̄
2

[
cos(β/2)e−iωt sin(β/2)eiωt

] 0 1

1 0


 cos(β/2)eiωt

sin(β/2)e−iωt


=

h̄
2

[
cos(β/2)e−iωt sin(β/2)eiωt

] sin(β/2)e−iωt

cos(β/2)eiωt


=

h̄
2

sin(β/2) cos(β/2)
(
e−2iωt + e2iωt

)
=

h̄
2

sin β cos(2ωt).

This gives
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〈
(∆S x)2

〉
=

(
h̄
2

)2 (
1 − sin2 β cos2(2ωt)

)
(2.202)

Part c. For β = 0, n̂ = ẑ, and β = π/2, n̂ = x̂. For the first case, the state is in an eigenstate of
S z, so must evolve as

(2.203)|S · n̂; +〉 (t) = |S · n̂; +〉 (0)eiωt.

The probability of finding it in state |S · x̂; +〉 is therefore

(2.204)

∣∣∣∣∣∣∣ 1
√

2

[
1 1

] eiωt

0


∣∣∣∣∣∣∣
2

=
1
2

∣∣∣eiωt
∣∣∣2

=
1
2

=
1
2

(1 + sin(0) cos(2ωt)) .

This matches eq. (2.199) as expected.
For β = π/2 we have

(2.205)

|S · x̂; +〉 (t) =
1
√

2

eiωt 0

0 e−iωt


11


=

1
√

2

 eiωt

e−iωt

 .
The probability for the h̄/2 S x measurement at time t is

(2.206)

∣∣∣∣∣∣∣12 [
1 1

]  eiωt

e−iωt


∣∣∣∣∣∣∣
2

=
1
4

∣∣∣eiωt + e−iωt
∣∣∣2

= cos2(ωt)

=
1
2

(1 + sin(π/2) cos(2ωt)) .

Again, this matches the expected value.
For the dispersions, at β = 0, the dispersion is

(2.207)
(

h̄
2

)2
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This is the maximum dispersion, which makes sense since we are measuring S x when the
initial state is |S · ẑ; +〉. For β = π/2 the dispersion is

(2.208)
(

h̄
2

)2

sin2(2ωt).

This starts off as zero dispersion (because the initial state is |S · x̂; +〉, but then oscillates.

Exercise 2.7 Heisenberg picture position commutator. ([11] pr. 2.5)

Evaluate

(2.209)[x(t), x(0)] ,

for a Heisenberg picture operator x(t) for a free particle.
Answer for Exercise 2.7

The free particle Hamiltonian is

(2.210)H =
p2

2m
,

so the time evolution operator is

(2.211)U(t) = e−ip2t/(2m h̄).

The Heisenberg picture position operator is
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(2.212)

xH = U†xU
= eip2t/(2m h̄)xe−ip2t/(2m h̄)

=

∞∑
k=0

1
k!

(
ip2t
2m h̄

)k

xe−ip2t/(2m h̄)

=

∞∑
k=0

1
k!

( it
2m h̄

)k
p2kxe−ip2t/(2m h̄)

=

∞∑
k=0

1
k!

( it
2m h̄

)k ([
p2k, x

]
+ xp2k

)
e−ip2t/(2m h̄)

= x +

∞∑
k=0

1
k!

( it
2m h̄

)k [
p2k, x

]
e−ip2t/(2m h̄)

= x +

∞∑
k=0

1
k!

( it
2m h̄

)k (
−i h̄

∂p2k

∂p

)
e−ip2t/(2m h̄)

= x +

∞∑
k=0

1
k!

( it
2m h̄

)k (
−i h̄2kp2k−1

)
e−ip2t/(2m h̄)

= x + −2i h̄p
it

2m h̄

∞∑
k=1

1
(k − 1)!

( it
2m h̄

)k−1
p2(k−1)e−ip2t/(2m h̄)

= x + t
p
m
.

This has the structure of a classical free particle x(t) = x + vt, but in this case x, p are opera-
tors.

The evolved position commutator is

(2.213)

[x(t), x(0)] =
[
x + tp/m, x

]
=

t
m

[
p, x

]
= −i h̄

t
m
.

Compare this to the classical Poisson bracket

(2.214)
[x(t), x(0)]classical =

∂

∂x
(x + pt/m)

∂x
∂p
−

∂

∂p
(x + pt/m)

∂x
∂x

= −
t
m
.

This has the expected relation [x(t), x(0)] = i h̄ [x(t), x(0)]classical.



104 quantum dynamics

Exercise 2.8 Virial theorem. (phy1520 2015 ps2.2)
Consider a three-dimensional Hamiltonian

(2.215)H =
p2

2m
+ V(x).

a. Calculate [x · p,H] and show that

(2.216)
d
dt
〈x · p〉 =

〈
p2

m

〉
− 〈x · ∇V〉 .

When the l.h.s. vanishes, the result that the r.h.s. is zero is called the quantum virial
theorem.

b. Consider the 3D isotropic harmonic oscillator, and show explicitly that its eigenstates
obey the virial theorem.

c. Evaluate the r.h.s. for the superposition state |0, 0, 0〉+ |0, 0, 2〉 where the notation stands
for

∣∣∣nx, ny, nz
〉

occupation numbers.

d. Under what conditions does the left-hand side vanish?
Answer for Exercise 2.8

PROBLEM SET RELATED MATERIAL REDACTED IN THIS DOCUMENT.PLEASE
FEEL FREE TO EMAIL ME FOR THE FULL VERSION IF YOU AREN’T TAKING PHY1520.

. .
. .

.
. . .

. .
. . .

. .
. .

. END-REDACTION

Exercise 2.9 A symmetric real Hamiltonian. ([11] pr. 2.9)
Find the time evolution for the state |a′〉 for a Hamiltonian of the form

(2.217)H = δ
(∣∣∣a′〉 〈a′∣∣∣ +

∣∣∣a′′〉 〈a′′∣∣∣)
Answer for Exercise 2.9

This Hamiltonian has the matrix representation

(2.218)H =

0 δ

δ 0

 ,
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which has a characteristic equation of

(2.219)λ2 − δ2 = 0,

so the energy eigenvalues are ±δ.
The diagonal basis states are respectively

(2.220)|±δ〉 =
1
√

2

±1

1

 .
The time evolution operator is

(2.221)

U = e−iHt/ h̄

= e−iδt/ h̄ |+δ〉 〈+δ| + eiδt/ h̄ |−δ〉 〈−δ|

=
e−iδt/ h̄

2

[
1 1

] 11
 +

eiδt/ h̄

2

[
−1 1

] −1

1


=

e−iδt/ h̄

2

1 1

1 1

 +
eiδt/ h̄

2

 1 −1

−1 1


=

 cos(δt/ h̄) −i sin(δt/ h̄)

−i sin(δt/ h̄) cos(δt/ h̄)

 .
The desired time evolution in the original basis is

(2.222)

∣∣∣a′, t〉 = e−iHt/ h̄
∣∣∣a′, 0〉

=

 cos(δt/ h̄) −i sin(δt/ h̄)

−i sin(δt/ h̄) cos(δt/ h̄)


10


=

 cos(δt/ h̄)

−i sin(δt/ h̄)


= cos(δt/ h̄)

∣∣∣a′, 0〉 − i sin(δt/ h̄)
∣∣∣a′′, 0〉 .

This evolution has the same structure as left circularly polarized light.
The probability of finding the system in state |a′′〉 given an initial state of |a′, 0〉 is

(2.223)P =
∣∣∣〈a′′∣∣∣a′, t〉∣∣∣2

= sin2 (δt/ h̄) .
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Exercise 2.10 SHO translation operator expectation. ([11] pr. 2.12)

Using the Heisenberg picture evaluate the expectation of the position operator 〈x〉 with re-
spect to the initial time state

(2.224)|α, 0〉 = e−ip0a/ h̄ |0〉 ,

where p0 is the initial time position operator, and a is a constant with dimensions of position.
Answer for Exercise 2.10

Recall that the Heisenberg picture position operator expands to

(2.225)
xH(t) = U†xU

= x0 cos(ωt) +
p0

mω
sin(ωt),

so the expectation of the position operator is

(2.226)
〈x〉 = 〈0| eip0a/ h̄

(
x0 cos(ωt) +

p0

mω
sin(ωt)

)
e−ip0a/ h̄ |0〉

= 〈0|
(
eip0a/ h̄x0 cos(ωt)e−ip0a/ h̄ cos(ωt) +

p0

mω
sin(ωt)

)
|0〉 .

The exponential sandwich above can be expanded using the Baker-Campbell-Hausdorff [15]
formula

(2.227)

eip0a/ h̄x0e−ip0a/ h̄ = x0 +
ia
h̄
[p0, x0] +

1
2!

( ia
h̄

)2
[p0, [p0, x0]] + · · ·

= x0 +
ia
h̄
(−i h̄) +

1
2!

( ia
h̄

)2
[p0,−i h̄] + · · ·

= x0 + a.

The position expectation with respect to this translated state is

(2.228)〈x〉 = 〈0|
(
(x0 + a) cos(ωt) +

p0

mω
sin(ωt)

)
|0〉

= a cos(ωt).

The final simplification above follows from 〈n| x |n〉 = 〈n| p |n〉 = 0.

Exercise 2.11 Expectations for SHO Hamiltonian, and virial theorem. ([11] pr. 2.14)

a. For a 1D SHO, compute 〈m| x |n〉 , 〈m| x2 |n〉 , 〈m| p |n〉 , 〈m| p2 |n〉 and 〈m| {x, p} |n〉.

b. Verify the virial theorem is satisfied for energy eigenstates.

Answer for Exercise 2.11
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Part a. Using

x =
x0
√

2

(
a + a†

)
p =

i h̄

x0
√

2

(
a† − a

)
a(t) = a(0)e−iωt

a(0) |n〉 =
√

n |n − 1〉

a†(0) |n〉 =
√

n + 1 |n + 1〉

x2
0 =

h̄
ωm

,

(2.229)

we have

(2.230)

〈m| x |n〉 =
x0
√

2
〈m|

(
a + a†

)
|n〉

=
x0
√

2
〈m|

(
e−iωt √n |n − 1〉 + eiωt

√
n + 1 |n + 1〉

)
=

x0
√

2

(
δm,n−1e−iωt √n + δm,n+1eiωt

√
n + 1

)
,

〈m| x2 |n〉 =
x2

0

2
〈m|

(
a + a†

)2
|n〉

=
x2

0

2

(
eiωt √m 〈m − 1| + e−iωt

√
m + 1 〈m + 1|

) (
e−iωt √n |n − 1〉 + eiωt

√
n + 1 |n + 1〉

)
=

x2
0

2

(
δm+1,n+1

√
(m + 1)(n + 1)

+ δm+1,n−1
√

(m + 1)ne−2iωt + δm−1,n+1
√

m(n + 1)e2iωt + δm−1,n−1
√

mn
)
,

(2.231)

(2.232)

〈m| p |n〉 =
i h̄
√

2x0
〈m|

(
a† − a

)
|n〉

=
i h̄
√

2x0
〈m|

(
eiωt
√

n + 1 |n + 1〉 − e−iωt √n |n − 1〉
)

=
i h̄
√

2x0

(
δm,n+1eiωt

√
n + 1 − δm,n−1e−iωt √n

)
,
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〈m| p2 |n〉 =
h̄2

2x2
0

|m〉
(
a − a†

) (
a† − a

)
|n〉

=
h̄2

2x2
0

(
−e−iωt

√
m + 1 〈m + 1|+eiωt √m 〈m − 1|

) (
eiωt
√

n + 1 |n + 1〉−e−iωt √n |n − 1〉
)

=
h̄2

2x2
0

(
δm+1,n+1

√
(m + 1)(n + 1)

+ δm+1,n−1
√

(m + 1)ne−2iωt + δm−1,n+1
√

m(n + 1)e2iωt + δm−1,n−1
√

mn
)
.

(2.233)

For the anticommutator {x, p}, we have

(2.234)

{x, p} =
i h̄
2

((
ae−iωt + a†eiωt

) (
a†eiωt − ae−iωt

)
−

(
a†eiωt − ae−iωt

) (
ae−iωt + a†eiωt

))
=

i h̄
2

(
−a2e−2iωt + (a†)2e2iωt + aa† − a†a + a2e−2iωt − (a†)2e2iωt − a†a + aa†

)
= i h̄

(
aa† − a†a

)
,

so

(2.235)

〈m| {x, p} |n〉 = i h̄ 〈m|
(
aa† − a†a

)
|n〉

= i h̄ 〈m|
( √

(n + 1)2 |n〉 −
√

n2 |n〉
)

= i h̄ 〈m| (2n + 1) |n〉 .

Part b. For the SHO, the virial theorem requires
〈
p2/m

〉
=

〈
mωx2

〉
. That momentum expec-

tation with respect to the eigenstate |n〉 is

(2.236)
〈
p2/m

〉
=

h̄2

2x2
0m

( √
(n + 1)(n + 1) +

√
nn

)
=

h̄2mω
2 h̄m

(2n + 1) = h̄ω
(
n +

1
2

)
.

For the position expectation we’ve got

(2.237)

〈
mωx2

〉
=

mω2x2
0

2

( √
(n + 1)(n + 1) +

√
nn

)
=

mω2 h̄
2mω

( √
(n + 1)(n + 1) +

√
nn

)
=
ω h̄
2

(2n + 1)

= ω h̄
(
n +

1
2

)
.

This shows that the virial theorem holds for the SHO Hamiltonian for eigenstates.
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Exercise 2.12 Momentum space representation of Schrödinger equation. ([11] pr. 2.15)

Using

(2.238)
〈
x′
∣∣∣p′〉 =

1
√

2π h̄
eip′x′/ h̄,

show that

(2.239)
〈
p′

∣∣∣ x |α〉 = i h̄
∂

∂p′
〈
p′

∣∣∣α〉 .
Use this to find the momentum space representation of the Schrödinger equation for the one

dimensional SHO and the energy eigenfunctions in their momentum representation.
Answer for Exercise 2.12

To expand the matrix element, introduce both momentum and position space identity opera-
tors

(2.240)

〈
p′

∣∣∣ x |α〉 =

∫
dx′dp′′

〈
p′

∣∣∣x′〉 〈x′
∣∣∣ x

∣∣∣p′′〉 〈p′′
∣∣∣α〉

=

∫
dx′dp′′

〈
p′

∣∣∣x′〉 x′
〈
x′
∣∣∣p′′〉 〈p′′

∣∣∣α〉
=

1
2π h̄

∫
dx′dp′′e−ip′x′/ h̄x′eip′′x′/ h̄ 〈

p′′
∣∣∣α〉

=
1

2π h̄

∫
dx′dp′′x′ei(p′′−p′)x′/ h̄ 〈

p′′
∣∣∣α〉

=
1

2π h̄

∫
dx′dp′′

d
dp′′

(
−i h̄

e

i(p′′−p′)x′/ h̄) 〈
p′′

∣∣∣α〉
= i h̄

∫
dp′′

(
1

2π h̄

∫
dx′ei(p′′−p′)x′/ h̄

)
d

dp′′
〈
p′′

∣∣∣α〉
= i h̄

∫
dp′′δ(p′′ − p′)

d
dp′′

〈
p′′

∣∣∣α〉
= i h̄

d
dp′

〈
p′

∣∣∣α〉 . �

Schrödinger’s equation for a time dependent state |α〉 = U(t) |α, 0〉 is

(2.241)i h̄
∂

∂t
|α〉 = H |α〉 ,

with the momentum representation

(2.242)i h̄
∂

∂t
〈
p′

∣∣∣α〉 =
〈
p′

∣∣∣ H |α〉 .
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Expansion of the Hamiltonian matrix element for a strictly spatial dependent potential V(x)
gives

(2.243)

〈
p′

∣∣∣ H |α〉 =
〈
p′

∣∣∣ ( p2

2m
+ V(x)

)
|α〉

=
(p′)2

2m
+

〈
p′

∣∣∣ V(x) |α〉 .

Assuming a Taylor representation of the potential V(x) =
∑

ckxk, we want to calculate

(2.244)
〈
p′

∣∣∣ V(x) |α〉 =
∑

ck
〈
p′

∣∣∣ xk |α〉 .

With |α〉 = |p′′〉 eq. (2.239) provides the k = 1 term

(2.245)

〈
p′

∣∣∣ x
∣∣∣p′′〉 = i h̄

d
dp′

〈
p′

∣∣∣p′′〉
= i h̄

d
dp′

δ(p′ − p′′),

where it is implied here that the derivative is operating on not just the delta function, but on
all else that follows.

Using this the higher powers of 〈p′| xk |α〉 can be found easily. For example for k = 2 we have

(2.246)

〈
p′

∣∣∣ x2 |α〉 =

∫
dp′′

〈
p′

∣∣∣ x
∣∣∣p′′〉 〈p′′

∣∣∣ x |α〉

=

∫
dp′′i h̄

d
dp′

δ(p′ − p′′)i h̄
d

dp′′
〈
p′′

∣∣∣α〉
= (i h̄)2 d2

d(p′)2

〈
p′

∣∣∣α〉 .
This means that the potential matrix element is

(2.247)

〈
p′

∣∣∣ V(x) |α〉 =
∑

ck

(
i h̄

d
dp′

)k 〈
p′

∣∣∣α〉
= V

(
i h̄

d
dp′

)
.

Writing Ψα(p′) = 〈p′|α〉, the momentum space representation of Schrödinger’s equation for
a position dependent potential is

i h̄
∂

∂t
Ψα(p′) =

(
(p′)2

2m
+ V (i h̄∂/∂p′)

)
Ψα(p′). (2.248)
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For the SHO Hamiltonian the potential is V(x) = (1/2)mω2x2, so the Schrödinger equation
is

(2.249)
i h̄
∂

∂t
Ψα(p′) =

(
(p′)2

2m
−

1
2

mω2 h̄2 ∂2

∂(p′)2

)
Ψα(p′)

=
1

2m

(
(p′)2 − m2ω2 h̄2 ∂2

∂(p′)2

)
Ψα(p′).

To determine the wave functions, let’s non-dimensionalize this and compare to the position
space Schrödinger equation. Let

(2.250)p2
0 = mωh̄,

so

(2.251)
i h̄
∂

∂t
Ψα(p′) =

p2
0

2m

( p′

p0

)2

−
∂2

∂(p′/p0)2

 Ψα(p′)

=
ω h̄
2

− ∂2

∂(p′/p0)2 +

(
p′

p0

)2 Ψα(p′).

Compare this to the position space equation with x2
0 = mω/ h̄,

(2.252)

i h̄
∂

∂t
Ψα(x′) =

(
−

h̄2

2m
∂2

∂(x′)2 +
1
2

mω2(x′)2
)

Ψα(x′)

=
h̄2

2m

(
−

∂2

∂(x′)2 +
m2ω2

h̄2 (x′)2
)

Ψα(x′)

=
h̄2x2

0

2m

− ∂2

∂(x′/x0)2 +

(
x′

x0

)2 Ψα(x′)

=
h̄ω
2

− ∂2

∂(x′/x0)2 +

(
x′

x0

)2 Ψα(x′).

It’s clear that there is a straightforward duality relationship between the respective wave
functions. Since

(2.253)
〈
x′
∣∣∣n〉 =

1

π1/4
√

2nn!xn+1/2
0

(
x′ − x2

0
d

dx′

)n

exp

−1
2

(
x′

x0

)2 ,
the momentum space wave functions are

(2.254)
〈
p′

∣∣∣n〉 =
1

π1/4
√

2nn!pn+1/2
0

(
p′ − p2

0
d

dp′

)n

exp

−1
2

(
p′

p0

)2 .



112 quantum dynamics

Exercise 2.13 Correlation function. (phy1520 2015 ps2.3)

Consider 〈x(0)x(t)〉 and 〈p(0)p(t)〉 where operators are in the Heisenberg representation.
These are called correlation functions. Evaluate this for the 1D harmonic oscillator in an en-
ergy eigenstate |n〉.
Answer for Exercise 2.13

PROBLEM SET RELATED MATERIAL REDACTED IN THIS DOCUMENT.PLEASE
FEEL FREE TO EMAIL ME FOR THE FULL VERSION IF YOU AREN’T TAKING PHY1520.

. .
. .

.
. . .

. .
. . .

. .
. .

. END-REDACTION

Exercise 2.14 1D SHO linear superposition that maximizes expectation. ([11] pr. 2.17)

For a 1D SHO

a. Construct a linear combination of |0〉 , |1〉 that maximizes 〈x〉 without using wave func-
tions.

b. How does this state evolve with time?

c. Evaluate 〈x〉 using the Schrödinger picture.

d. Evaluate 〈x〉 using the Heisenberg picture.

e. Evaluate
〈
(∆x)2

〉
.

Answer for Exercise 2.14

Part a. Forming

(2.255)|ψ〉 =
|0〉 + σ |1〉√

1 + |σ|2

the position expectation is

(2.256)〈ψ| x |ψ〉 =
1

1 + |σ|2
(
〈0| + σ∗ 〈1|

) x0
√

2

(
a† + a

)
(|0〉 + σ |1〉) .

Evaluating the action of the operators on the kets, we’ve got
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(2.257)
(
a† + a

)
(|0〉 + σ |1〉) = |1〉 +

√
2σ |2〉 + σ |0〉 .

The |2〉 term is killed by the bras, leaving

(2.258)
〈x〉 =

1
1 + |σ|2

x0
√

2

(
σ + σ∗

)
=

√
2x0 Reσ
1 + |σ|2

.

Any imaginary component in σ will reduce the expectation, so we are constrained to picking
a real value.

The derivative of

(2.259)f (σ) =
σ

1 + σ2 ,

is

(2.260)f ′(σ) =
1 − σ2

(1 + σ2)2 .

That has zeros at σ = ±1. The second derivative is

(2.261)f ′′(σ) =
−2σ(3 − σ2)

(1 + σ2)3 .

That will be negative (maximum for the extreme value) at σ = 1, so the linear superposition
of these first two energy eigenkets that maximizes the position expectation is

(2.262)ψ =
1
√

2
(|0〉 + |1〉) .

That maximized position expectation is

(2.263)〈x〉 =
x0
√

2
.

Part b. The time evolution is given by

(2.264)

|Ψ(t)〉 = e−iHt/ h̄ 1
√

2
(|0〉 + |1〉)

=
1
√

2

(
e−i(0+1/2) h̄ωt/ h̄ |0〉 + e−i(1+1/2) h̄ωt/ h̄ |1〉

)
=

1
√

2

(
e−iωt/2 |0〉 + e−3iωt/2 |1〉

)
.
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Part c. The position expectation in the Schrödinger representation is

(2.265)

〈x(t)〉 =
1
2

(
eiωt/2 〈0| + e3iωt/2 〈1|

) x0
√

2

(
a† + a

) (
e−iωt/2 |0〉 + e−3iωt/2 |1〉

)
=

x0

2
√

2

(
eiωt/2 〈0| + e3iωt/2 〈1|

) (
e−iωt/2 |1〉 + e−3iωt/2

√
2 |2〉 + e−3iωt/2 |0〉

)
=

x0
√

2
cos(ωt).

Part d.

(2.266)

〈x(t)〉 =
1
2

(〈0| + 〈1|)
x0
√

2

(
a†eiωt + ae−iωt

)
(|0〉 + |1〉)

=
x0

2
√

2
(〈0| + 〈1|)

(
eiωt |1〉 +

√
2eiωt |2〉 + e−iωt |0〉

)
=

x0
√

2
cos(ωt),

matching the calculation using the Schrödinger picture.

Part e. Let’s use the Heisenberg picture for the uncertainty calculation. Using the calculation
above we have

(2.267)

〈
x2

〉
=

1
2

x2
0

2

(
e−iωt 〈1| +

√
2e−iωt 〈2| + eiωt 〈0|

) (
eiωt |1〉 +

√
2eiωt |2〉 + e−iωt |0〉

)
=

x2
0

4
(1 + 2 + 1)

= x2
0.

The uncertainty is

(2.268)

〈
(∆x)2

〉
=

〈
x2

〉
− 〈x〉2

= x2
0 −

x2
0

2
cos2(ωt)

=
x2

0

2

(
2 − cos2(ωt)

)
=

x2
0

2

(
1 + sin2(ωt)

)
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Exercise 2.15 Plane wave ground state expectation for 1D SHO. ([11] pr. 2.18)

For a 1D SHO, show that

(2.269)〈0| eikx |0〉 = exp
(
−k2 〈0| x2 |0〉 /2

)
.

Answer for Exercise 2.15
Despite the simple appearance of this problem, I found this quite involved to show. To do so,

start with a series expansion of the expectation

(2.270)〈0| eikx |0〉 =

∞∑
m=0

(ik)m

m!
〈0| xm |0〉 .

Let

(2.271)X =
(
a + a†

)
,

so that

x =

√
h̄

2ωm
X =

x0
√

2
X. (2.272)

Consider the first few values of 〈0| Xn |0〉

(2.273)
〈0| X |0〉 = 〈0|

(
a + a†

)
|0〉

= 〈0|1〉
= 0,

(2.274)
〈0| X2 |0〉 = 〈0|

(
a + a†

)2
|0〉

= 〈1|1〉
= 1,

(2.275)
〈0| X3 |0〉 = 〈0|

(
a + a†

)3
|0〉

= 〈1|
(√

2 |2〉 + |0〉
)

= 0.

Whenever the power n in Xn is even, the braket can be split into a bra that has only contri-
butions from odd eigenstates and a ket with even eigenstates. We conclude that 〈0| Xn |0〉 = 0
when n is odd.
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Noting that 〈0| x2 |0〉 = x2
0/2, this leaves

(2.276)

〈0| eikx |0〉 =

∞∑
m=0

(ik)2m

(2m)!
〈0| x2m |0〉

=

∞∑
m=0

(ik)2m

(2m)!

 x2
0

2

m

〈0| X2m |0〉

=

∞∑
m=0

1
(2m)!

(
−k2 〈0| x2 |0〉

)m
〈0| X2m |0〉 .

This problem is now reduced to showing that

(2.277)
1

(2m)!
〈0| X2m |0〉 =

1
m! 2m ,

or

(2.278)

〈0| X2m |0〉 =
(2m)!
m! 2m

=
(2m)(2m − 1)(2m − 2) · · · (2)(1)

2mm!

=
2m(m)(2m − 1)(m − 1)(2m − 3)(m − 2) · · · (2)(3)(1)(1)

2mm!
= (2m − 1)! ! ,

where n! ! = n(n − 2)(n − 4) · · ·.
It looks like 〈0| X2m |0〉 can be expanded by inserting an identity operator and proceeding

recursively, like

(2.279)
〈0| X2m |0〉 = 〈0| X2

 ∞∑
n=0

|n〉 〈n|

 X2m−2 |0〉

= 〈0| X2 (|0〉 〈0| + |2〉 〈2|) X2m−2 |0〉
= 〈0| X2m−2 |0〉 + 〈0| X2 |2〉 〈2| X2m−2 |0〉 .

This has made use of the observation that 〈0| X2 |n〉 = 0 for all n , 0, 2. The remaining term
includes the factor

(2.280)
〈0| X2 |2〉 = 〈0|

(
a + a†

)2
|2〉

=
(
〈0| +

√
2 〈2|

)
|2〉

=
√

2,
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Since
√

2 |2〉 =
(
a†

)2
|0〉, the expectation of interest can be written

(2.281)〈0| X2m |0〉 = 〈0| X2m−2 |0〉 + 〈0| a2X2m−2 |0〉 .

How do we expand the second term. Let’s look at how a and X commute

(2.282)

aX = [a, X] + Xa
=

[
a, a + a†

]
+ Xa

=
[
a, a†

]
+ Xa

= 1 + Xa,

(2.283)

a2X = a (aX)
= a (1 + Xa)
= a + aXa
= a + (1 + Xa) a
= 2a + Xa2.

Proceeding to expand a2Xn we find

a2X3 = 6X + 6X2a + X3a2

a2X4 = 12X2 + 8X3a + X4a2

a2X5 = 20X3 + 10X4a + X5a2

a2X6 = 30X4 + 12X5a + X6a2.

(2.284)

It appears that we have[
a2Xn, Xna2

]
= βnXn−2 + 2nXn−1a, (2.285)

where

βn = βn−1 + 2(n − 1), (2.286)

and β2 = 2. Some goofing around shows that βn = n(n − 1), so the induction hypothesis is

[
a2Xn, Xna2

]
= n(n − 1)Xn−2 + 2nXn−1a. (2.287)
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Let’s check the induction

(2.288)

a2Xn+1 = a2XnX
=

(
n(n − 1)Xn−2 + 2nXn−1a + Xna2

)
X

= n(n − 1)Xn−1 + 2nXn−1aX + Xna2X
= n(n − 1)Xn−1 + 2nXn−1 (1 + Xa) + Xn

(
2a + Xa2

)
= n(n − 1)Xn−1 + 2nXn−1 + 2nXna + 2Xna + Xn+1a2

= Xn+1a2 + (2 + 2n)Xna + (2n + n(n − 1)) Xn−1

= Xn+1a2 + 2(n + 1)Xna + (n + 1)nXn−1,

which concludes the induction, giving

(2.289)〈0| a2Xn |0〉 = n(n − 1) 〈0| Xn−2 |0〉 ,

and

(2.290)〈0| X2m |0〉 = 〈0| X2m−2 |0〉 + (2m − 2)(2m − 3) 〈0| X2m−4 |0〉 .

Let

(2.291)σn = 〈0| Xn |0〉 ,

so that the recurrence relation, for 2n ≥ 4 is

(2.292)σ2n = σ2n−2 + (2n − 2)(2n − 3)σ2n−4

We want to show that this simplifies to

(2.293)σ2n = (2n − 1)! !

The first values are

σ0 = 〈0| X0 |0〉 = 1 (2.294a)

σ2 = 〈0| X2 |0〉 = 1 (2.294b)

which gives us the right result for the first term in the induction

(2.295)
σ4 = σ2 + 2 × 1 × σ0

= 1 + 2
= 3! !
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For the general induction term, consider

(2.296)

σ2n+2 = σ2n + 2n(2n − 1)σ2n−2

= (2n − 1)! ! +2n(2n − 1)(2n − 3)! !
= (2n + 1)(2n − 1)! !
= (2n + 1)! ! ,

which completes the final induction. That was also the last thing required to complete the
proof, so we are done!

Exercise 2.16 Relation of probability flux to momentum.
Show that the probability flux

(2.297)j(x, t) = −
i h̄
2m

(
ψ∗∇ψ − ψ∇ψ∗

)
,

is related to the momentum expectation at a given time by the integral of the flux over all
space

(2.298)
∫

d3xj(x, t) =
〈p〉t
m

.

Answer for Exercise 2.16
This can be seen by recasting the integral in bra-ket form. Let

(2.299)ψ(x, t) = 〈x|ψ(t)〉 ,

and note that the momentum portions of the flux can be written as

(2.300)−i h̄∇ψ(x, t) = 〈x|p |ψ(t)〉 .

The current is therefore

(2.301)

j(x, t) =
1

2m
(
ψ∗ 〈x|p |ψ(t)〉 + ψ〈x|p |ψ(t)〉∗

)
=

1
2m

(
〈x|ψ(t)〉∗ 〈x|p |ψ(t)〉 + 〈x|ψ(t)〉 〈x|p |ψ(t)〉∗

)
=

1
2m

(〈ψ(t)|x〉 〈x|p |ψ(t)〉 + 〈ψ(t)|p |x〉 〈x|ψ(t)〉) .

Integrating and noting that the spatial identity is 1 =
∫

d3x |x〉 〈x|, we have

(2.302)
∫

d3xj(x, t) = 〈ψ(t)|p |ψ(t)〉 ,

This is just the expectation of p with respect to a specific time-instance state, demonstrating
the desired relationship.
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Exercise 2.17 Hermite polynomial normalization constant. ([11] pr. 2.21)

Derive the normalization constant cn for the Harmonic oscillator solution

(2.303)un(x) = cnHn

(
x
√

mω
h̄

)
e−mωx2/2 h̄,

by deriving the orthogonality relationship using generating functions

g(x, t) = e−t2+2tx =

∞∑
n=0

Hn(x)
tn

n!
. (2.304)

Start by working out the integral

I =

∫ ∞

−∞

g(x, t)g(x, s)e−x2
dx, (2.305)

consider the integral twice with each side definition of the generating function.
Answer for Exercise 2.17

First using the exponential definition of the generating function

(2.306)

∫ ∞

−∞

g(x, t)g(x, s)e−x2
dx =

∫ ∞

−∞

e−t2+2txe−s2+2sxe−x2
dx

= e−t2−s2
∫ ∞

−∞

e−(x2−2tx−2sx)dx

= e−t2−s2+(s+t)2
∫ ∞

−∞

e−(x−t−s)2
dx

= e2st
∫ ∞

−∞

e−u2
du

=
√
πe2st.

With the Hermite polynomial definition of the generating function, this integral is

(2.307)

∫ ∞

−∞

g(x, t)g(x, s)e−x2
dx =

∫ ∞

−∞

∞∑
n=0

Hn(x)
tn

n!

∞∑
m=0

Hm(x)
sm

m!
e−x2

dx

=

∞∑
n=0

tn

n!

∞∑
m=0

sm

m!

∫ ∞

−∞

Hn(x)Hm(x)e−x2
dx.

Let
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(2.308)αnm =

∫ ∞

−∞

Hn(x)Hm(x)e−x2
dx,

and equate the two expansions of this integral

(2.309)
√
π

∞∑
n =0

(2st)n

n!
=

∞∑
n=0

tn

n!

∞∑
m=0

sm

m!
αnm,

or, after equating powers of tn

(2.310)
√
π(2s)n =

∞∑
m=0

sm

m!
αnm.

This requires αnm to be zero for n , m, so

(2.311)
√
π2n =

1
n!
αnn,

and

(2.312)
∫ ∞

−∞

Hn(x)Hm(x)e−x2
dx = δnm

√
π2nn! .

The SHO normalization is fixed by

(2.313)

∫ ∞

−∞

u2
n(x)dx = c2

n

∫ ∞

−∞

H2
n(x/x0)e−(x/x0)2

dx

= c2
nx0
√
π2nn! ,

or

(2.314)

cn =
1√

√
π2nn!

√
h̄

mω

=

(mω
h̄π

)1/4
2−n/2 1

√
n!

Exercise 2.18 Dirac delta function potential. ([11] pr. 2.24,2.25)
Given a Dirac delta function potential

(2.315)H =
p2

2m
− V0δ(x),

which vanishes after t = 0.

a. Solve for the bound state for t < 0,

b. Solve for the time evolution after that.
Answer for Exercise 2.18
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Part a. This problem can be solved directly by considering the |x| > 0 and x = 0 regions
separately.

For |x| > 0 Schrödinger’s equation takes the form

(2.316)Eψ = −
h̄2

2m
d2ψ

dx2 .

With

(2.317)κ =

√
−2mE

h̄
,

this has solutions

(2.318)ψ = e±κx.

For x > 0 we must have

(2.319)ψ = ae−κx,

and for x < 0

(2.320)ψ = beκx.

requiring that ψ is continuous at x = 0 means a = b, or

(2.321)ψ = ψ(0)e−κ|x|.

For the x = 0 region, consider an interval [−ε, ε] region around the origin. We must have

(2.322)E
∫ ε

−ε
ψ(x)dx =

− h̄2

2m

∫ ε

−ε

d2ψ

dx2 dx − V0

∫ ε

−ε
δ(x)ψ(x)dx.

The RHS is zero

(2.323)E
∫ ε

−ε
ψ(x)dx = E

e−κ(ε) − 1
−κ

− E
1 − eκ(−ε)

κ
→ 0.

That leaves

(2.324)

V0

∫ ε

−ε
δ(x)ψ(x)dx =

− h̄2

2m

∫ ε

−ε

d2ψ

dx2 dx

=
− h̄2

2m
dψ
dx

∣∣∣∣∣ε
−ε

=
− h̄2

2m
ψ(0)

(
−κe−κ(ε) − κeκ(−ε)

)
.
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In the ε → 0 limit this gives

(2.325)V0 =
h̄2κ

m
.

Equating relations for κ we have

κ =
mV0

h̄2 =

√
−2mE

h̄
, (2.326)

or

E = −
1

2m

(mV0

h̄

)2
, (2.327)

with

ψ(x, t < 0) = C exp (−iEt/h̄ − κ|x|) . (2.328)

The normalization requires

(2.329)

1 = 2|C|2
∫ ∞

0
e−2κxdx

= 2|C|2
e−2κx

−2κ

∣∣∣∣∣∣∞
0

=
|C|2

κ
,

so

ψ(x, t < 0) =
√
κ exp (−iEt/h̄ − κ|x|) . (2.330)

There is only one bound state for such a potential.

Part b. After turning off the potential, any plane wave

ψ(x, t) = eikx−iE(k)t/ h̄, (2.331)

where

k =

√
2mE
h̄

, (2.332)
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is a solution. In particular, at t = 0, the wave packet

ψ(x, 0) =
1
√

2π

∫ ∞

−∞

eikxA(k)dk, (2.333)

is a solution. To solve for A(k), we require

(2.334)
1
√

2π

∫ ∞

−∞

eikxA(k)dk =
√
κe−κ|x|,

or

A(k) =

√
κ

2π

∫ ∞

−∞

e−ikxe−κ|x|dx =

√
2
π

κ3/2

κ2 + k2 . (2.335)

The initial time state established by the delta function potential evolves as

ψ(x, t > 0) =
1
√

2π

∫ ∞

−∞

eikx−i h̄k2t/2mA(k)dk. (2.336)

In terms of m,V0 that is

(2.337)ψ(x, t > 0) =
(mV0)3/2

π h̄

∫ ∞

−∞

eikx−i h̄k2t/2m

k2 h̄2 + m2V2
0/ h̄2 dk.

This integral resists an attempt to evaluate with Mathematica.

Exercise 2.19 Free particle propagator. ([11] pr. 2.31)

Derive the free particle propagator in one and three dimensions.
Answer for Exercise 2.19

I found the description in the text confusing, so let’s start from scratch with the definition of
the propagator. This is the kernel of the spatial convolution integral that encodes time evolution,
and can be expressed by expanding a general time state with two sets of identity operators. Let
the position relative state at time t, relative to an initial time t0 be given by 〈x|α, t; t0〉, and expand
this in terms of a complete basis of energy eigenstates |a′〉 and the time evolution operator
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(2.338)

〈
x′′

∣∣∣α, t; t0
〉

=
〈
x′′

∣∣∣ U |α, t0〉
=

〈
x′′

∣∣∣ e−iH(t−t0)/ h̄ |α, t0〉

=
〈
x′′

∣∣∣ e−iH(t−t0)/ h̄

∑
a′

∣∣∣a′〉 〈a′∣∣∣ |α, t0〉
=

〈
x′′

∣∣∣∑
a′

e−iEa′ (t−t0)/ h̄
∣∣∣a′〉 〈a′∣∣∣α, t0〉

=
〈
x′′

∣∣∣∑
a′

e−iEa′ (t−t0)/ h̄
∣∣∣a′〉 〈a′∣∣∣ (∫ d3x′

∣∣∣x′〉 〈x′∣∣∣) |α, t0〉
=

∫
d3x′

〈x′′∣∣∣∑
a′

e−iEa′ (t−t0)/ h̄
∣∣∣a′〉 〈a′∣∣∣x′〉 〈x′∣∣∣α, t0〉

=

∫
d3x′K(x′′, t; x′, t0)

〈
x′

∣∣∣α, t0〉 ,
where

(2.339)K(x′′, t; x′, t0) =
∑
a′

〈
x′′

∣∣∣a′〉 〈a′∣∣∣x′〉 e−iEa′ (t−t0)/ h̄,

the propagator, is the kernel of the convolution integral that takes the state |α, t0〉 to state
|α, t; t0〉. Evaluating this over the momentum states (where integration and not plain summation
is required), we have

(2.340)

K(x′′, t; x′, t0) =

∫
d3p′

〈
x′′

∣∣∣p′〉 〈p′∣∣∣x′〉 e−iEp′ (t−t0)/ h̄

=

∫
d3p′

〈
x′′

∣∣∣p′〉 〈p′∣∣∣x′〉 exp
(
−i

(p′)2(t − t0)
2m h̄

)
=

∫
d3p′

eix′′·p′/ h̄

(
√

2π h̄)3

e−ix′·p′/ h̄

(
√

2π h̄)3
exp

(
−i

(p′)2(t − t0)
2m h̄

)
=

1
(2π h̄)3

∫
d3p′ei(x′′−x′)·p′/ h̄ exp

(
−i

(p′)2(t − t0)
2m h̄

)
=

1
2π h̄

∫ ∞

−∞

dp′1ei(x′′1 −x′1)p′1/ h̄ exp
−i

(p′1)2(t − t0)
2m h̄

×
1

2π h̄

∫ ∞

−∞

dp′2ei(x′′2 −x′2)p′2/ h̄ exp
−i

(p′2)2(t − t0)
2m h̄

×
1

2π h̄

∫ ∞

−∞

dp′3ei(x′′3 −x′3)p′3/ h̄ exp

−i
(p′3)2(t − t0)

2m h̄


With a = (t − t0)/2m h̄, each of these three integral factors is of the form
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(2.341)

1
2π h̄

∫ ∞

−∞

dpei∆xp/ h̄ exp
(
−iap2

)
=

1
2π h̄
√

a

∫ ∞

−∞

duei∆xu/(
√

a h̄) exp
(
−iu2

)
=

1
2π h̄
√

a

∫ ∞

−∞

duei∆xu/(
√

a h̄) exp
(
−i(u − ∆x/(2

√
a h̄))2 + i(∆x/(2

√
a h̄))2

)
=

1
2π h̄
√

a
exp

(
i(∆x)22m h̄

4(t − t0) h̄2

) ∫ ∞

−∞

dze−iz2

=

√
−iπ2m h̄

4π2 h̄2(t − t0)
exp

(
i(∆x)2m

2(t − t0) h̄

)
=

√
m

2πi h̄(t − t0)
exp

(
i(∆x)2m

2(t − t0) h̄

)
.

Note that the integral above has value
√
−iπ which can be found by integrating over the

contour of fig. 2.12, letting R→ ∞.

Figure 2.12: Integration contour for
∫

e−iz2
.

Multiplying out each of the spatial direction factors gives the propagator in its closed form

K(x′′, t; x′, t0) =

(√
m

2πi h̄(t − t0)

)3

exp
(
i(x′′ − x′)2m

2(t − t0) h̄

)
. (2.342)

In one or two dimensions the exponential power 3 need only be adjusted appropriately.

Exercise 2.20 Partition function and ground state energy. ([11] pr. 2.32)
Define the partition function as

(2.343)Z =

∫
d3x′K(x′, t; x′, 0)

∣∣∣
β=it/ h̄,

Show that the ground state energy is given by

(2.344)−
1
Z
∂Z
∂β
, β→ ∞.
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Answer for Exercise 2.20
The propagator evaluated at the same point is

(2.345)

K(x′, t; x′, 0) =
∑
a′

〈
x′

∣∣∣a′〉 ∣∣∣a′〉 x′ exp
(
−

iEa′ t
h̄

)
=

∑
a′

∣∣∣〈x′∣∣∣a′〉∣∣∣2 exp
(
−

iEa′ t
h̄

)
=

∑
a′

∣∣∣〈x′∣∣∣a′〉∣∣∣2 exp (−Ea′β) .

The derivative is

(2.346)
∂Z
∂β

= −

∫
d3x′

∑
a′

Ea′
∣∣∣〈x′∣∣∣a′〉∣∣∣2 exp (−Ea′β) .

In the β → ∞ this sum will be dominated by the term with the lowest value of Ea′ . Suppose
that state is a′ = 0, then

(2.347)lim
β→∞

−
1
Z
∂Z
∂β

=

∫
d3x′E0|〈x′|0〉|2 exp (−E0β)∫

d3x′|〈x′|0〉|2 exp (−E0β)
= E0.

This this stat mech like result seems very striking and profound, and makes me want to go
off and study the QM formulation of stat mech that I recall seeing in [9], but not covered back
in phy452.

Exercise 2.21 Momentum space free particle propagator. ([11] pr. 2.33)

Derive the free particle propagator in momentum space.
Answer for Exercise 2.21

The momentum space propagator follows in the same fashion as the spatial propagator
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(2.348)

〈
p′′

∣∣∣α, t; t0
〉

=
〈
p′′

∣∣∣ U |α, t0〉
=

〈
p′′

∣∣∣ e−iH(t−t0)/ h̄ |α, t0〉

=
〈
p′′

∣∣∣ e−iH(t−t0)/ h̄

∑
a′

∣∣∣a′〉 〈a′∣∣∣ |α, t0〉
=

〈
p′′

∣∣∣∑
a′

e−iEa′ (t−t0)/ h̄
∣∣∣a′〉 〈a′∣∣∣α, t0〉

=
〈
p′′

∣∣∣∑
a′

e−iEa′ (t−t0)/ h̄
∣∣∣a′〉 〈a′∣∣∣ (∫ d3p′

∣∣∣p′〉 〈p′∣∣∣) |α, t0〉
=

∫
d3p′

〈p′′∣∣∣∑
a′

e−iEa′ (t−t0)/ h̄
∣∣∣a′〉 〈a′∣∣∣p′〉 〈p′∣∣∣α, t0〉

=

∫
d3p′K(p′′, t; p′, t0)

〈
p′

∣∣∣α, t0〉 ,
so

(2.349)K(p′′, t; p′, t0) =
∑
a′

〈
p′′

∣∣∣a′〉 〈a′∣∣∣p′〉 e−iEa′ (t−t0)/ h̄.

For the free particle Hamiltonian, this can be evaluated over a momentum space basis

(2.350)

K(p′′, t; p′, t0) =

∫
d3p′′′

〈
p′′

∣∣∣p′′′〉 〈p′′′∣∣∣p′〉 e−iEp′′′ (t−t0)/ h̄

=

∫
d3p′′′

〈
p′′

∣∣∣p′′′〉 δ(p′′′ − p′) exp
(
−i

(p′′′)2(t − t0)
2m h̄

)
=

〈
p′′

∣∣∣p′〉 exp
(
−i

(p′)2(t − t0)
2m h̄

)
or

K(p′′, t; p′, t0) = δ(p′′ − p′) exp
(
−i

(p′)2(t − t0)
2m h̄

)
. (2.351)

This is what we expect since the time evolution is given by just this exponential factor

(2.352)
〈
p′

∣∣∣α, t0; t
〉

=
〈
p′

∣∣∣ exp
(
−i

(p′)2(t − t0)
2m h̄

)
|α, t0〉 = exp

(
−i

(p′)2(t − t0)
2m h̄

) 〈
p′

∣∣∣α, t0〉 .
Exercise 2.22 Gauge transformation of free particle Hamiltonian. ([11] pr. 37(a))

Given a gauge transformation of the free particle Hamiltonian to
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(2.353)H =
1

2m
Π ·Π + eφ,

where

(2.354)Π = p −
e
c

A,

calculate mdx/dt, [Πi,Π j], and md2x/dt2, where x is the Heisenberg picture position opera-
tor, and the fields are functions only of position φ = φ(x),A = A(x).
Answer for Exercise 2.22

The final results for these calculations are found in [11], but seem worth deriving to exercise
our commutator muscles.

Heisenberg picture velocity operator The first order of business is the Heisenberg picture
velocity operator, but first note

(2.355)
Π ·Π =

(
p −

e
c

A
)
·

(
p −

e
c

A
)

= p2 −
e
c

(A · p + p · A) +
e2

c2 A2.

The time evolution of the Heisenberg picture position operator is therefore

(2.356)

dx
dt

=
1
i h̄

[x,H]

=
1

i h̄2m

[
x,Π2

]
=

1
i h̄2m

[
x,p2 −

e
c

(A · p + p · A) +
e2

c2 A2
]

=
1

i h̄2m

([
x,p2

]
−

e
c
[
x,A · p + p · A

])
.

For the p2 commutator we have

(2.357)
[
xr,p2

]
= i h̄

∂p2

∂pr
= 2i h̄pr,

or

(2.358)
[
x,p2

]
= 2i h̄p.
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Computing the remaining commutator, we’ve got

[xr,p ·A + A · p] = xr psAs − psAsxr

+ xrAs ps − As psxr

= ([xr, ps] + psxr) As − psAsxr

+ xrAs ps − As ([ps, xr] + xr ps)

= [xr, ps] As +(((
((((

(
psAsxr − psAsxr

+((((
((((xrAs ps − xrAs ps + As [xr, ps]

= 2i h̄δrsAs

= 2i h̄Ar,

(2.359)

so

[x,p ·A + A · p] = 2i h̄A. (2.360)

Assembling these results gives

dx
dt

=
1
m

(
p −

e
c

A
)

=
1
m

Π, (2.361)

as asserted in the text.

Kinetic Momentum commutators

(2.362)

[Πr,Πs] =
[
pr − eAr/c, ps − eAs/c

]
=���

�[pr, ps] −
e
c
([

pr, As
]
+

[
Ar, ps

])
+

e2

c2�
���[Ar, As]

= −
e
c

(
(−i h̄)

∂As

∂xr
+ (i h̄)

∂Ar

∂xs

)
= −

ie h̄
c

(
−
∂As

∂xr
+
∂Ar

∂xs

)
= −

ie h̄
c
εtsrBt,

or

[Πr,Πs] =
ie h̄
c
εrstBt. (2.363)
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Quantum Lorentz force For the force equation we have

(2.364)

m
d2x
dt2 =

dΠ

dt

=
1
i h̄

[Π,H]

=
1

i h̄2m

[
Π,Π2

]
+

1
i h̄

[
Π, eφ

]
.

For the φ commutator consider one component

(2.365)

[
Πr, eφ

]
= e

[
pr −

e
c

Ar, φ
]

= e
[
pr, φ

]
= e(−i h̄)

∂φ

∂xr
,

or
1
i h̄

[Π, eφ] = −e∇φ = eE. (2.366)

For the Π2 commutator I initially did this the hard way (it took four notebook pages, plus
two for a false start.) Realizing that I didn’t use eq. (2.363) for that expansion was the clue to
doing this more expediently.

Considering a single component

(2.367)

[
Πr,Π

2
]

= [Πr,ΠsΠs]
= ΠrΠsΠs −ΠsΠsΠr

= ([Πr,Πs] +���ΠsΠr) Πs −Πs ([Πs,Πr] +���ΠrΠs)

= i h̄
e
c
εrst (BtΠs + ΠsBt) ,

or

(2.368)
1

i h̄2m

[
Π,Π2

]
=

e
2mc

εrster (BtΠs + ΠsBt)

=
e

2mc
(Π × B − B ×Π) .

Putting all the pieces together we’ve got the quantum equivalent of the Lorentz force equation

m
d2x
dt2 = eE +

e
2c

(
dx
dt
×B −B ×

dx
dt

)
. (2.369)

While this looks equivalent to the classical result, all the vectors here are Heisenberg picture
operators dependent on position.
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Exercise 2.23 Gauge transformed probability current. ([11] pr. 2.37 (b))

a. For the gauge transformed Schrödinger equation

(2.370)
1

2m
Π(x) ·Π(x)ψ(x, t) + eφ(x)ψ(x, t) = i h̄

∂

∂t
ψ(x, t),

where

(2.371)Π(x) = −i h̄∇ −
e
c

A(x),

find the probability current defined by

(2.372)
∂ψ

∂t
+ ∇ · j.

b. Once obtained, let use a ψ =
√
ρeiS/ h̄ wavefunction representation, and find the corre-

sponding form for the probability current.

c. Evaluate
∫

d3xj.

Answer for Exercise 2.23

Part a. Equation eq. (2.370) and its conjugate are

(2.373)

1
2m

Π ·Πψ + eφψ = i h̄
∂ψ

∂t
1

2m
Π∗ ·Π∗ψ∗ + eφψ∗ = −i h̄

∂ψ∗

∂t

which can be used immediately in a chain rule expansion of the probability time derivative

(2.374)

i h̄
∂ρ

∂t
= i h̄ψ∗

∂ψ

∂t
+ i h̄ψ

∂ψ∗

∂t

= ψ∗
(

1
2m

Π ·Πψ + eφψ
)
− ψ

(
1

2m
Π∗ ·Π∗ψ∗ + eφψ∗

)
=

1
2m

(
ψ∗Π ·Πψ − ψΠ∗ ·Π∗ψ∗

)
.

We have a difference of conjugates, so can get away with expanding just the first term

(2.375)

ψ∗Π ·Πψ = ψ∗ψ

= ψ∗
(
−i h̄∇ −

e
c

A
)
·

(
−i h̄∇ −

e
c

A
)
ψ

= ψ∗
(
− h̄2
∇

2 +
i h̄e
c

(A · ∇ + ∇ · A) +
e2

c2 A2
)
ψ.
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Note that in the directional derivative terms, the gradient operates on everything to its right,
including A. Also note that the last term has no imaginary component, so it will not contribute
to the difference of conjugates.

This gives

ψ∗Π ·Πψ − ψΠ∗ ·Π∗ψ∗ = ψ∗
(
− h̄2
∇

2ψ +
i h̄e
c

(A · ∇ψ + ∇ · (Aψ))
)

− ψ

(
− h̄2
∇

2ψ∗ −
i h̄e
c

(A · ∇ψ∗ + ∇ · (Aψ∗))
)

= − h̄2
(
ψ∗∇2ψ − ψ∇2ψ∗

)
+

i h̄e
c

(ψ∗A · ∇ψ + ψ∗∇ · (Aψ) + ψA · ∇ψ∗ + ψ∇ · (Aψ∗))

(2.376)

The first term is recognized as a divergence

(2.377)∇ ·
(
ψ∗∇ψ − ψ∇ψ∗

)
= ψ∗∇ · ∇ψ + ∇ψ · ∇ψ∗ − ψ∇ · ∇ψ∗ − ∇ψ∗ · ∇ψ

= ψ∗∇2ψ − ψ∇2ψ∗.

The second term can also be factored into a divergence operation

(2.378)

ψ∗A · ∇ψ + ψ∗∇ · (Aψ) + ψA · ∇ψ∗ + ψ∇ · (Aψ∗)
= (ψ∗A · ∇ψ + ψ∇ · (Aψ∗)) + (ψA · ∇ψ∗ + ψ∗∇ · (Aψ))

= 2∇ · (Aψψ∗)

Putting all the pieces back together we have

(2.379)

∂ρ

∂t
=

1
2mi h̄

(
ψ∗Π ·Πψ − ψΠ∗ ·Π∗ψ∗

)
= ∇ ·

1
2mi h̄

(
− h̄2 (

ψ∗∇ψ − ψ∇ψ∗
)

+
i h̄e
c

2Aψψ∗
)

= ∇ ·

(
i h̄
2m

(
ψ∗∇ψ − ψ∇ψ∗

)
+

e
mc

Aψψ∗
)
.

From eq. (2.372), the probability current must be

(2.380)j =
h̄

2im
(
ψ∗∇ψ − ψ∇ψ∗

)
−

e
mc

Aψψ∗,

or

j =
h̄
m

Im (ψ∗∇ψ) −
e

mc
Aψψ∗. (2.381)
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Part b. To find the ψ =
√
ρeiS/ h̄ form of the current, note that

(2.382)∇ψ = eiS/ h̄
∇
√
ρ +
√
ρeiS/ h̄

∇ (iS/ h̄) ,

so

(2.383)ψ∗∇ψ =
√
ρ∇
√
ρ +

iρ
h̄
∇S .

Discarding the real part of this product, we have

(2.384)j =
h̄
m
ρ∇S −

e
mc

Aρ,

or

j =
ρ

m

(
∇S −

e
c

A
)
. (2.385)

Part c. Finally, note that

(2.386)−i h̄∇ψ = 〈x|p |ψ〉 ,

so

(2.387)j =
h̄
m

Im
(
〈Ψ|x〉

( i
h̄

)
〈x|p |ψ〉

)
−

e
mc

A 〈ψ|x〉 〈x|ψ〉 .

Integrating over all space to eliminate the identity operators, this is

(2.388)

∫
d3xj =

1
m

Im (i 〈Ψ|p |ψ〉) −
e

mc
A 〈ψ|ψ〉

=
1
m
〈ψ|

(
p −

e
c

A
)
|ψ〉

=
1
m
〈Π〉 .

Exercise 2.24 Coherent States. (phy1520 2015 ps2.1, and [11] pr. 2.19(c))

Consider the harmonic oscillator Hamiltonian H = p2/2m + mω2x2/2. Define the coherent
state |z〉 as the eigenfunction of the annihilation operator, via a |z〉 = z |z〉, where a is the oscillator
annihilation operator and z is some complex number which characterizes the coherent state.

a. Expanding |z〉 in terms of oscillator energy eigenstates |n〉, show that |z〉 = Ceza† |0〉. Find
the normalization constant C.

b. Calculate the overlap 〈z|z′〉 for normalized coherent states |z〉.



2.13 problems 135

c. Using the wavefunction |z〉, compute 〈x〉 , 〈p〉 ,
〈
x2

〉
, and

〈
p2

〉
by defining x, p in terms

of a, a†.

d. The time evolution of any observed quantity in quantum mechanics can be described in
two ways:

(a) Schrödinger: the wavefunction evolves as |ψ(t)〉 = e−iHt/ h̄ |ψ(0)〉 and the operator
A is time-independent, or

(b) Heisenberg: the wavefunction is fixed to its value at t = 0, say |ψ〉 , and operators
evolve as A(t) = eiHt/ h̄Ae−iHt/ h̄ .

Show that both prescriptions yield the same result for any matrix elements or measured
quantities.

e. Using the Heisenberg picture, compute the time evolution of 〈x(t)〉 , 〈p(t)〉 ,
〈
x2(t)

〉
, and〈

p2(t)
〉

in the coherent state |z〉. Comment on connections to classical dynamics of the
oscillator in phase space.

f. Show that | f (n)|2 for a coherent state written as

(2.389)|z〉 =

∞∑
n=0

f (n) |n〉

has the form of a Poisson distribution, and find the most probable value of n, and thus
the most probable energy.

Answer for Exercise 2.24
PROBLEM SET RELATED MATERIAL REDACTED IN THIS DOCUMENT.PLEASE

FEEL FREE TO EMAIL ME FOR THE FULL VERSION IF YOU AREN’T TAKING PHY1520.
. .

. .
.

. . .
. .

. . .
. .

. .
. END-REDACTION

Exercise 2.25 Aharonov Bohm effect. (phy1520 2015 ps3.1)

a. Consider Young’s double slit experiment with electrons, having a monoenergetic source
of electrons hitting a double slit with slit spacing d, with the electrons then landing on a
screen at a distance D away from the double slit. For electrons with energy E, find the
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de Broglie wavelength λ, and hence the spacing between the fringes on the screen. You
can ignore the drop in intensity as the electron beam ‘spreads’ when it travels from the
slits to the screen (recall that the slits act as effective point sources), so just take phase
changes into account along the travel path.

b. Next, imagine a thin solenoidal flux Φ being placed between the two slits, so that elec-
tron paths which encircle the flux once will pick up an Aharonov Bohm phase eΦ/ h̄c.
Compute the resulting shift in the interference pattern on the screen. Show that when the
flux Φ is increased from 0→ hc/e, the interference pattern shifts by exactly one fringe,
so the new pattern appears the same as the old. This is the same flux periodicity we saw
in class for the energy levels versus flux for a particle on a ring.

Answer for Exercise 2.25
PROBLEM SET RELATED MATERIAL REDACTED IN THIS DOCUMENT.PLEASE

FEEL FREE TO EMAIL ME FOR THE FULL VERSION IF YOU AREN’T TAKING PHY1520.
. .

. .
.

. . .
. .

. . .
. .

. .
. END-REDACTION

Exercise 2.26 Landau Levels - Symmetric gauge. (phy1520 2015 ps3.2)

Consider a charged particle moving in two dimensions (xy-plane) in a uniform magnetic
field B0ẑ perpendicular to the plane. Let us work in a different gauge from the Landau gauge
we discussed in class, namely, let us set

(2.390)A =
B0

2
(xŷ − yx̂) ,

where (x, y) denotes the particle position. This is called the ‘symmetric gauge’.
In this gauge,

a. work out the energy spectrum, and the eigenfunctions, and

b. provide a crude counting of the number of states per energy level (i.e., the degeneracy)
for an electron on a disk of radius R.

Answer for Exercise 2.26
PROBLEM SET RELATED MATERIAL REDACTED IN THIS DOCUMENT.PLEASE

FEEL FREE TO EMAIL ME FOR THE FULL VERSION IF YOU AREN’T TAKING PHY1520.
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. .
. .

.
. . .

. .
. . .

. .
. .

. END-REDACTION

Exercise 2.27 Aharonov Bohm effect. ([11] pr. 2.28, phy1520 2015 ps3.3)
Consider an electron confined to the interior of a finite hollow cylinder with its axis being ẑ.

Let the inner and outer walls of the cylinder be at radial coordinates ρa and ρb > ρa respectively.
Let the cylinder have its top and bottom ends at z = 0, L.

a. Find the eigenstates for a particle confined to this cylinder (ignore normalization), and
show that its energies are given by

Elmn =
h̄2

2m

k2
mn +

(
πl
L

)2 (l = 1, 2, 3, · · · ; m = 0, 1, 2, · · ·) (2.391)

where kmn is the nth root of the equation
(2.392)Jm(kmnρb)Nm(kmnρa) − Nm(kmnρb)Jm(kmnρa) = 0.

b. Repeat this problem with a uniform magnetic field Bẑ which is confined to the region
0 < ρ < ρa (i.e., only in the hollow part of the cylinder).

c. Show that there is a periodicity of the energy levels with the field, with the period being
such that πρ2

aB = 2πNh̄c/e.

Answer for Exercise 2.27
PROBLEM SET RELATED MATERIAL REDACTED IN THIS DOCUMENT.PLEASE

FEEL FREE TO EMAIL ME FOR THE FULL VERSION IF YOU AREN’T TAKING PHY1520.
. .

. .
.

. . .
. .

. . .
. .

. .
. END-REDACTION
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Exercise 2.28 Two spin time evolution. (midterm pr. 1.iii)

Compute the time evolution of a two particle state

ψ =
1
√

2
(|↑↓〉 − |↓↑〉) (2.393)

under the action of the Hamiltonian

H = −BS z,1 + 2BS x,2 =
h̄B
2

(−σz,1 + 2σx,2) . (2.394)

Answer for Exercise 2.28
We have to know the action of the Hamiltonian on all the states

H |↑↑〉 =
B h̄
2

(− |↑↑〉 + 2 |↑↓〉)

H |↑↓〉 =
B h̄
2

(− |↑↓〉 + 2 |↑↑〉)

H |↓↑〉 =
B h̄
2

(|↓↑〉 + 2 |↓↓〉)

H |↓↓〉 =
B h̄
2

(|↓↓〉 + 2 |↓↑〉)

(2.395)

With respect to the basis {|↑↑〉 , |↑↓〉 , |↓↑〉 , |↓↓〉}, the matrix of the Hamiltonian is

(2.396)H =
h̄B
2


−1 2 0 0

2 −1 0 0

0 0 1 2

0 0 2 1


Utilizing the block diagonal form (and ignoring the h̄B/2 factor for now), the characteristic

equation is

(2.397)
0 =

∣∣∣∣∣∣∣−1 − λ 2

2 −1 − λ

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣1 − λ 2

2 1 − λ

∣∣∣∣∣∣∣
=

(
(1 + λ)2 − 4

) (
(1 − λ)2 − 4

)
.

This has solutions

(2.398)1 ± λ = ±2,
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or, with the h̄B/2 factors put back in

(2.399)λ = ± h̄B/2,±3 h̄B/2.

I was thinking that we needed to compute the time evolution operator

(2.400)U = e−iHt/ h̄,

but we actually only need the eigenvectors, and the inverse relations. We can find the eigen-
vectors by inspection in each case from

(2.401)

H − (1)
h̄B
2

=
h̄B
2


−2 2 0 0

2 −2 0 0

0 0 0 2

0 0 2 0



H − (−1)
h̄B
2

=
h̄B
2


0 2 0 0

2 0 0 0

0 0 2 2

0 0 2 2



H − (3)
h̄B
2

=
h̄B
2


−4 2 0 0

2 −4 0 0

0 0 −2 2

0 0 2 −2



H − (−3)
h̄B
2

=
h̄B
2


2 2 0 0

2 2 0 0

0 0 4 2

0 0 2 1


.
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The eigenkets are

|1〉 =
1
√

2


1

1

0

0



|−1〉 =
1
√

2


0

0

1

−1



|3〉 =
1
√

2


0

0

1

1



|−3〉 =
1
√

2


1

−1

0

0


,

(2.402)

or

√
2 |1〉 = |↑↑〉 + |↑↓〉

√
2 |−1〉 = |↓↑〉 − |↓↓〉
√

2 |3〉 = |↓↑〉 + |↓↓〉
√

2 |−3〉 = |↑↑〉 − |↑↓〉 .

(2.403)

We can invert these

(2.404)

|↑↑〉 =
1
√

2
(|1〉 + |−3〉)

|↑↓〉 =
1
√

2
(|1〉 − |−3〉)

|↓↑〉 =
1
√

2
(|3〉 + |−1〉)

|↓↓〉 =
1
√

2
(|3〉 − |−1〉)
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The original state of interest can now be expressed in terms of the eigenkets

(2.405)ψ =
1
2

(|1〉 − |−3〉 − |3〉 − |−1〉)

The time evolution of this ket is

(2.406)

ψ(t) =
1
2

(
e−iBt/2 |1〉 − e3iBt/2 |−3〉 − e−3iBt/2 |3〉 − eiBt/2 |−1〉

)
=

1

2
√

2

(
e−iBt/2 (|↑↑〉 + |↑↓〉) − e3iBt/2 (|↑↑〉 − |↑↓〉)

− e−3iBt/2 (|↓↑〉 + |↓↓〉) − eiBt/2 (|↓↑〉 − |↓↓〉)
)

=
1

2
√

2

((
e−iBt/2 − e3iBt/2

)
|↑↑〉 +

(
e−iBt/2 + e3iBt/2

)
|↑↓〉

−
(
e−3iBt/2 + eiBt/2

)
|↓↑〉 +

(
eiBt/2 − e−3iBt/2

)
|↓↓〉

)
=

1

2
√

2

(
eiBt/2

(
e−2iBt/2 − e2iBt/2

)
|↑↑〉 + eiBt/2

(
e−2iBt/2 + e2iBt/2

)
|↑↓〉

− e−iBt/2
(
e−2iBt/2 + e2iBt/2

)
|↓↑〉 + e−iBt/2

(
e2iBt/2 − e−2iBt/2

)
|↓↓〉

)
=

1
√

2

(
i sin(Bt)

(
e−iBt/2 |↓↓〉 − eiBt/2 |↑↑〉

)
+ cos(Bt)

(
eiBt/2 |↑↓〉 − e−iBt/2 |↓↑〉

))
Note that this returns to the original state when t = 2πn

B , n ∈ Z. I think I’ve got it right this
time (although I got a slightly different answer on paper before typing it up.)

Exercise 2.29 Particle in uniform electric and magnetic fields. (2015 midterm p2)

Find the energy eigenvalues and states for a charged particle moving the in the x, y plane in a
uniform magnetic field Bẑ and a uniform electric field Eŷ.
Answer for Exercise 2.29

The Hamiltonian for such a problem has the form

(2.407)H =
(px − qAx/c)2

2m
+

(py − qAy/c)2

2m
+ qφ,

where A, φ are the potentials for the electromagnetic field. Since we don’t want a time depen-
dent electric potential, our only choice is

Eŷ = −∇φ = −∇(−Ey). (2.408)

We have many choices for the magnetic field, but it will have to be of the form A = B(−ay, bx, 0),
for example a = b = 1/2. The Hamiltonian becomes
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(2.409)H =
(px + qBay/c)2

2m
+

(py − qBbx/c)2

2m
− qEy,

We seek a wave function that makes this separable. If we try ψ = eikyφ(x) we get

Hψ
eiky =

(
(px + qBay/c)2

2m
+

( h̄k − qBbx/c)2

2m
− qEy

)
φ(x), (2.410)

and if we try ψ = eikyφ(x) we get

Hψ
eikx =

 ( h̄k + qBay/c)2

2m
+

(py − qBbx/c)2

2m
− qEy

 φ(y). (2.411)

The latter is separable if we set b = 0, which requires a = 1, leaving an eigenvalue equation
for φ(y)

H′ =
( h̄k + qBy/c)2

2m
+

p2
y

2m
− qEy

=
p2

y

2m
− (qE − h̄kqB/mc) y +

1
2m

(qBy
c

)2
+

( h̄k)2

2m

=
p2

y

2m
+

1
2m

(qB
c

)2
− 2

m

(
mc
qB

)2

(qE − h̄kqB/mc) y + y2

 +
( h̄k)2

2m

=
p2

y

2m
+

1
2

m
(qB
mc

)2
y− 1

m

(
mc
qB

)2

(qE − h̄kqB/mc)

2

−
1

2m

(
mc
qB

)2

(qE − h̄kqB/mc)2 +
( h̄k)2

2m
.

(2.412)

Let

ω =
qB
mc

y0 =
1

mω2 (qE − h̄kω)

E0 =
( h̄k)2

2m
−

1
2

mω2y2
0,

(2.413)

leaving

H′ =
p2

y

2m
+

1
2

mω2(y − y0)2 + E0. (2.414)
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The energy eigenvalues are therefore

E = h̄ω
(
n +

1
2

)
+ E0, (2.415)

and the eigenfunctions are

ψ = eikxφn(y − y0), (2.416)

where φn(y) is the n-th Harmonic oscillator wavefunction.





3
D I R AC E Q UAT I O N I N 1 D

3.1 construction of the dirac equation

Schrödinger Derivation Recall that a “derivation” of the Schrödinger equation can be associ-
ated with the following equivalences

E ↔ h̄ω↔ i h̄
∂

∂t
(3.1)

p↔ h̄k ↔ −i h̄
∂

∂t
(3.2)

so that the classical energy relationship

(3.3)E =
p2

2m

takes the form

(3.4)i h̄
∂

∂t
= −

h̄2

2m
.

How do we do this in a relativistic context where the energy momentum relationship is

(3.5)
E =

√
p2c2 + m2c4

≈ mc2 +
p2

2m
+ · · ·

where m is the rest mass and c is the speed of light.

Attempt I

(3.6)E = mc2 +
p2

2m
+ (...)p4 + (...)p6 + · · ·

First order in time, but infinite order in space ∂/∂x. Useless.

145
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Attempt II

(3.7)E2 = p2c2 + m2c4.

This gives

(3.8)− h̄2 ∂
2ψ

∂t2 = − h̄2c2 ∂
2ψ

∂x2 + m2c4ψ.

This is the Klein-Gordon equation, which is second order in time.

Attempt III Suppose that we have the matrix

(3.9)

 pc mc2

mc2 −pc

 ,
or

(3.10)

 mc2 ipc

−ipc −mc2

 ,
These both happen to have eigenvalues λ± = ±

√
p2c2. For those familiar with the Dirac

matrices, this amounts to a choice for different representations of the gamma matrices.
Working with eq. (3.9), which has some nicer features than other possible representations,

we seek a state

(3.11)ψ =

ψ1(x, t)

ψ2(x, t)

 ,
where we aim to write down an equation for this composite state.

(3.12)i h̄
∂ψ

∂t
= Hψ

Assuming the matrix is the Hamiltonian, multiplying that with the composite state gives

(3.13)

i h̄∂ψ1
∂t

i h̄∂ψ1
∂t

 =

 p̂c mc2

mc2 −p̂c


ψ1(x, t)

ψ2(x, t)


=

p̂cψ1 + mc2ψ2

mc2ψ1 − p̂cψ2

 .
What happens when we square this
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(3.14)

(
i h̄
∂

∂t

)2

ψ = HHψ

=

 p̂c mc2

mc2 −p̂c


 p̂c mc2

mc2 − p̂c

ψ
=

p̂2c2 + m2c4 0

0 p̂2c2 + m2c4


(3.15)− h̄2 ∂

2

∂t2ψ =
(
p̂2c2 + m2c4

)
1ψ,

or more exactly

(3.16)− h̄2 ∂
2

∂t2ψ1,2 =
(
p̂2c2 + m2c4

)
ψ1,2.

This recovers the Klein Gordon equation for each of the wave functions ψ1, ψ2.

3.2 plane wave solution

Instead of squaring the operators, lets try to solve the first order equation. To do so we’ll want
to diagonalize H.

Before doing that, let’s write out the Hamiltonian in an alternate but useful form

(3.17)H = p̂c

1 0

0 −1

 + mc2

0 1

1 0


= p̂cσ̂z + mc2σ̂x.

We have two types of operators in the mix here. We have matrix operators that act on the wave
function matrices, as well as derivative operators that act on the components of those matrices.

We have

(3.18)σ̂z

ψ1

ψ2

 =

 ψ1

−ψ2

 ,
and

(3.19)σ̂x

ψ1

ψ2

 =

ψ2

ψ1

 .
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Because the derivative actions of p̂ and the matrix operators are independent, we see that
these operators commute. For example

(3.20)

σ̂z p̂

ψ1

ψ2

 = σ̂z

−i h̄∂ψ1
∂x

−i h̄∂ψ2
∂x


=

−i h̄∂ψ1
∂x

i h̄∂ψ2
∂x


= p̂σ̂z

ψ1

ψ2

 .
Diagonalizing it Suppose the wave function matrix has the structure

(3.21)ψ =

 f+
f−

 eikx.

We’ll plug this into the Schrödinger equation and see what we get.

Where we left off

(3.22)−i h̄
∂

∂t

ψ1

ψ2

 =

−i h̄c ∂
∂x mc2

mc2 i h̄c ∂
∂x

 .
With a potential this would be

(3.23)−i h̄
∂

∂t

ψ1

ψ2

 =

−i h̄c ∂
∂x + V(x) mc2

mc2 i h̄c ∂
∂x + V(x)

 .
This means that the potential is raising the energy eigenvalue of the system.

Free Particle Assuming a form

(3.24)

ψ1(x, t)

ψ2(x, t)

 = eikx

 f1(t)

f2(t)

 ,
and plugging back into the Dirac equation we have

(3.25)−i h̄
∂

∂t

 f1
f2

 =

k h̄c mc2

mc2 − h̄kc


 f1

f2

 .
We can use a diagonalizing rotation
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(3.26)

 f1
f2

 =

cos θk − sin θk

sin θk cos θk


 f+

f−

 .
Plugging this in reduces the system to the form

(3.27)−i h̄
∂

∂t

 f+
f−

 =

Ek 0

0 −Ek


 f+

f−

 .
Where the rotation angle is found to be given by

(3.28)

sin(2θk) =
mc2√

( h̄kc)2 + m2c4

cos(2θk) =
h̄kc√

( h̄kc)2 + m2c4

Ek =
√

( h̄kc)2 + m2c4

3.3 dirac sea and pair creation

See fig. 3.1 for a sketch of energy vs momentum. The asymptotes are the limiting cases when
mc2 → 0. The + branch is what we usually associate with particles. What about the other energy
states. For Fermions Dirac argued that the lower energy states could be thought of as “filled up”,
using the Pauli principle to leave only the positive energy states available. This was called the
“Dirac Sea”. This isn’t a good solution, and won’t work for example for Bosons.

Figure 3.1: Dirac equation solution space.

Another way to rationalize this is to employ ideas from solid state theory. For example con-
sider a semiconductor with a valence and conduction band as sketched in fig. 3.2.

A photon can excite an electron from the valence band to the conduction band, leaving all the
valence band states filled except for one (a hole). For an electron we can use almost the same
picture, as sketched in fig. 3.3.
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Figure 3.2: Solid state valence and conduction band transition.

Figure 3.3: Pair creation.

A photon with energy Ek − (−Ek) can create a positron-electron pair from the vacuum, where
the energy of the electron and positron pair is Ek. At high enough energies, we can see this pair
creation occur.

3.4 zitterbewegung

If a particle is created at a non-eigenstate such as one on the asymptotes, then oscillations
between the positive and negative branches are possible as sketched in fig. 3.4.

Figure 3.4: Zitterbewegung oscillation.
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Only “vertical" oscillations between the positive and negative locations on these branches is
possible since those are the points that match the particle momentum. Examining this will be
the aim of one of the problem set problems.

3.5 probability and current density

If we define a probability density

(3.29)ρ(x, t) = |ψ1|
2 + |ψ2|

2,

does this satisfy a probability conservation relation

(3.30)
∂ρ

∂t
+
∂ j
∂x

= 0,

where j is the probability current. Plugging in the density, we have

(3.31)
∂ρ

∂t
=
∂ψ∗1
∂t

ψ1 + ψ∗1
∂ψ1

∂t
+
∂ψ∗2
∂t

ψ2 + ψ∗2
∂ψ2

∂t
.

It turns out that the probability current has the form

(3.32)j(x, t) = c
(
ψ∗1ψ1 − ψ

∗
2ψ2

)
.

Here the speed of light c is the slope of the line in the plots above. We can think of this current
density as right movers minus the left movers. Any state that is given can be thought of as a
combination of right moving and left moving states, neither of which are eigenstates of the free
particle Hamiltonian.

3.6 potential step

The next logical thing to think about, as in non-relativistic quantum mechanics, is to think about
what occurs when the particle hits a potential step, as in fig. 3.5.

The approach is the same. We write down the wave functions for the V = 0 region (I), and
the higher potential region (II).

The eigenstates are found on the solid lines above the asymptotes on the right hand movers
side as sketched in fig. 3.6. The right and left moving designations are based on the phase
velocity ∂E/∂k (approaching ±c on the top-right and top-left quadrants respectively).

For k > 0, an eigenstate for the incident wave is

(3.33)ψinc(x) =

cos θk

sin θk

 eikx,
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Figure 3.5: Reflection off a potential barrier.

Figure 3.6: Right movers and left movers.

For the reflected wave function, we pick a function on the left moving side of the positive
energy branch.

(3.34)ψref(x) =

??
 e−ikx,

We’ll go through this in more detail next time.

3.7 dirac scattering off a potential step

For the non-relativistic case we have

E < V0 =⇒ T = 0,R = 1

E > V0 =⇒ T > 0,R < 1.
(3.35)

What happens for a relativistic 1D particle?
Referring to fig. 3.7.
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Figure 3.7: Potential step.

the region I Hamiltonian is

H =

 p̂c mc2

mc2 −p̂c

 , (3.36)

for which the solution is

(3.37)Φ = eik1 x

cos θ1

sin θ1

 ,
where

(3.38)
cos 2θ1 =

h̄ck1

Ek1

sin 2θ1 =
mc2

Ek1

To consider the k1 < 0 case, note that

cos2 θ1 − sin2 θ1 = cos 2θ1

2 sin θ1 cos θ1 = sin 2θ1
(3.39)

so after flipping the signs on all the k1 terms we find for the reflected wave

(3.40)Φ = e−ik1 x

sin θ1

cos θ1

 .
FIXME: this reasoning doesn’t entirely make sense to me. Make sense of this by trying this

solution as was done for the form of the incident wave solution.
The region I wave has the form

(3.41)ΦI = Aeik1 x

cos θ1

sin θ1

 + Be−ik1 x

sin θ1

cos θ1

 .
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By the time we are done we want to have computed the reflection coefficient

(3.42)R =
|B|2

|A|2
.

The region I energy is

(3.43)E =

√
(mc2)2

+ ( h̄ck1)
2
.

We must have

E =

√
(mc2)2

+ ( h̄ck2)
2

+ V0 =

√
(mc2)2

+ ( h̄ck1)
2
, (3.44)

so

(3.45)

( h̄ck2)2 = (E − V0)2 −
(
mc2

)2

=
(
E − V0 + mc2

)
r1

(
E − V0 − mc2

)
r2

.

The r1 and r2 branches are sketched in fig. 3.8.

Figure 3.8: Energy signs.

For low energies, we have a set of potentials for which we will have propagation, despite
having a potential barrier. For still higher values of the potential barrier the product r1r2 will be
negative, so the solutions will be decaying. Finally, for even higher energies, there will again be
propagation.

The non-relativistic case is sketched in fig. 3.9.
For the relativistic case we must consider three different cases, sketched in fig. 3.10, fig. 3.11,

and fig. 3.12 respectively. For the low potential energy, a particle with positive group velocity
(what we’ve called right moving) can be matched to an equal energy portion of the potential
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Figure 3.9: Effects of increasing potential for non-relativistic case.

shifted parabola in region II. This is a case where we have transmission, but no antiparticle
creation. There will be an energy region where the region II wave function has only a dissipa-
tive term, since there is no region of either of the region II parabolic branches available at the
incident energy. When the potential is shifted still higher so that V0 > E + mc2, a positive group
velocity in region I with a given energy can be matched to an antiparticle branch in the region
II parabolic energy curve.

Figure 3.10: Low potential energy.

Figure 3.11: High enough potential energy for no propagation.

Boundary value conditions We want to ensure that the current across the barrier is conserved
(no particles are lost), as sketched in fig. 3.13.

Recall that given a wave function

(3.46)Ψ =

ψ1

ψ2

 ,
the density and currents are respectively

ρ = ψ∗1ψ1 + ψ∗2ψ2

j = ψ∗1ψ1 − ψ
∗
2ψ2

(3.47)
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Figure 3.12: High potential energy.

Figure 3.13: Transmitted, reflected and incident components.

Matching boundary value conditions requires

1. For both the relativistic and non-relativistic cases we must have

ΨL = ΨR, at x = 0. (3.48)

2. For the non-relativistic case we want∫ ε

−ε
−

h̄2

2m
∂2Ψ
∂x2 =

���
���

���
�∫ ε

−ε
(E − V(x))Ψ(x) (3.49)

−
h̄2

2m

(
∂Ψ
∂x

∣∣∣∣∣R − ∂Ψ
∂x

∣∣∣∣∣L
)

= 0. (3.50)

We have to match

For the relativistic case

(3.51)−i h̄σz

∫ ε

−ε

∂Ψ
∂x

+
�
��

�
��

mc2σx

∫ ε

−ε
ψ =
���

���
�

∫ ε

−ε
(E − V0)ψ,

so

−i h̄cσz (ψ(ε) − ψ(−ε)) = −i h̄cσz (ψR − ψL) . (3.52)
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so we must match

σzψR = σzψL. (3.53)

It appears that things are simpler, because we only have to match the wave function values at
the boundary, and don’t have to match the derivatives too. However, we have a two component
wave function, so there are still two tasks.

Solving the system Let’s look for a solution for the E + mc2 > V0 case on the right branch, as
sketched in fig. 3.14.

Figure 3.14: High potential region. Anti-particle transmission.

While the right branch in this case is left going, this might work out since that is an antiparti-
cle. We could try both.

Try

(3.54)ΨII = Deik2 x

− sin θ2

cos θ2

 .
This is justified by

(3.55)+E →

cos θ

sin θ

 ,
so

(3.56)−E →

− sin θ

cos θ


At x = 0 the exponentials vanish, so equating the waves at that point means

(3.57)

cos θ1

sin θ1

 +
B
A

sin θ1

cos θ1

 =
D
A

− sin θ2

cos θ2

 .
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Solving this yields

(3.58)
B
A

= −
cos(θ1 − θ2)
sin(θ1 + θ2)

.

This yields

R =
1 + cos(2θ1 − 2θ2)
1 − cos(2θ1 − 2θ2)

. (3.59)

As V0 → ∞ this simplifies to

(3.60)R =
E −

√
E2 − (mc2)2

E +

√
E2 − (mc2)2

.

Filling in the details for these results part of problem set 4.

3.8 problems

Exercise 3.1 Calculate the right going diagonalization.
a. Prove eq. (3.28).

Answer for Exercise 3.1

Part a. To determine the relations for θk we have to solve

(3.61)

Ek 0

0 −Ek

 = R−1HR.

Working with h̄ = c = 1 temporarily, and C = cos θk, S = sin θk, that is

(3.62)

Ek 0

0 −Ek

 =

 C S

−S C


k m

m −k


C −S

S C


=

 C S

−S C


kC + mS −kS + mC

mC − kS −mS − kC


=

 kC2 + mS C + mCS − kS 2 −kS C + mC2 − mS 2 − kCS

−kCS − mS 2 + mC2 − kS C kS 2 − mCS − mS C − kC2


=

k cos(2θk) + m sin(2θk) m cos(2θk) − k sin(2θk)

m cos(2θk) − k sin(2θk) −k cos(2θk) − m sin(2θk)

 .
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This gives

(3.63)

Ek

10
 =

k cos(2θk) + m sin(2θk)

m cos(2θk) − k sin(2θk)


=

k m

m −k


cos(2θk)

sin(2θk)

 .
Adding back in the h̄’s and c’s this is

(3.64)

cos(2θk)

sin(2θk)

 =
Ek

−( h̄kc)2 − (mc2)2

− h̄kc −mc2

−mc2 h̄kc


10


=

1
Ek

 h̄kc

mc2

 .
Exercise 3.2 Verify the plane wave eigenstate.

a. Verify eq. (3.33).

b. Find the form of the reflected wave.
Answer for Exercise 3.2

Part a. With

(3.65)

Hk =

 h̄kc mc2

mc2 − h̄kc


= R

Ek 0

0 −Ek

 R−1 ,

We wish to show that

(3.66)Hk

cos θk

sin θk

 eikx = Ek

cos θk

sin θk

 eikx.
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The LHS side expands to

(3.67)

C −S

S C


Ek 0

0 −Ek


 C S

−S C


CS

 eikx =

C −S

S C


Ek 0

0 −Ek


C2 + S 2

0

 eikx

=

C −S

S C


Ek

0

 eikx

= Ek

CS
 eikx. �

Part b. For the reflected wave, let’s assume that the reflected wave has the form

(3.68)Ψ =

 sin θk

− cos θk

 e−ikx.

Let’s verify this

(3.69)

C −S

S C


Ek 0

0 −Ek


 C S

−S C


 S

−C

 e−ikx

=

C −S

S C


Ek 0

0 −Ek


CS − S C

−S 2 −C2

 e−ikx

=

C −S

S C


 0

Ek

 e−ikx

= Ek

−S

C

 e−ikx

= −Ek

 S

−C

 e−ikx.

However, note that we have a different rotation angle θk for the forward going and reverse
going waves.

For the incident wave, k > 0, we have

(3.70)tan 2θk =
h̄kc
mc2 ,

and for the reflected wave, k < 0, we have

(3.71)tan 2θk =
− h̄kc
mc2 .
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The rotation angle for both cases can therefore be expressed as

(3.72)θk =
1
2

atan
(∣∣∣∣∣ h̄k

mc

∣∣∣∣∣) .
Exercise 3.3 Verify the Dirac current relationship.

Prove eq. (3.32).
Answer for Exercise 3.3

The components of the Schrödinger equation are

−i h̄
∂ψ1

∂t
= −i h̄c

∂ψ1

∂x
+ mc2ψ2

−i h̄
∂ψ2

∂t
= mc2ψ1 + i h̄c

∂ψ2

∂x
,

(3.73)

The conjugates of these are

i h̄
∂ψ∗1
∂t

= i h̄c
∂ψ∗1
∂x

+ mc2ψ∗2

i h̄
∂ψ∗2
∂t

= mc2ψ∗1 − i h̄c
∂ψ∗2
∂x

.

(3.74)

This gives

(3.75)

i h̄
∂ρ

∂t
=

(
i h̄c

∂ψ∗1
∂x

+ mc2ψ∗2

)
ψ1

+ ψ∗1

(
i h̄c

∂ψ1

∂x
− mc2ψ2

)
+

(
mc2ψ∗1 − i h̄c

∂ψ∗2
∂x

)
ψ2

+ ψ∗2

(
−mc2ψ1 − i h̄c

∂ψ2

∂x

)
.

All the non-derivative terms cancel leaving

(3.76)

1
c
∂ρ

∂t
=
∂ψ∗1
∂x

ψ1 + ψ∗1
∂ψ1

∂x
−
∂ψ∗2
∂x

ψ2 − ψ
∗
2
∂ψ2

∂x

=
∂

∂x

(
ψ∗1ψ1 − ψ

∗
2ψ2

)
.
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Exercise 3.4 Zitterbewegung in one dimension. (2015 ps4 p1)

Consider the Dirac Hamiltonian H = cp̂σz + mc2σx . Using the Heisenberg equations of
motion, derive a second order equation of motion (eom) for the velocity operator v̂ = dx̂/dt. For
a state

(3.77)Ψ =

10
 eikx

with k = 0, average this eom in state Ψ to get a homogeneous second order differential
equation for 〈v̂〉. Using this equation of motion and the initial conditions on the velocity and
its time-derivative, obtain 〈v̂〉 (t) and 〈x̂(t)〉. Show that these oscillate with a rapid frequency
2mc2/h, with the oscillation of the position having an amplitude h̄/mc which is the Compton
wavelength. This ‘trembling’ motion is called zitterbewegung.
Answer for Exercise 3.4

PROBLEM SET RELATED MATERIAL REDACTED IN THIS DOCUMENT.PLEASE
FEEL FREE TO EMAIL ME FOR THE FULL VERSION IF YOU AREN’T TAKING PHY1520.

. .
. .

.
. . .

. .
. . .

. .
. .

. END-REDACTION

Exercise 3.5 Jackiw-Rebbi problem. (2015 ps4 p2)

Recall that the energy of a relativistic particle is E(p) =
√

p2c2 + m2c4, which is independent
of the sign of m. Thus m > 0 and m < 0 lead to the same dispersion relation. Set aside for now,
the physical meaning of m < 0. Assume V(x) = 0 but let us assume the mass m is a function of
position m(x). This leads to

(3.78)H =

 cp̂ m(x)c2

m(x)c2 −cp̂

 .
Let m(x) be such that m(−x) = −m(x), i.e., an odd function of position which changes sign at

x = 0.

a. Show that the operator PP̂Dirac = σyPP̂ commutes with the Hamiltonian, where
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(3.79)σy =

0 −i

i 0


is the y-Pauli matrix, and PP̂ is the parity operator which sends x→ −x.

b. Consider the wavefunction

(3.80)Φ(x) =

 f (x)

−i f (x)

 ,
where f (−x) = f (x) is an even function. Show Φ(x) is an eigenstate of PP̂Dirac with
eigenvalue −1.

c. Next, assuming m(x > 0) = m0 and m(x < 0) = −m0 , where m0 > 0, find f (x) such that
Φ(x) is an eigenstate of H with zero energy.

d. Normalize the wavefunction Φ(x).

Answer for Exercise 3.5
PROBLEM SET RELATED MATERIAL REDACTED IN THIS DOCUMENT.PLEASE

FEEL FREE TO EMAIL ME FOR THE FULL VERSION IF YOU AREN’T TAKING PHY1520.
. .

. .
.

. . .
. .

. . .
. .

. .
. END-REDACTION

Exercise 3.6 Scattering off a potential step. (2015 ps4 p3)

Consider the 1D Dirac Hamiltonian as

(3.81)H =

cp̂ + V(x) mc2

mc2 −cp̂ + V(x)


where the operator p̂ = −i h̄∂/∂x is the rest mass, and c is the speed of light, and with 2-

component wavefunctions

(3.82)Ψ(x, t) ≡

ψ1(x, t)

ψ2(x, t)


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such that i h̄∂Ψ(x, t)/∂t = HΨ(x, t). Assuming a potential step, where V(x < 0) = 0 and
V(x > 0) = V0, with V0 > 0 as in class, complete the details of the scattering onto the step
which was done in class. Discuss the incident current, reflected current, and transmitted current
for the case where the incident energy is such that E > 0 and V0 > 2mc2 , and E > 0 and V0 <

2mc2. Draw pictures to illustrate the parabola and the location in momentum of the incident and
reflected particles.
Answer for Exercise 3.6

PROBLEM SET RELATED MATERIAL REDACTED IN THIS DOCUMENT.PLEASE
FEEL FREE TO EMAIL ME FOR THE FULL VERSION IF YOU AREN’T TAKING PHY1520.

. .
. .

.
. . .

. .
. . .

. .
. .

. END-REDACTION

Exercise 3.7 Alternate Dirac equation representation. (phy1520 2015 midterm pr. 2)

Given an alternate representation of the Dirac equation

(3.83)H =

mc2 + V0 cp̂

cp̂ −mc2 + V0

 ,
calculate

a. the constant momentum plane wave solutions,

b. the constant momentum hyperbolic solutions,

c. the Heisenberg velocity operator v̂, and

d. find the form of the probability density current.

Answer for Exercise 3.7

Part a. The action of the Hamiltonian on

(3.84)ψ = eikx−iEt/ h̄

ψ1

ψ2


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is

(3.85)

Hψ =

mc2 + V0 c(−i h̄)ik

c(−i h̄)ik −mc2 + V0


ψ1

ψ2

 eikx−iEt/ h̄

=

mc2 + V0 c h̄k

c h̄k −mc2 + V0

ψ.
Writing

(3.86)Hk =

mc2 + V0 c h̄k

c h̄k −mc2 + V0


the characteristic equation is

(3.87)0 = (mc2 + V0 − λ)(−mc2 + V0 − λ) − (c h̄k)2

=
(
(λ − V0)2 − (mc2)2

)
− (c h̄k)2,

so

(3.88)λ = V0 ± ε,

where

(3.89)ε2 = (mc2)2 + (c h̄k)2.

We’ve got

(3.90)

H − (V0 + ε) =

mc2 − ε c h̄k

c h̄k −mc2 − ε


H − (V0 − ε) =

mc2 + ε c h̄k

c h̄k −mc2 + ε

 ,
so the eigenkets are

(3.91)

|V0 + ε〉 ∝

 −c h̄k

mc2 − ε


|V0 − ε〉 ∝

 −c h̄k

mc2 + ε

 .
Up to an arbitrary phase for each, these are
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(3.92)

|V0 + ε〉 =
1√

2ε(ε − mc2)

 c h̄k

ε − mc2


|V0 − ε〉 =

1√
2ε(ε + mc2)

 −c h̄k

ε + mc2


We can now write

(3.93)Hk = E

V0 + ε 0

0 V0 − ε

 E−1,

where

E =
1
√

2ε


c h̄k√
ε −mc2

− c h̄k√
ε + mc2√

ε −mc2
√
ε + mc2

 , k > 0

E =
1
√

2ε

−
c h̄k√
ε −mc2

− c h̄k√
ε + mc2

−
√
ε −mc2

√
ε + mc2

 , k < 0.

(3.94)

Here the signs have been adjusted to ensure the transformation matrix has a unit determinant.
Observe that there’s redundancy in this matrix since c h̄|k|/

√
ε −mc2 =

√
ε + mc2, and c h̄|k|/

√
ε + mc2 =√

ε −mc2, which allows the transformation matrix to be written in the form of a rotation matrix

E =
1
√

2ε


c h̄k√
ε −mc2

− c h̄k√
ε + mc2

c h̄k√
ε + mc2

c h̄k√
ε −mc2

 , k > 0

E =
1
√

2ε


− c h̄k√

ε −mc2
− c h̄k√

ε + mc2

c h̄k√
ε + mc2

− c h̄k√
ε −mc2

 , k < 0

(3.95)

With

cos θ =
c h̄|k|√

2ε(ε −mc2)
=

√
ε + mc2
√

2ε

sin θ =
c h̄k√

2ε(ε + mc2)
=

sgn(k)
√
ε −mc2
√

2ε
,

(3.96)

the transformation matrix (and eigenkets) is

E =
[
|V0 + ε〉 |V0 − ε〉

]
=

cos θ − sin θ

sin θ cos θ

 . (3.97)
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Observe that eq. (3.96) can be simplified by using double angle formulas

(3.98)

cos(2θ) =

(
ε + mc2

)
2ε

−

(
ε − mc2

)
2ε

=
1
2ε

(
ε + mc2 − ε + mc2

)
=

mc2

ε
,

and

(3.99)
sin(2θ) = 2

1
2ε

sgn(k)
√
ε2 − (mc2)2

=
h̄kc
ε
.

This allows all the θ dependence on h̄kc and mc2 to be expressed as a ratio of momenta

tan(2θ) =
h̄k
mc

. (3.100)

Part b. For a wave function of the form

(3.101)ψ = ekx−iEt/ h̄

ψ1

ψ2

 ,
some of the work above can be recycled if we substitute k → −ik, which yields unnormalized

eigenfunctions

(3.102)

|V0 + ε〉 ∝

 ic h̄k

mc2 − ε


|V0 − ε〉 ∝

 ic h̄k

mc2 + ε

 ,
where

(3.103)ε2 = (mc2)2 − (c h̄k)2.

The squared magnitude of these wavefunctions are
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(3.104)

(c h̄k)2 + (mc2 ∓ ε)2 = (c h̄k)2 + (mc2)2 + ε2 ∓ 2mc2ε

= (c h̄k)2 + (mc2)2 + (mc2)2 ∓ (c h̄k)2 − 2mc2ε

= 2(mc2)2 ∓ 2mc2ε

= 2mc2(mc2 ∓ ε),

so, up to a constant phase for each, the normalized kets are

(3.105)

|V0 + ε〉 =
1√

2mc2(mc2 − ε)

 ic h̄k

mc2 − ε


|V0 − ε〉 =

1√
2mc2(mc2 + ε)

 ic h̄k

mc2 + ε

 ,
After the k → −ik substitution, Hk is not Hermitian, so these kets aren’t expected to be

orthonormal, which is readily verified

(3.106)

〈V0 + ε|V0 − ε〉 =
1√

2mc2(mc2 − ε)

1√
2mc2(mc2 + ε)

[
−ic h̄k mc2 − ε

]  ic h̄k

mc2 + ε


=

2(c h̄k)2

2mc2
√

( h̄kc)2

= sgn(k)
h̄k
mc

.

Part c.

(3.107)

v̂ =
1
i h̄

[x̂,H]

=
1
i h̄

[
x̂,mc2σz + V0 + cp̂σx

]
=

cσx

i h̄
[
x̂, p̂

]
= cσx.

Part d. Acting against a completely general wavefunction the Hamiltonian action Hψ is

(3.108)
i h̄
∂ψ

∂t
= mc2σzψ + V0ψ + cp̂σxψ

= mc2σzψ + V0ψ − i h̄cσx
∂ψ

∂x
.

Conversely, the conjugate (Hψ)† is
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(3.109)−i h̄
∂ψ†

∂t
= mc2ψ†σz + V0ψ

† + i h̄c
∂ψ†

∂x
σx.

These give

(3.110)
i h̄ψ†

∂ψ

∂t
= mc2ψ†σzψ + V0ψ

†ψ − i h̄cψ†σx
∂ψ

∂x

−i h̄
∂ψ†

∂t
ψ = mc2ψ†σzψ + V0ψ

†ψ + i h̄c
∂ψ†

∂x
σxψ.

Taking differences

(3.111)ψ†
∂ψ

∂t
+
∂ψ†

∂t
ψ = −cψ†σx

∂ψ

∂x
− c

∂ψ†

∂x
σxψ,

or

(3.112)0 =
∂

∂t

(
ψ†ψ

)
+
∂

∂x

(
cψ†σxψ

)
.

The probability current still has the usual form ρ = ψ†ψ = ψ∗1ψ1 + ψ∗2ψ2, but the probability
current with this representation of the Dirac Hamiltonian is

(3.113)

j = cψ†σxψ

= c
[
ψ∗1 ψ∗2

] ψ2

ψ1


= c

(
ψ∗1ψ2 + ψ∗2ψ1

)
.





4
S Y M M E T R I E S I N Q UA N T U M M E C H A N I C S

4.1 symmetry in classical mechanics

In a classical context considering a Hamiltonian

(4.1)H(qi, pi),

a symmetry means that certain qi don’t appear. In that case the rate of change of one of the
generalized momenta is zero

dpk

dt
= −

∂H
∂qk

= 0, (4.2)

so pk is a constant of motion. This simplifies the problem by reducing the number of de-
grees of freedom. Another aspect of such a symmetry is that it relates trajectories. For example,
assuming a rotational symmetry as in fig. 4.1.

Figure 4.1: Trajectory under rotational symmetry.

the trajectory of a particle after rotation is related by rotation to the trajectory of the unrotated
particle.

171
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4.2 symmetry in quantum mechanics

Suppose that we have a symmetry operation that takes states from

(4.3)|ψ〉 → |Uψ〉

(4.4)|φ〉 → |Uφ〉 ,

we expect that

(4.5)|〈ψ|φ〉|2 = |〈Uψ|Uφ〉|2.

This won’t hold true for a general operator. Two cases where this does hold true is when

• 〈ψ|φ〉 = 〈Uψ|Uφ〉. Here U is unitary, and the equivalence follows from

(4.6)〈Uψ|Uφ〉 = 〈ψ|U†Uφ = 〈ψ| 1φ = 〈ψ|φ〉 .

• 〈ψ|φ〉 = 〈Uψ|Uφ〉∗. Here U is anti-unitary.

Unitary case If an “observable” is not changed by a unitary operation representing a symme-
try we must have

(4.7)〈ψ| Â |ψ〉 → 〈Uψ| Â |Uψ〉
= 〈ψ|U†ÂU |ψ〉 ,

so

(4.8)U†ÂU = Â,

or

ÂU = UÂ. (4.9)

An observable that is unchanged by a unitary symmetry commutes
[
Â,U

]
with the operator

U for that transformation.
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Symmetries of the Hamiltonian Given

(4.10)[H,U] = 0,

H is invariant.
Given

(4.11)H |φn〉 = εn |φn〉 .

(4.12)UH |φn〉 = HU |φn〉

= εnU |φn〉

Such a state
(4.13)|ψn〉 = U |φn〉

is also an eigenstate with the same energy.
Suppose this process is repeated, finding other states

(4.14)U |ψn〉 = |χn〉

(4.15)U |χn〉 = |αn〉

Because such a transformation only generates states with the initial energy, this process can-
not continue forever. At some point this process will enumerate a fixed size set of states. These
states can be orthonormalized.

We can say that symmetry operations are generators of a group. For a set of symmetry oper-
ations we can

• Form products that lie in a closed set

(4.16)U1U2 = U3

• can define an inverse

(4.17)U ↔ U−1.

• obeys associative rules for multiplication

(4.18)U1(U2U3) = (U1U2)U3.

• has an identity operation.

When H has a symmetry, then degenerate eigenstates form irreducible representations (which
cannot be further block diagonalized).

Parity symmetry



174 symmetries in quantum mechanics



4.2 symmetry in quantum mechanics 175

Example 4.1: Inversion.

Given a state and a parity operation Π̂, with the transformation

(4.19)|ψ〉 → Π̂ |ψ〉

In one dimension, the parity operation is just inversion. In two dimensions, this is a set
of flipping operations on two axes fig. 4.2.

Figure 4.2: 2D parity operation.

The operational effects of this operator are

x̂→ −x̂

p̂→ −p̂.
(4.20)

Acting again with the parity operator produces the original value, so it is its own inverse,
and Π̂† = Π̂ = Π̂−1. In an expectation value

(4.21)
〈
Π̂ψ

∣∣∣ x̂
∣∣∣Π̂ψ

〉
= − 〈ψ| x̂ |ψ〉 .

This means that

(4.22)Π̂† x̂Π̂ = −x̂,

or

(4.23)x̂Π̂ = −Π̂x̂,
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(4.24)
x̂Π̂ |x0〉 = −Π̂x̂ |x0〉

= −Π̂x0 |x0〉

= −x0Π̂ |x0〉

so

(4.25)Π̂ |x0〉 = |−x0〉 .

Acting on a wave function

(4.26)〈x| Π̂ |ψ〉 = 〈−x|ψ〉
= ψ(−x).

What does this mean for eigenfunctions. Eigenfunctions are supposed to form irre-
ducible representations of the group. The group has just two elements

(4.27)
{
1, Π̂

}
,

where Π̂2 = 1.
Suppose we have a Hamiltonian

(4.28)H =
p̂2

2m
+ V(x̂),

where V(x̂) is even, or
[
V(x̂), Π̂

]
= 0. The squared momentum commutes with the parity

operator

(4.29)

[
p̂2, Π̂

]
= p̂2Π̂ − Π̂ p̂2

= p̂2Π̂ − (Π̂ p̂) p̂
= p̂2Π̂ − (− p̂Π̂) p̂
= p̂2Π̂ + p̂(−p̂Π̂)
= 0.

Only two functions are possible in the symmetry set
{
Ψ(x), Π̂Ψ(x)

}
, since

(4.30)Π̂2Ψ(x) = Π̂Ψ(−x)
= Ψ(x).
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This symmetry severely restricts the possible solutions, making it so there can be only
one dimensional forms of this problem with solutions that are either even or odd respec-
tively

(4.31)
φe(x) = ψ(x) + ψ(−x)

φo(x) = ψ(x) − ψ(−x).

Parity (review)

(4.32)Π̂x̂Π̂ = −x̂

(4.33)Π̂ p̂Π̂ = −p̂

These are polar vectors, in contrast to an axial vector such as L = r × p.

(4.34)Π̂2 = 1

(4.35)Ψ(x)→ Ψ(−x)

If
[
Π̂, Ĥ

]
= 0 then all the eigenstates are either

• even: Π̂ eigenvalue is +1.

• odd: Π̂ eigenvalue is −1.

Note on parity in multiple dimensions A Hamiltonian can be constructed with parity symme-
tries in one or more directions. For example, given a potential

(4.36)V(x, y) = ax + bx2 + cy2,

We don’t have parity symmetry for x = (x, y), but do have parity symmetry in the y direction.
Assuming a separated variables form for the wave function, say ψ(x, y) = X(x)Y(y), we can’t
say much about X on the grounds of symmetry considerations only, but know that Y has to be
either an even or odd function.

4.3 translations

Define a (continuous) translation operator

(4.37)T̂ε |x〉 = |x + ε〉

The action of this operator is sketched in fig. 4.3.
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Figure 4.3: Translation operation.

This is a unitary operator

T̂−ε = T̂ †ε = T̂−1
ε (4.38)

In a position basis, the action of this operator is

(4.39)〈x| T̂ε |ψ〉 = 〈x − ε|ψ〉
= ψ(x − ε)

(4.40)Ψ(x − ε) ≈ Ψ(x) − ε
∂Ψ
∂x

(4.41)〈x| T̂ε |Ψ〉 = 〈x|Ψ〉 −
ε

h̄
〈x| ip̂ |Ψ〉

(4.42)T̂ε ≈
(
1 − i

ε

h̄
p̂
)

A non-infinitesimal translation can be composed of many small translations, as sketched in
fig. 4.4.

Figure 4.4: Composition of small translations.

For ε → 0,N → ∞,Nε = a, the total translation operator is
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(4.43)

T̂a = T̂ N
ε

= lim
ε→0,N→∞,Nε=a

(
1 −

ε

h̄
p̂
)N

= e−iap̂/ h̄

The momentum p̂ is called a “Generator” of translations. If a Hamiltonian H is translationally
invariant, then

(4.44)
[
T̂a,H

]
= 0, ∀a.

This means that momentum will be a good quantum number

(4.45)
[
p̂,H

]
= 0.

4.4 rotations

Rotations form a non-Abelian group , since the order of rotations R̂1R̂2 , R̂2R̂1.
Given a rotation acting on a ket

(4.46)R̂ |r〉 = |Rr〉 ,

observe that the action of the rotation operator on a wave function is inverted

(4.47)〈r| R̂ |Ψ〉 =
〈
R−1r

∣∣∣ |Ψ〉
= Ψ(R−1r).

Example 4.2: Z axis normal rotation

Consider an infinitesimal rotation about the z-axis as sketched in fig. 4.5.

(a) (b)

Figure 4.5: Rotation about z-axis.
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x′ = x − εy

y′ = y + εy

z′ = z

(4.48)

The rotated wave function is

(4.49)

Ψ̃(x, y, z) = Ψ(x + εy, y − εx, z)

= Ψ(x, y, z) + εy
∂Ψ
∂x

ip̂x/ h̄

− εx
∂Ψ
∂y

ip̂y/ h̄

.

The state must then transform as

(4.50)
∣∣∣Ψ̃〉

=

(
1 + i

ε

h̄
ŷ p̂x − i

ε

h̄
x̂ p̂y

)
|Ψ〉 .

Observe that the combination x̂ p̂y − ŷ p̂x is the L̂z component of angular momentum
L̂ = r̂ × p̂, so the infinitesimal rotation can be written

R̂z(ε) |Ψ〉 =

(
1 − i

ε

h̄
L̂z

)
|Ψ〉 . (4.51)

For a finite rotation ε → 0,N → ∞, φ = εN, the total rotation is

(4.52)R̂z(φ) =

(
1 −

iε
h̄

L̂z

)N
,

or

R̂z(φ) = e−i φh̄ L̂z . (4.53)

Note that
[
L̂x, L̂y

]
, 0.

By construction using Euler angles or any other method, a general rotation will include con-
tributions from components of all the angular momentum operator, and will have the structure

R̂n̂(φ) = e−i φh̄ (L̂·n̂). (4.54)
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Rotationally invariant Ĥ. Given a rotationally invariant Hamiltonian

(4.55)
[
R̂n̂(φ), Ĥ

]
= 0 ∀n̂, φ,

then every

(4.56)
[
L · n̂, Ĥ

]
= 0,

or

(4.57)
[
Li, Ĥ

]
= 0,

Non-Abelian implies degeneracies in the spectrum.

4.5 time-reversal

Imagine that we have something moving along a curve at time t = 0, and ending up at the final
position at time t = t f , as sketched in fig. 4.6.

Figure 4.6: Time reversal trajectory.

Now imagine that we flip the direction of motion (i.e. flipping the velocity) and run time
backwards so the final-time state becomes the initial state.

If the time reversal operator is designated Θ̂, with operation

(4.58)Θ̂ |Ψ〉 =
∣∣∣Ψ̃〉

,

so that

(4.59)Θ̂−1e−iĤt/ h̄Θ̂ |Ψ(t)〉 = |Ψ(0)〉 ,

or

(4.60)Θ̂−1e−iĤt/ h̄Θ̂ |Ψ(0)〉 = |Ψ(−t)〉 .
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Time reversal (cont.) Given a time reversed state

(4.61)
∣∣∣Ψ̃(t)

〉
= Θ |Ψ(0)〉

which can alternately be written

Θ−1
∣∣∣Ψ̃(t)

〉
= |Ψ(−t)〉 = eiĤt/ h̄ |Ψ(0)〉 (4.62)

The left hand side can be expanded as the evolution of the state as found at time −t

(4.63)Θ−1
∣∣∣Ψ̃(t)

〉
= Θ−1e−iĤt/ h̄

∣∣∣Ψ̃(−t)
〉

= Θ−1e−iĤt/ h̄Θ |Ψ(0)〉 .

To first order for a small time increment δt, we have

(4.64)
(
1 + i

Ĥ
h̄
δt
)
|Ψ(0)〉 = Θ−1

(
1 − i

Ĥ
h̄
δt
)

Θ |Ψ(0)〉 ,

or

(4.65)i
Ĥ
h̄
δt |Ψ(0)〉 = Θ−1(−i)

Ĥ
h̄
δtΘ |Ψ(0)〉 .

Since this holds for any state |Ψ(0)〉, the time reversal operator satisfies

(4.66)iĤ = Θ−1(−i)ĤΘ.

Note that the factors of i have not been canceled on purpose, since we are allowing for the
time reversal operator to not necessarily commute with imaginary numbers.

There are two possible solutions

• If Θ is unitary where Θi = iΘ, then

(4.67)Ĥ = −Θ−1ĤΘ,

or

(4.68)ΘĤ = −ĤΘ.

Consider the implications of this on energy eigenstates

(4.69)Ĥ |Ψn〉 = En |Ψn〉 ,
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(4.70)ΘĤ |Ψn〉 = EnΘ |Ψn〉 ,

but

(4.71)−ĤΘ |Ψn〉 = EnΘ |Ψn〉 ,

or

(4.72)Ĥ (Θ |Ψn〉) = −En (Θ |Ψn〉) .

This would mean that (Θ |Ψn〉) is an eigenket of Ĥ, but with a negative energy eigenvalue.

• Θ is antiunitary, where Θi = −iΘ.

This time

(4.73)iĤ = iΘ−1ĤΘ,

so

(4.74)ΘĤ = ĤΘ.

Acting on an energy eigenket, we’ve got

(4.75)ΘĤ |Ψn〉 = En (Θ |Ψn〉) ,

and

(4.76)
(
ĤΘ

)
|Ψn〉 = Ĥ (Θ |Ψn〉) ,

so Θ |Ψn〉 is an eigenstate with energy En.

What properties do we expect from Θ? We expect

(4.77)

x̂→ x̂

p̂→ −p̂

L̂→ −L̂

where we have a sign flip in the time dependent momentum operator (and therefore angular
momentum), but not for position. If we have
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(4.78)Θ−1 x̂Θ = x̂,

if that’s true, then how about the momentum operator in the position basis

(4.79)

Θ−1 p̂Θ = Θ−1
(
−i h̄

∂

∂x

)
Θ

= Θ−1 (−i h̄) Θ
∂

∂x

= i h̄Θ−1Θ
∂

∂x
= − p̂.

How about the x, p commutator? For that we have

(4.80)
Θ−1 [

x̂, p̂
]

Θ = Θ−1 (i h̄) Θ
= −i h̄Θ−1Θ
= −

[
x̂, p̂

]
.

For the the angular momentum operators

(4.81)L̂i = εi jkr̂ j p̂k,

the time reversal operator should flip the sign due to its action on p̂k.

Time reversal acting on spin 1/2 (Fermions). Attempt I. Consider two spin states |↑〉 , |↓〉. What
should the action of the time reversal operator on such a state be? Let’s (incorrectly) start by
supposing that the time reversal operator effects are

(4.82)
Θ |↑〉 ?

= |↓〉

Θ |↓〉 ?
= |↑〉 .

Given a general state so that if

|Ψ〉 = a |↑〉 + b |↓〉 , (4.83)

the action of the time reversal operator would be

Θ |Ψ〉 = a∗ |↓〉 + b∗ |↑〉 . (4.84)
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That action is:

a→ b∗

b→ a∗
(4.85)

Let’s consider whether or not such an action a spin operator with properties

(4.86)
[
Ŝ i, Ŝ j

]
= iεi jkŜ k.

produce the desired inversion of sign

(4.87)Θ−1Ŝ iΘ = −Ŝ i.

The expectations of the spin operators (without any application of time reversal) are

(4.88)

〈Ψ| Ŝ x |Ψ〉 =
h̄
2

(
a∗ 〈↑| + b∗ 〈↓|

)
σx (a |↑〉 + b |↓〉)

=
h̄
2

(
a∗ 〈↑| + b∗ 〈↓|

)
(a |↓〉 + b |↑〉)

=
h̄
2

(
a∗b + b∗a

)
,

(4.89)

〈Ψ| Ŝ y |Ψ〉 =
h̄
2

(
a∗ 〈↑| + b∗ 〈↓|

)
σy (a |↑〉 + b |↓〉)

=
i h̄
2

(
a∗ 〈↑| + b∗ 〈↓|

)
(a |↓〉 − b |↑〉)

=
h̄
2i

(
a∗b − b∗a

)
,

(4.90)
〈Ψ| Ŝ z |Ψ〉 =

h̄
2

(
a∗ 〈↑| + b∗ 〈↓|

)
σz (a |↑〉 − b |↓〉)

=
h̄
2

(
|a|2 − |b|2

)
The time reversed actions are

(4.91)

〈Ψ|Θ−1Ŝ xΘ |Ψ〉 =
h̄
2

(
a∗ 〈↓| + b∗ 〈↑|

)
σx (a |↓〉 + b |↑〉)

=
h̄
2

(
a∗ 〈↓| + b∗ 〈↑|

)
(a |↑〉 + b |↓〉)

=
h̄
2

(
a∗b + b∗a

)
,
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(4.92)

〈Ψ|Θ−1Ŝ yΘ |Ψ〉 =
h̄
2

(
a∗ 〈↓| + b∗ 〈↑|

)
σy (a |↓〉 + b |↑〉)

=
i h̄
2

(
a∗ 〈↓| + b∗ 〈↑|

)
(−a |↑〉 + b |↓〉)

=
h̄
2i

(
−a∗b + b∗a

)
,

(4.93)

〈Ψ|Θ−1Ŝ zΘ |Ψ〉 =
h̄
2

(
a∗ 〈↓| + b∗ 〈↑|

)
σz (a |↓〉 + b |↑〉)

=
h̄
2

(
a∗ 〈↓| + b∗ 〈↑|

)
(−a |↓〉 + b |↑〉)

=
h̄
2

(
−|a|2 + |b|2

)
We see that this is not right, because the sign for the x component has not been flipped.

Spin 1/2 (Fermions). Attempt II. Again assuming

|Ψ〉 = a |↑〉 + b |↓〉 , (4.94)

now try the action

Θ |Ψ〉 = a∗ |↓〉 − b∗ |↑〉 . (4.95)

This is the action:

a→ −b∗

b→ a∗
(4.96)

The correct action of time reversal on the basis states (up to a phase choice) is

Θ |↑〉 = |↓〉

Θ |↓〉 = − |↑〉
(4.97)

Note that acting the time reversal operator twice has the effects

(4.98)Θ2 |↑〉 = Θ |↓〉
= − |↑〉
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(4.99)Θ2 |↓〉 = Θ(− |↑〉)
= − |↑〉 .

We end up with the same state we started with, but with the opposite sign. This means that as
an operator

Θ2 = −1. (4.100)

This is try for half integer particles (Fermions) S = 1/2, 3/2, 5/2, · · ·, but for Bosons with
integer spin S .

Θ2 = 1. (4.101)

Kramer’s degeneracy for Spin 1/2 (Fermions) Suppose we imagine there is state for which
the action of the time reversal operator produces the same state, just different in phase. Let

|ψ〉′ = Θ |ψ〉 = eiδ |ψ〉 . (4.102)

For a Fermion we have

(4.103)Θ2 |ψ〉 = − |ψ〉 ,

but if such the time reversal action posited above is possible we also have

(4.104)

Θ2 |ψ〉 = Θeiδ |ψ〉

= e−iδΘ |ψ〉
= e−iδeiδ |ψ〉

= |ψ〉 , − |ψ〉 .

This is a contradiction, so we must have at least a two-fold degeneracy. This is called Kramer’s
degeneracy. In the homework we will show that this is not the case for integer spin particles.

Time reversal implications for wave functions For spin and angular momentum states, the
implications of time reversal on the states is worked out above. If a spinless Hamiltonian has
time reversal symmetry then the implication is really just the fact that the wave functions can
be real valued.
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4.6 problems

Exercise 4.1 No Kramers theorem for spin-1. (2015 ps5 p1)

Consider a spin-1 particle. Even with time-reversal invariance, there is no Kramers theorem, so
each eigenvalue of a generic spin-1 Hamiltonian will be non-degenerate. Systematically con-
struct a Hamiltonian which is time-reversal invariant and obviously also Hermitian to illustrate
this point, making clear the logic of your construction (i.e., why you are including terms which
you are including).
Answer for Exercise 4.1

PROBLEM SET RELATED MATERIAL REDACTED IN THIS DOCUMENT.PLEASE
FEEL FREE TO EMAIL ME FOR THE FULL VERSION IF YOU AREN’T TAKING PHY1520.

. .
. .

.
. . .

. .
. . .

. .
. .

. END-REDACTION

Exercise 4.2 Boosts. (2015 ps5 p2)

The momentum operator p̂ was shown, in class, to act as the generator of space translations.
Show by following the exact same steps that the position operator x̂ acts as the generator of
momentum boosts (i.e., x̂ is a generator of ‘momentum translation’).
Answer for Exercise 4.2

PROBLEM SET RELATED MATERIAL REDACTED IN THIS DOCUMENT.PLEASE
FEEL FREE TO EMAIL ME FOR THE FULL VERSION IF YOU AREN’T TAKING PHY1520.

. .
. .

.
. . .

. .
. . .

. .
. .

. END-REDACTION
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Exercise 4.3 Simultaneous eigenstates. (2015 ps5 p3)

A quantum state |Ψ〉 is a simultaneous eigenstate of two anticommuting Hermitian operators
A, B, with AB + BA = 0. What can you say about the eigenvalues of A, B for the state |Ψ〉?
Illustrate your point using the parity operator and the momentum operator.
Answer for Exercise 4.3

PROBLEM SET RELATED MATERIAL REDACTED IN THIS DOCUMENT.PLEASE
FEEL FREE TO EMAIL ME FOR THE FULL VERSION IF YOU AREN’T TAKING PHY1520.

. .
. .

.
. . .

. .
. . .

. .
. .

. END-REDACTION

Exercise 4.4 Angular momentum. (2015 ps5 p4)

a. What is the time-reversed version of D(R) | j,m〉?

b. Prove that time-reversal implies Θ | j,m〉 = (−1)m | j,−m〉.

Answer for Exercise 4.4
PROBLEM SET RELATED MATERIAL REDACTED IN THIS DOCUMENT.PLEASE

FEEL FREE TO EMAIL ME FOR THE FULL VERSION IF YOU AREN’T TAKING PHY1520.
. .

. .
.

. . .
. .

. . .
. .

. .
. END-REDACTION

Exercise 4.5 Non-interacting particles in a box. ([11] pr. 4.1)

Calculate the three lowest energy levels and their degeneracies for equal mass distinguishable
spin half particles in a box of length L.

Consider
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a. Two particles.

b. Three particles.

c. Four particles.

Answer for Exercise 4.5

Part a. The problem statement doesn’t include the dimensionality of the box. The simplest
case is the one dimensional box, for which the wave function of one particle is

(4.105)ψ1(x) =

√
2
L

sin
(nπx

L

)
,

and the energy of that particle is

(4.106)E =
1

2m

(
h̄π
L

)2

n2.

If the box is two dimensional the energy is

(4.107)E =
1

2m

(
h̄π
L

)2 (
n2

1 + n2
2

)
,

and if it’s a 3D box, we have

(4.108)E =
1

2m

(
h̄π
L

)2 (
n2

1 + n2
2 + n2

3

)
.

Suppose we are considering the 3D box. In statistical mechanics when we are considering
particles Fermions, they are indistinguishable, and thus not allowed to share the same spin state
at a given energy level. However, for distinguishable particles, that restriction doesn’t exist, and
we can have two (or more) such particles in the lowest order energy state. The lowest such
energy is

(4.109)
E1,1,1;1,1,1 =

1
2m

(
h̄π
L

)2 (
6 × 12

)
=

6
2m

(
h̄π
L

)2

.

The particle spin states can be any of |++〉 , |+−〉 , |−+〉 , |−−〉, so there is a four way degener-
acy in the ground state.

the next lowest energy level is
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(4.110)
E1,1,2;1,1,1 =

1
2m

(
h̄π
L

)2 (
5 × 12 + 22

)
=

9
2m

(
h̄π
L

)2

,

where there are (6
1) = 6 ways to pick such a state for each variation of spin, for a total

6 × 4 = 24 way degeneracy. Finally, since 22 + 22 < 32 + 12, the next lowest energy level is

(4.111)
E1,2,2;1,1,1 =

1
2m

(
h̄π
L

)2 (
4 × 12 + 2 × 22

)
=

12
2m

(
h̄π
L

)2

,

with a (6
2) × 4 = 15 × 4 = 60 way degeneracy for this energy level.

Part b. For three particles (the two particle case wasn’t actually in the problem statement, but
seemed an easier starting place), the lowest energy state for a 3D box is

(4.112)
E =

1
2m

(
h̄π
L

)2 (
9 × 12

)
=

9
2m

(
h̄π
L

)2

.

There are now 23 = 8 variations of spin |+ + +〉 , |+ + −〉 , · · ·, so the ground state is 8-way
degenerate. Next up is

(4.113)
E =

1
2m

(
h̄π
L

)2 (
8 × 12 + 22

)
=

12
2m

(
h̄π
L

)2

,

where there is a (9
1) × 8 = 9 × 8 = 72 way degeneracy in this energy level. Finally, the next

lowest energy level is

(4.114)
E =

1
2m

(
h̄π
L

)2 (
7 × 12 + 2 × 22

)
=

15
2m

(
h̄π
L

)2

,

with a (9
2) × 8 = 36 × 8 = 288 way degeneracy for this energy level.
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Part c. For four particles the lowest energy state for a 3D box is

(4.115)
E =

1
2m

(
h̄π
L

)2 (
12 × 12

)
=

12
2m

(
h̄π
L

)2

.

There are now 24 = 16 variations of spin |+ + ++〉 , |+ + +−〉 , · · ·, so the ground state is 16-
way degenerate. For the second level

(4.116)
E =

1
2m

(
h̄π
L

)2 (
11 × 12 + 22

)
=

15
2m

(
h̄π
L

)2

,

where there is a (12
1 ) × 16 = 12 × 16 = 192 way degeneracy in this energy level. Finally, the

next lowest energy level is

(4.117)
E =

1
2m

(
h̄π
L

)2 (
7 × 12 + 2 × 22

)
=

15
2m

(
h̄π
L

)2

,

with a (12
2 ) × 16 = 66 × 16 = 1056 way degeneracy for this energy level.

Exercise 4.6 Commutators for some symmetry operators. ([11] pr. 4.2)

If Td, D(n̂, φ), and π denote the translation, rotation, and parity operators respectively. Which
of the following commute and why

a. Td and Td′ , translations in different directions.

b. D(n̂, φ) and D(n̂′, φ′), rotations in different directions.

c. Td and π.

d. D(n̂, φ) and π.

Answer for Exercise 4.6
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Part a. Consider

(4.118)TdTd′ |x〉 = Td
∣∣∣x + d′

〉
=

∣∣∣x + d′ + d
〉
,

and the reverse application of the translation operators

(4.119)
Td′Td |x〉 = Td′ |x + d〉

=
∣∣∣x + d + d′

〉
=

∣∣∣x + d′ + d
〉
.

so we see that
(4.120)[Td,Td′] |x〉 = 0,

for any position state |x〉, and therefore in general they commute.

Part b. That rotations do not commute when they are in different directions (like any two
orthogonal directions) need not be belaboured.

Part c. We have

(4.121)Tdπ |x〉 = Td |−x〉
= |−x + d〉 ,

yet

(4.122)πTd |x〉 = π |x + d〉
= |−x − d〉 , |−x + d〉 .

so, in general [Td, π] , 0.

Part d. We have

(4.123)

πD(n̂, φ) |x〉 = πD(n̂, φ)π†π |x〉
= πD(n̂, φ)π†π |x〉

= π

 ∞∑
k=0

(−iJ · n̂)k

k!

 π†π |x〉
=

∞∑
k=0

(−i(πJπ†) · (πn̂π†))k

k!
π |x〉

=

∞∑
k=0

(−iJ · n̂)k

k!
π |x〉

= D(n̂, φ)π |x〉 ,
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so [D(n̂, φ), π] |x〉 = 0, for any position state |x〉, and therefore these operators commute in
general.

Exercise 4.7 Plane wave and spinor under time reversal. ([11] pr. 4.7)

a. Find the time reversed form of a spinless plane wave state in three dimensions.

b. For the eigenspinor of σ · n̂ expressed in terms of polar and azimuthal angles β and γ,
show that −iσyχ

∗(n̂) has the reversed spin direction.

Answer for Exercise 4.7

Part a. The Hamiltonian for a plane wave is

H =
p2

2m
= i

∂.

∂t
(4.124)

Under time reversal the momentum side transforms as

(4.125)

Θ
p2

2m
Θ−1 =

(
ΘpΘ−1

)
·
(
ΘpΘ−1

)
2m

=
(−p) · (−p)

2m

=
p2

2m
.

The time derivative side of the equation is also time reversal invariant

(4.126)

Θi
∂

∂t
Θ−1 = ΘiΘ−1Θ

∂

∂t
Θ−1

= −i
∂

∂(−t)

= i
∂

∂t
.

Solutions to this equation are linear combinations of

(4.127)ψ(x, t) = eik·x−iEt/ h̄,

where h̄2k2/2m = E, the energy of the particle. Under time reversal we have

(4.128)
ψ(x, t)→ e−ik·x+iE(−t)/ h̄

=
(
eik·x−iE(−t)/ h̄

)∗
= ψ∗(x,−t)
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Part b. The text uses a requirement for time reversal of spin states to show that the Pauli
matrix form of the time reversal operator is

(4.129)Θ = −iσyηK,

where K is a complex conjugating operator, and η is a phase factor with |η|2 = 1. The form
of the spin up state used in that demonstration was

(4.130)

|n̂; +〉 = e−iS zβ/ h̄e−iS yγ/ h̄ |+〉

= e−iσzβ/2e−iσyγ/2 |+〉

= (cos(β/2) − iσz sin(β/2))
(
cos(γ/2) − iσy sin(γ/2)

)
|+〉

=

cos(β/2) − i

1 0

0 −1

 sin(β/2)


cos(γ/2) − i

0 −i

i 0

 sin(γ/2)

 |+〉
=

e−iβ/2 0

0 eiβ/2


cos(γ/2) − sin(γ/2)

sin(γ/2) cos(γ/2)


10


=

e−iβ/2 0

0 eiβ/2


cos(γ/2)

sin(γ/2)


=

cos(γ/2)e−iβ/2

sin(γ/2)eiβ/2

 .
The state orthogonal to this one is claimed to be

(4.131)|n̂;−〉 = e−iS zβ/ h̄e−iS y(γ+π)/ h̄ |+〉

= e−iσzβ/2e−iσy(γ+π)/2 |+〉 .

We have

(4.132)cos((γ + π)/2) = Re ei(γ+π)/2 = Re ieiγ/2 = − sin(γ/2),

and

(4.133)sin((γ + π)/2) = Im ei(γ+π)/2 = Im ieiγ/2 = cos(γ/2),

so we should have

(4.134)|n̂;−〉 =

− sin(γ/2)e−iβ/2

cos(γ/2)eiβ/2

 .
This looks right, but we can sanity check orthogonality
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(4.135)〈n̂;−|n̂; +〉 =
[
− sin(γ/2)eiβ/2 cos(γ/2)e−iβ/2

] cos(γ/2)e−iβ/2

sin(γ/2)eiβ/2

 = 0,

as expected.
The task at hand appears to be the operation on the column representation of |n̂; +〉 using the

Pauli representation of the time reversal operator. With the phase factor η = 1 the time reversal
action on the spin up state is

(4.136)

Θ |n̂; +〉 = −iσyK

e−iβ/2 cos(γ/2)

eiβ/2 sin(γ/2)


= −i

0 −i

i 0


 eiβ/2 cos(γ/2)

e−iβ/2 sin(γ/2)


=

0 −1

1 0


 eiβ/2 cos(γ/2)

e−iβ/2 sin(γ/2)


=

−e−iβ/2 sin(γ/2)

eiβ/2 cos(γ/2)


= |n̂;−〉 . �

Observe that we need η = i to have this match eq. (4.79) in the text where Θ = i2m | j,−m〉.

Exercise 4.8 Totally asymmetric potential. ([11] pr. 4.11)

a. Given a time reversal invariant Hamiltonian, show that for any energy eigenket

(4.137)〈L〉 = 0.

b. If the wave function of such a state is expanded as

(4.138)
∑
l,m

FlmYlm(θ, φ),

what are the phase restrictions on Flm?

Answer for Exercise 4.8

Part a. For a time reversal invariant Hamiltonian H we have

(4.139)HΘ = ΘH.

If |ψ〉 is an energy eigenstate with eigenvalue E, we have
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(4.140)HΘ |ψ〉 = ΘH |ψ〉
= λΘ |ψ〉 ,

so Θ |ψ〉 is also an eigenvalue of H, so can only differ from |ψ〉 by a phase factor. That is

(4.141)
∣∣∣ψ′〉 = Θ |ψ〉

= eiδ |ψ〉 .

Now consider the expectation of L with respect to a time reversed state

(4.142)
〈
ψ′

∣∣∣ L ∣∣∣ψ′〉 = 〈ψ|Θ−1LΘ |ψ〉
= 〈ψ| (−L) |ψ〉 ,

however, we also have

(4.143)
〈
ψ′

∣∣∣ L ∣∣∣ψ′〉 =
(
〈ψ| e−iδ

)
L

(
eiδ |ψ〉

)
= 〈ψ|L |ψ〉 ,

so we have 〈ψ|L |ψ〉 = − 〈ψ|L |ψ〉 which is only possible if 〈L〉 = 〈ψ|L |ψ〉 = 0.

Part b. Consider the expansion of the wave function of a time reversed energy eigenstate

(4.144)〈x|Θ |ψ〉 = 〈x| eiδ |ψ〉

= eiδ 〈x|ψ〉 ,

and then consider the same state expanded in the position basis

(4.145)

〈x|Θ |ψ〉 = 〈x|Θ
∫

d3x′
(∣∣∣x′〉 〈x′∣∣∣) |ψ〉

= 〈x|Θ
∫

d3x′
(〈

x′
∣∣∣ψ〉) ∣∣∣x′〉

= 〈x|
∫

d3x′
(〈

x′
∣∣∣ψ〉)∗Θ

∣∣∣x′〉
= 〈x|

∫
d3x′

(〈
x′

∣∣∣ψ〉)∗ ∣∣∣x′〉
=

∫
d3x′

(〈
x′

∣∣∣ψ〉)∗ 〈x∣∣∣x′〉
=

∫
d3x′

〈
ψ
∣∣∣x′〉 δ(x − x′)

= 〈ψ|x〉 .
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This demonstrates a relationship between the wave function and its complex conjugate

(4.146)〈x|ψ〉 = e−iδ 〈ψ|x〉 .

Now expand the wave function in the spherical harmonic basis

(4.147)

〈x|ψ〉 =

∫
dΩ 〈x|n̂〉 〈n̂|ψ〉

=
∑
lm

Flm(r)Ylm(θ, φ)

= e−iδ

∑
lm

Flm(r)Ylm(θ, φ)

∗
= e−iδ

∑
lm

(Flm(r))∗ Y∗lm(θ, φ)

= e−iδ
∑
lm

(Flm(r))∗ (−1)mYl,−m(θ, φ)

= e−iδ
∑
lm

(Fl,−m(r))∗ (−1)mYl,m(θ, φ),

so the Flm functions are constrained by

(4.148)Flm(r) = e−iδ (Fl,−m(r)
)∗ (−1)m.

Exercise 4.9 Time reversal behavior of solutions to crystal spin Hamiltonian. ([11] pr. 4.12)

Solve the spin 1 Hamiltonian

(4.149)H = AS 2
z + B(S 2

x − S 2
y).

Is this Hamiltonian invariant under time reversal?
How do the eigenkets change under time reversal?

Answer for Exercise 4.9
In spinMatrices.nb the matrix representation of the Hamiltonian is found to be

(4.150)H = h̄2


A + B

2 0 B
2

− iB√
2

B − iB√
2

B
2 0 A + B

2

 .
The eigenvalues are

(4.151)
{

h̄2A, h̄2B, h̄2(A + B)
}
,
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and the respective eigenvalues (unnormalized) are

(4.152)



−1

0

1

 ,

0

1

0

 ,


1

−
i
√

2B
A

1


 .

Under time reversal, the Hamiltonian is

H → A(−S z)2 + B((−S x)2 − (−S y)2) = H, (4.153)

so we expect the eigenkets for this Hamiltonian to vary by at most a phase factor. To check
this, first recall that the time reversal action on a spin one state is

(4.154)Θ |1,m〉 = (−1)m |1,−m〉 ,

or

Θ |1〉 = − |−1〉

Θ |0〉 = |0〉

Θ |−1〉 = − |1〉 .

(4.155)

Let’s write the eigenkets respectively as

|A〉 = − |1〉 + |−1〉

|B〉 = |0〉

|A + B〉 = |1〉 + |−1〉 −
i
√

2B
A
|0〉 .

(4.156)

Noting that the time reversal operator maps complex numbers onto their conjugates, the time
reversed eigenkets are

|A〉 → |−1〉 − |−1〉 = − |A〉

|B〉 → |0〉 = |B〉

|A + B〉 → − |1〉 − |−1〉 +
i
√

2B
A
|0〉 = − |A + B〉 .

(4.157)

Up to a sign, the time reversed states match the unreversed states.





5
T H E O RY O F A N G U L A R M O M E N T U M

5.1 angular momentum

In classical mechanics the (orbital) angular momentum is

(5.1)L = r × p.

Here “orbital” is to distinguish from spin angular momentum.
In quantum mechanics, the mapping to operators, in component form, is

(5.2)L̂i = εi jkr̂ j p̂k.

These operators do not commute

(5.3)
[
L̂i, L̂ j

]
= i h̄εi jkL̂k.

which means that we can’t simultaneously determine L̂i for all i.
Aside: In quantum mechanics, we define an operator V̂ to be a vector operator if

(5.4)
[
L̂i, V̂ j

]
= i h̄εi jkV̂k.

The commutator of the squared angular momentum operator with any L̂i, say L̂x is zero

(5.5)

[
L̂2

x + L̂2
y + L̂2

z , L̂x
]

= L̂yL̂yL̂x − L̂xL̂yL̂y + L̂zL̂zL̂x − L̂xL̂zL̂z

= L̂y
([

L̂y, L̂x
]

+��
�L̂xL̂y

)
−

([
L̂x, L̂y

]
+��

�L̂yL̂x
)

L̂y

+ L̂z
([

L̂z, L̂x
]

+��
�L̂xL̂z

)
−

([
L̂x, L̂z

]
+��

�L̂zL̂x
)

L̂z

= L̂y
[
L̂y, L̂x

]
−

[
L̂x, L̂y

]
L̂y + L̂z

[
L̂z, L̂x

]
−

[
L̂x, L̂z

]
L̂z

= i h̄
(
−L̂yL̂z − L̂zL̂y + L̂zL̂y + L̂yL̂z

)
= 0.

Suppose we have a state |Ψ〉with a well defined L̂z eigenvalue and well defined L̂2 eigenvalue,
written as

(5.6)|Ψ〉 = |a, b〉 ,

201
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where the label a is used for the eigenvalue of L̂2 and b labels the eigenvalue of L̂z. Then

L̂2 |a, b〉 = h̄2a |a, b〉

L̂z |a, b〉 = h̄b |a, b〉 .
(5.7)

Things aren’t so nice when we act with other angular momentum operators, producing a
scrambled mess

L̂x |a, b〉 =
∑
a′,b′

Ax
a,b,a′,b′

∣∣∣a′, b′〉
L̂y |a, b〉 =

∑
a′,b′

A
y
a,b,a′,b′

∣∣∣a′, b′〉 (5.8)

With this representation, we have

(5.9)L̂xL̂2 |a, b〉 = L̂x h̄2a
∑
a′,b′

Ax
a,b,a′,b′

∣∣∣a′, b′〉 .
(5.10)L̂2L̂x |a, b〉 = h̄2

∑
a′,b′

a′Ax
a,b,a′,b′

∣∣∣a′, b′〉 .
Since L̂2, L̂x commute, we must have

(5.11)Ax
a,b,a′,b′ = δa,a′A

x
a′;b,b′ ,

and similarly

(5.12)A
y
a,b,a′,b′ = δa,a′A

y
a′;b,b′ .

Simplifying things we can write the action of L̂x, L̂y on the state as

(5.13)

L̂x |a, b〉 =
∑
b′

Ax
a;b,b′

∣∣∣a, b′〉
L̂y |a, b〉 =

∑
b′

A
y
a;b,b′

∣∣∣a, b′〉
Let’s define

(5.14)
L̂+ ≡ L̂x + iL̂y

L̂− ≡ L̂x − iL̂y

Because these are sums of L̂x, L̂y they must also commute with L̂2
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(5.15)
[
L̂2, L̂±

]
= 0.

The commutators with L̂z are non-zero

(5.16)

[
L̂z, L̂±

]
= L̂z

(
L̂x ± iL̂y

)
−

(
L̂x ± iL̂y

)
L̂z

=
[
L̂z, L̂x

]
± i

[
L̂z, L̂y

]
= i h̄

(
L̂y ∓ iL̂x

)
= h̄

(
iL̂y ± L̂x

)
= ± h̄

(
L̂x ± iL̂y

)
= ± h̄L̂±.

Explicitly, that is

(5.17)
L̂zL̂+ − L̂+L̂z = h̄L̂+

L̂zL̂− − L̂−L̂z = − h̄L̂−

Now we are set to compute actions of these (assumed) raising and lowering operators on the
eigenstate of L̂z, L̂2

(5.18)
L̂zL̂± |a, b〉 = h̄L̂± |a, b〉 ± L̂±L̂z |a, b〉

= h̄L̂± |a, b〉 ± h̄bL̂± |a, b〉
= h̄ (b ± 1) L̂± |a, b〉 .

There must be a proportionality of the form

(5.19)
∣∣∣L̂±〉 ∝ |a, b ± 1〉 ,

The products of the raising and lowering operators are

(5.20)

L̂−L̂+ =
(
L̂x − iL̂y

) (
L̂x + iL̂y

)
= L̂2

x + L̂2
y + iL̂xL̂y − iL̂yL̂x

=
(
L̂2 − L̂2

z

)
+ i

[
L̂x, L̂y

]
= L̂2 − L̂2

z − h̄L̂z,

and

(5.21)

L̂+L̂− =
(
L̂x + iL̂y

) (
L̂x − iL̂y

)
= L̂2

x + L̂2
y − iL̂xL̂y + iL̂yL̂x

=
(
L̂2 − L̂2

z

)
− i

[
L̂x, L̂y

]
= L̂2 − L̂2

z + h̄L̂z,
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So we must have

0 ≤ 〈a, b| L̂−L̂+ |a, b〉 = 〈a, b|
(
L̂2 − L̂2

z − h̄L̂z
)
|a, b〉 = h̄2a − h̄2b2 − h̄2b, (5.22)

and

0 ≤ 〈a, b| L̂+L̂− |a, b〉 = 〈a, b|
(
L̂2 − L̂2

z + h̄L̂z
)
|a, b〉 = h̄2a − h̄2b2 + h̄2b. (5.23)

This puts constraints on a, b, roughly of the form

1.

a − b(b + 1) ≥ 0 (5.24)

With bmax > 0, bmax ≈
√

a.

2.

a − b(b − 1) ≥ 0 (5.25)

With bmin < 0, bmin ≈ −
√

a.

Assuming that the bmax and bmin values are satisfied at the equality extremes we have

bmax (bmax + 1) = a

bmin (bmin − 1) = a.
(5.26)

Equating these pair of equations and rearranging, we have

(5.27)
(
bmax +

1
2

)2

−
1
4

=

(
bmin −

1
2

)2

−
1
4
,

which has solutions at

(5.28)bmax +
1
2

= ±

(
bmin −

1
2

)
.

One of the solutions is

(5.29)−bmin = bmax,

as desired. The other solution is bmax = bmin − 1, which we discard.
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The final constraint is therefore

−bmax ≤ b ≤ bmax, (5.30)

and

L̂+ |a, bmax〉 = 0

L̂− |a, bmin〉 = 0
(5.31)

If we had the sequence, which must terminate at bmin or else it will go on forever

(5.32)
|a, bmax〉

L̂−
→ |a, bmax − 1〉
L̂−
→ |a, bmax − 2〉 · · ·
L̂−
→ |a, bmin〉 ,

then we know that bmax − bmin ∈ Z, or

bmax − n = bmin = −bmax (5.33)

or

bmax =
n
2
, (5.34)

this is either an integer or a 1/2 odd integer, depending on whether n is even or odd. These
are called “orbital” or “spin” respectively.

The convention is to write m for the L̂z eigenvalue (the magnetic quantum number), and j,
the azimthual quantum number, to describe the j( j + 1) eigenvalue of the L̂2 operator.

bmax = j

a = j( j + 1).
(5.35)

so for m ∈ − j,− j + 1, · · · ,+ j

L̂2 | j,m〉 = h̄2 j( j + 1) | j,m〉

Lz | j,m〉 = h̄m | j,m〉 .
(5.36)
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5.2 schwinger’s harmonic oscillator representation of angular momentum op-
erators .

In [13] a powerful method for describing angular momentum with harmonic oscillators was
introduced, which will be outlined here. The question is whether we can construct a set of
harmonic oscillators that allows a mapping from

(5.37)L̂+ ↔ a+?

Picture two harmonic oscillators, one with states counted from one zero towards ∞ and an-
other with states counted from a different zero towards −∞, as pictured in fig. 5.1.

Figure 5.1: Overlapping SHO domains.

Is it possible that such an overlapping set of harmonic oscillators can provide the properties
of the angular momentum operators? Let’s relabel the counting so that we have two sets of
positive counted SHO systems, each counted in a positive direction as sketched in fig. 5.2.

Figure 5.2: Relabeling the counting for overlapping SHO systems.
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It turns out that given a constraint there the number of ways to distribute particles between
a pair of SHO systems, the process that can be viewed as reproducing the angular momentum
action is a transfer of particles from one harmonic oscillator to the other. For L̂z = + j

n1 = nmax

n2 = 0,
(5.38)

and for L̂z = − j

n1 = 0

n2 = nmax.
(5.39)

We can make the identifications

(5.40)L̂z = (n1 − n2)
h̄
2
,

and

j =
1
2

nmax, (5.41)

or

n1 + n2 = fixed = nmax (5.42)

Changes that keep n1 + n2 fixed are those that change n1, n2 by +1 or −1 respectively, as
sketched in fig. 5.3.

Figure 5.3: Number conservation constraint.

Can we make an identification that takes

|n1, n2〉
L̂−
→ |n1 − 1, n2 + 1〉 ? (5.43)
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What operator in the SHO problem has this effect? Let’s try

L̂− = h̄a†2a1

L̂+ = h̄a†1a2

L̂z =
h̄
2
(n1 − n2)

(5.44)

Is this correct? Do we need to make any scalar adjustments? We want

[
L̂z, L̂±

]
= ± h̄L̂±. (5.45)

First check this with the L̂+ commutator

(5.46)

[
L̂z, L̂+

]
=

1
2

h̄2
[
n1 − n2, a

†

1a2
]

=
1
2

h̄2
[
a†1a1 − a†2a2, a

†

1a2
]

=
1
2

h̄2
([

a†1a1, a
†

1a2
]
−

[
a†2a2, a

†

1a2
])

=
1
2

h̄2
(
a2

[
a†1a1, a

†

1

]
− a†1

[
a†2a2, a2

])
.

But

(5.47)

[
a†a, a†

]
= a†aa† − a†a†a

= a†
(
1 + a†a

)
− a†a†a

= a†,

and

(5.48)

[
a†a, a

]
= a†aa − aa†a

= a†aa −
(
1 + a†a

)
a

= −a,

so [
L̂z, L̂+

]
= h̄2a2a†1 = h̄L̂+, (5.49)

as desired. Similarly
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(5.50)

[
L̂z, L̂−

]
=

1
2

h̄2
[
n1 − n2, a

†

2a1
]

=
1
2

h̄2
[
a†1a1 − a†2a2, a

†

2a1
]

=
1
2

h̄2
(
a†2

[
a†1a1, a1

]
− a1

[
a†2a2, a

†

2

])
=

1
2

h̄2
(
a†2(−a1) − a1a†2

)
= − h̄2a†2a1

= − h̄L̂−.

With

j =
n1 + n2

2

m =
n1 − n2

2

(5.51)

We can make the identification

|n1, n2〉 = | j + m, j −m〉 . (5.52)

Another way With

L̂+ | j,m〉 = d+
j,m | j,m + 1〉 (5.53)

or

h̄a†1a2 | j + m, j −m〉 = d+
j,m | j + m + 1, j −m − 1〉 , (5.54)

we can seek this factor d+
j,m by operating with L̂+

(5.55)

L̂+ | j,m〉 = h̄a†1a2 |n1, n2〉

= h̄a†1a2 | j + m, j − m〉

= h̄
√

n + 1
√

n2 | j + m + 1, j − m − 1〉

= h̄
√
( j + m + 1) ( j − m) | j + m + 1, j − m − 1〉



210 theory of angular momentum

That gives

d+
j,m = h̄

√
( j −m) ( j + m + 1)

d−j,m = h̄
√
( j + m) ( j −m + 1).

(5.56)

This equivalence can be used to model spin interaction in crystals as harmonic oscillators.
This equivalence of lattice vibrations and spin oscillations is called “spin waves”.

5.3 representations

It’s possible to compute matrix representations of the rotation operators

R̂n̂(φ) = eiL̂·n̂φ/ h̄. (5.57)

With respect to a ket it’s possible to find

eiL̂·n̂φ/ h̄ | j,m〉 =
∑
m′

d j
mm′(n̂, φ)

∣∣∣ j,m′〉 . (5.58)

This has a block diagonal form that’s sketched in fig. 5.4.

Figure 5.4: Block diagonal form for angular momentum matrix representation.

We can view d j
mm′(n̂, φ) as a matrix, representing the rotation. The problem of determining

these matrices can be reduced to that of determining the matrix for L̂, because once we have
that we can exponentiate that.

Example 5.1: Spin half
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From the eigenvalue relationships, with basis states

|↑〉 =

10


|↓〉 =

01


(5.59)

we find

L̂z =
h̄
2

1 0

0 −1


L̂+ =

h̄
2

0 1

0 0


L̂− =

h̄
2

0 0

1 0

 .
(5.60)

Rearranging we find the Pauli matrices

(5.61)L̂k =
1
2

h̄σi.

Noting that (σ · n̂)2
= 1, and (σ · n̂)3

= σ · n̂, the rotation matrix is

(5.62)eiσ·n̂φ/2
∣∣∣∣∣12 ,m

〉
= (cos(φ/2) + iσ · n̂ sin(φ/2))

∣∣∣∣∣12 ,m
〉
.

The steps taken in the example above, which apply to all values of j were

1. Enumerate the states.

j1 =
1
2
↔ 2 states (dimension of irreducible representation = 2) (5.63)

2. Construct the L̂ matrices.

3. Construct d j
mm′(n̂, φ).
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5.4 spherical harmonics

For L = 1 it turns out that the rotation matrices turn out to be the 3D rotation matrices. In the
space representation

(5.64)L = r × p,

the coordinates of the operator are

(5.65)L̂k = iεkmnrm

(
−i h̄

∂

∂rn

)
We see that scaling r → αr does not change this operator, allowing for an angular represen-

tation L̂k(θ, φ) that have the form

(5.66)
L̂z = −i h̄

∂

∂φ

L̂± = h̄
(
±
∂

∂θ
+ i cot θ

∂

∂φ

)
.

Here θ and φ are the polar and azimuthal angles respectively as illustrated in fig. 5.5.

Figure 5.5: Spherical coordinate convention.

Introducing the spherical harmonics Ylm, the equivalent wave function representation of the
problem is

L̂Ylm(θ, φ) = h̄2l(l + 1)Ylm(θ, φ)

L̂zYlm(θ, φ) = h̄mYlm(θ, φ)
(5.67)

One can find these functions

(5.68)Ylm(θ, φ) = Pl,m(cos θ)eimφ,
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where Pl,m(cos θ) are called the associated Legendre polynomials. This can be applied when-
ever we have

(5.69)
[
H, L̂k

]
= 0.

where all the eigenfunctions will have the form
(5.70)Ψ(r, θ, φ) = R(r)Ylm(θ, φ).

5.5 addition of angular momentum

Since L̂ is a vector we expect to be able to add angular momentum in some way similar to the
addition of classical vectors as illustrated in fig. 5.6.

Figure 5.6: Classical vector addition.

When we have a potential that depends only on the difference in position V(r1 − r2) then we
know from classical problems it is effective to work in center of mass coordinates

R̂cm =
r̂1 + r̂2

2
P̂cm = p̂1 + p̂2

(5.71)

where

(5.72)
[
R̂i, P̂ j

]
= i h̄δi j.

Given
(5.73)L̂1 + L̂2 = L̂tot,

do we have

(5.74)
[
L̂tot,i, L̂tot, j

]
= i h̄εi jkL̂tot,k?

That is

(5.75)
[
L̂1,i + L̂1, j, L̂2,i + L̂2, j

]
= i h̄εi jk

(
L̂1,k + L̂1,k

)
FIXME: Right at the end of the lecture, there was a mention of something about whether or

not L̂2
1 and L̂1,z were sharply defined, but I missed it. Ask about this if not covered in the next

lecture.
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5.6 addition of angular momenta (cont.)

• For orbital angular momentum

(5.76)
L̂1 = r̂1 × p̂1

L̂1 = r̂1 × p̂1,

We can show that it is true that

(5.77)
[
L1i + L2i, L1 j + L2 j

]
= i h̄εi jk (L1k + L2k) ,

because the angular momentum of the independent particles commute. Given this is it
fair to consider that the sum

(5.78)L̂1 + L̂2

is also angular momentum.

• Given |l1,m1〉 and |l2,m2〉, if a measurement is made of L̂1 + L̂2, what do we get?

Specifically, what do we get for

(5.79)
(
L̂1 + L̂2

)2
,

and for

(5.80)
(
L̂1z + L̂2z

)
.

For the latter, we get

(5.81)
(
L̂1z + L̂2z

)
|l1,m1; l2,m2〉 = ( h̄m1 + h̄m2) |l1,m1; l2,m2〉

Given

(5.82)L̂1z + L̂2z = L̂tot
z ,

we find

(5.83)

[
L̂tot

z , L̂2
1

]
= 0[

L̂tot
z , L̂2

2

]
= 0[

L̂tot
z , L̂1z

]
= 0[

L̂tot
z , L̂1z

]
= 0.
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We also find

(5.84)
[
(L̂1 + L̂2)2, L̂2

1

]
=

[
L̂2

1 + L̂2
2 + 2L̂1 · L̂2, L̂2

1

]
= 0,

but for

(5.85)
[
(L̂1 + L̂2)2, L̂1z

]
=

[
L̂2

1 + L̂2
2 + 2L̂1 · L̂2, L̂1z

]
= 2

[
L̂1 · L̂2, L̂1z

]
, 0.

Classically if we have measured L̂1 and L̂2 then we know the total angular momentum as
sketched in fig. 5.7.

Figure 5.7: Classical addition of angular momenta.

In QM where we don’t know all the components of the angular momentum simultaneously,
things get fuzzier. For example, if the L̂1z and L̂2z components have been measured, we have
the angular momentum defined within a conical region as sketched in fig. 5.8.

Figure 5.8: Addition of angular momenta given measured L̂z.



216 theory of angular momentum

Suppose we know L̂tot
z precisely, but have imprecise information about

(
L̂tot

)2
. Can we deter-

mine bounds for this? Let |ψ〉 = |l1,m2; l2,m2〉, so

(5.86)〈ψ|
(
L̂1 + L̂2

)2
|ψ〉 = 〈ψ| L̂2

1 |ψ〉 + 〈ψ| L̂
2
2 |ψ〉 + 2 〈ψ| L̂1 · L̂2 |ψ〉

= l1 (l1 + 1) h̄2 + l2 (l2 + 1) h̄2 + 2 〈ψ| L̂1 · L̂2 |ψ〉 .

Using the Cauchy-Schwartz inequality

(5.87)|〈φ|ψ〉|2 ≤ |〈φ|φ〉||〈ψ|ψ〉|,

which is the equivalent of the classical relationship

(5.88)(A · B)2 ≤ A2B2.

Applying this to the last term, we have

(5.89)
(
〈ψ| L̂1 · L̂2 |ψ〉

)2
≤ 〈ψ| L̂1 · L̂1 |ψ〉 〈ψ| L̂2 · L̂2 |ψ〉

= h̄4l1 (l1 + 1) l2 (l2 + 2) .

Thus for the max we have

(5.90)〈ψ|
(
L̂1 + L̂2

)2
|ψ〉 ≤ h̄2l1 (l1 + 1) + h̄2l2 (l2 + 1) + 2 h̄2

√
l1 (l1 + 1) l2 (l2 + 2)

and for the min

(5.91)〈ψ|
(
L̂1 + L̂2

)2
|ψ〉 ≥ h̄2l1 (l1 + 1) + h̄2l2 (l2 + 1) − 2 h̄2

√
l1 (l1 + 1) l2 (l2 + 2).

To try to pretty up these estimate, starting with the max, note that if we replace a portion of
the RHS with something bigger, we are left with a strict less than relationship.

That is

l1 (l1 + 1) <
(
l1 +

1
2

)2

l2 (l2 + 1) <
(
l2 +

1
2

)2 (5.92)

That is

(5.93)

〈ψ|
(
L̂1 + L̂2

)2
|ψ〉 < h̄2

(
l1 (l1 + 1) + l2 (l2 + 1) + 2

(
l1 +

1
2

) (
l2 +

1
2

))
= h̄2

(
l21 + l22 + l1 + l2 + 2l1l2 + l1 + l2 +

1
2

)
= h̄2

((
l1 + l2 +

1
2

) (
l1 + l2 +

3
2

)
−

1
4

)
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or

(5.94)ltot (ltot + 1) <
(
l1 + l2 +

1
2

) (
l1 + l2 +

3
2

)
,

which, gives

(5.95)ltot < l1 + l2 +
1
2
.

Finally, given a quantization requirement, that is

ltot ≤ l1 + l2. (5.96)

Similarly, for the min, we find

(5.97)

〈ψ|
(
L̂1 + L̂2

)2
|ψ〉 > h̄2

(
l1 (l1 + 1) + l2 (l2 + 1) − 2

(
l1 +

1
2

) (
l2 +

1
2

))
= h̄2

(
l21 + l22 − 2l1l2 −

1
2

)
= h̄2

((
l1 − l2 −

1
2

) (
l1 − l2 +

1
2

)
−

1
4

)
.

The total angular momentum quantum number must then satisfy

(5.98)ltot(ltot + 1) >
(
l1 − l2 −

1
2

) (
l1 − l2 +

1
2

)
−

1
4

Is it true that

(5.99)ltot(ltot + 1) >
(
l1 − l2 −

1
2

) (
l1 − l2 +

1
2

)
?

This is true when ltot > l1 − l2 − 1
2 , assuming that l1 > l2. Suppose ltot = l1 − l2 − 1

2 , then

(5.100)
ltot(ltot + 1) =

(
l1 − l2 −

1
2

) (
l1 − l2 +

1
2

)
= (l1 − l2)2 −

1
4
.

So, is it true that

(5.101)(l1 − l2)2 −
1
4
≥ l21 + l1 + l22 + l2 − 2

√
l1(l1 + 1)l2(l2 + 1)?
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If that is the case we have

(5.102)−2l1l2 −
1
4
≥ l1 + l2 − 2

√
l1(l1 + 1)l2(l2 + 1),

(5.103)
2
√

l2(l1 + 1)l1(l2 + 1) ≥ l1 + l2 + 2l1l2 +
1
4

= l1(l2 + 1) + l2(l1 + 1) +
1
4
.

This has the structure

(5.104)2
√

xy ≥ x + y +
1
4
,

or

(5.105)4xy ≥ (x + y)2 +
1
16

+
1
2

(x + y),

or

(5.106)0 ≥ (x − y)2 +
1
16

+
1
2

(x + y),

But since x + y ≥ 0 this inequality is not satisfied when ltot = l1 − l2 − 1
2 . We can conclude

l1 − l2 −
1
2
< ltot < l1 + l2 +

1
2
. (5.107)

Is it true that

l1 − l2 ≥ ltot ≥ l1 + l2? (5.108)

Note that we have two separate Hilbert spaces l1 ⊗ l2 of dimension 2l1 + 1 and 2l2 + 1 respec-
tively. The total number of states is

(5.109)

l1+l2∑
ltot =l1−l2

(2ltot + 1) = 2
l1+l2∑

n=l1−l2

n +��l1 + l2 − (��l1 − l2) + 1

= 2
1
2

(l1 + l2 + (l1 − l2)) (l1 + l2 − (l1 − l2) + 1) + 2l2 + 1

= 2l1 (2l2 + 1) + 2l2 + 1
= (2l1 + 1)(2l2 + 1).

So the end result is that given |l1,m1〉 , |l2,m2〉, with l1 ≥ l2, where, in steps of 1,

l1 − l2 ≤ ltot ≤ l1 + l2. (5.110)
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5.7 clebsch-gordan

How can we related total momentum states to individual momentum states in the 1 ⊗ 2 space?

(5.111)|l1, l2, l,m〉 =
∑

m1,m2

Cl1l2lm
l1l2m1m2

|l1m1; l2m2〉

The values Cl1l2lm
l1l2m1m2

are called the Clebsch-Gordan coefficients.

Example 5.2: Example: spin one and spin one half

With individual momentum states |l1m1; l2m2〉

l1 = 1

m1 = ±1, 0

l2 =
1
2

m2 = ±
1
2

(5.112)

The total angular momentum numbers are

ltot ∈ [l1 − l2, l1 + l2] = [1/2, 3/2] (5.113)

The possible states |ltot,mtot〉 are

∣∣∣∣∣12 , 1
2

〉
,

∣∣∣∣∣12 ,−1
2

〉
, (5.114)

and∣∣∣∣∣32 , 3
2

〉
,

∣∣∣∣∣32 , 1
2

〉
,

∣∣∣∣∣32 ,−1
2

〉 ∣∣∣∣∣32 ,−3
2

〉
. (5.115)

The Clebsch-Gordan procedure is the search for an orthogonal angular momentum basis,
built up from the individual momentum bases. For the total momentum basis we want
the basis states to satisfy the ladder operators, but also have them satisfy the consistent
ladder operators for the individual particle angular momenta. This procedure is sketched
in fig. 5.9.



220 theory of angular momentum

Figure 5.9: Spin one,one-half Clebsch-Gordan procedure.

Demonstrating by example, let the highest total momentum state be proportional to the
highest product of individual momentum states

(5.116)
∣∣∣∣∣32 3

2

〉
= |11〉 ⊗

∣∣∣∣∣12 1
2

〉
.

A lowered state can be constructed in two different ways, one using the total angular
momentum lowering operator

(5.117)

∣∣∣∣∣32 1
2

〉
= L̂tot

−

∣∣∣∣∣32 3
2

〉
= h̄

√(
3
2

+
3
2

) (
3
2
−

3
2

+ 1
) ∣∣∣∣∣32 1

2

〉
= h̄
√

3
∣∣∣∣∣32 1

2

〉
.

On the other hand, the lowering operator can also be expressed as L̂tot
− = L̂(1)

− ⊗ 1 + 1 ⊗
L̂(2)
− . Operating with that gives
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∣∣∣∣∣32 1
2

〉
= L̂tot

− |11〉 ⊗
∣∣∣∣∣12 1

2

〉
= L̂(1)

− |11〉 ⊗
∣∣∣∣∣12 1

2

〉
+ |11〉 ⊗ L̂2

−

∣∣∣∣∣12 1
2

〉
= h̄

√
(1 + 1) (1 − 1 + 1) |10〉 ⊗

∣∣∣∣∣12 1
2

〉
+ h̄

√(
1
2

+
1
2

) (
1
2
−

1
2

+ 1
)
|11〉 ⊗

∣∣∣∣∣12 − 1
2

〉
= h̄
√

2 |10〉 ⊗
∣∣∣∣∣12 1

2

〉
+ h̄ |11〉 ⊗

∣∣∣∣∣12 − 1
2

〉
.

(5.118)

Equating both sides and dispensing with the direct product notation, this is

(5.119)
√

3
∣∣∣∣∣32 1

2

〉
=
√

2
∣∣∣∣∣10;

1
2

1
2

〉
+

∣∣∣∣∣11;
1
2
−

1
2

〉
,

or

∣∣∣∣∣32 1
2

〉
=

√
2
3

∣∣∣∣∣10;
1
2

1
2

〉
+

1
√

3

∣∣∣∣∣11;
1
2
−

1
2

〉
. (5.120)

This is clearly both a unit ket, and normal to
∣∣∣ 3
2

3
2

〉
. We can continue operating with the

lowering operator for the total angular momentum to construct all the states down to
∣∣∣3
2
−3
2

〉
.

Working with h̄ = 1 since we see it cancel out, the next lower state follows from

(5.121)
L̂tot
−

∣∣∣∣∣32 1
2

〉
=
√

2 × 2
∣∣∣∣∣32 −1

2

〉
= 2

∣∣∣∣∣32 −1
2

〉
.

and from the individual lowering operators on the components of
∣∣∣3
2

1
2

〉
.

(5.122)L̂(1)
−

∣∣∣∣∣10;
1
2

1
2

〉
=
√

1 × 2
∣∣∣∣∣1 − 1;

1
2

1
2

〉
,

and

(5.123)L̂(2)
−

∣∣∣∣∣10;
1
2

1
2

〉
=
√

1 × 1
∣∣∣∣∣10;

1
2
−1
2

〉
,
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and

(5.124)L̂1
−

∣∣∣∣∣11;
1
2
−

1
2

〉
=
√

2 × 1
∣∣∣∣∣10;

1
2
−

1
2

〉
.

This gives

(5.125)2
∣∣∣∣∣32 −1

2

〉
=

√
2
3

(
√

2
∣∣∣∣∣1 − 1;

1
2

1
2

〉
+

∣∣∣∣∣10;
1
2
−1
2

〉)
+

1
√

3

√
2
∣∣∣∣∣10;

1
2
−

1
2

〉
,

or

∣∣∣∣∣32 −1
2

〉
=

1
√

3

∣∣∣∣∣1 − 1;
1
2

1
2

〉
+

√
2
3

∣∣∣∣∣10;
1
2
−1
2

〉
. (5.126)

There’s one more possible state with total angular momentum 3
2 . This time

(5.127)

L̂tot
−

∣∣∣∣∣32 −1
2

〉
=
√

1 × 3
∣∣∣∣∣32 −3

2

〉
=

1
√

3
L̂(2)
−

∣∣∣∣∣1 − 1;
1
2

1
2

〉
+

√
2
3

L̂(1)
−

∣∣∣∣∣10;
1
2
−1
2

〉
=

1
√

3

√
1 × 1

∣∣∣∣∣1 − 1;
1
2
−1
2

〉
+

√
2
3

√
1 × 2

∣∣∣∣∣1 − 1;
1
2
−1
2

〉
,

or ∣∣∣∣∣32 −3
2

〉
=

∣∣∣∣∣1 − 1;
1
2
−1
2

〉
. (5.128)

The
∣∣∣1
2

1
2

〉
state is constructed as normal to

∣∣∣3
2

1
2

〉
, or

∣∣∣∣∣12 1
2

〉
=

√
1
3

∣∣∣∣∣10;
1
2

1
2

〉
−

√
2
3

∣∣∣∣∣11;
1
2
−

1
2

〉
, (5.129)

and
∣∣∣1
2 −

1
2

〉
by lowering that. With

(5.130)L̂tot
−

∣∣∣∣∣12 1
2

〉
=
√

1 × 1
∣∣∣∣∣12 − 1

2

〉
,
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we have

(5.131)
∣∣∣∣∣12 − 1

2

〉
=

√
1
3

(
√

1 × 2
∣∣∣∣∣1 − 1;

1
2

1
2

〉
+

∣∣∣∣∣10;
1
2
−

1
2

〉)
−

√
2
3

√
2 × 1

∣∣∣∣∣10;
1
2
−

1
2

〉
,

or ∣∣∣∣∣12 − 1
2

〉
=

√
2
3

∣∣∣∣∣1 − 1;
1
2

1
2

〉
−

1
√

3

∣∣∣∣∣10;
1
2
−

1
2

〉
. (5.132)

Observe that further lowering this produces zero

(5.133)L̂tot
−

∣∣∣∣∣12 − 1
2

〉
=

√
2
3

√
1 × 1

∣∣∣∣∣1 − 1;
1
2
−

1
2

〉
−

1
√

3

√
1 × 2

∣∣∣∣∣1 − 1;
1
2
−

1
2

〉
.

= 0.

All the basis elements have been determined, and are summarized in table 5.1.

Table 5.1: Spin one,half total angular momentum basis.∣∣∣3
2

3
2

〉
=

∣∣∣11; 1
2

1
2

〉∣∣∣3
2

1
2

〉
=

√
2
3

∣∣∣10; 1
2

1
2

〉
+ 1√

3

∣∣∣11; 1
2 −

1
2

〉 ∣∣∣ 1
2

1
2

〉
=

√
1
3

∣∣∣10; 1
2

1
2

〉
−

√
2
3

∣∣∣11; 1
2 −

1
2

〉
∣∣∣3
2
−1
2

〉
= 1√

3

∣∣∣1 − 1; 1
2

1
2

〉
+

√
2
3

∣∣∣10; 1
2
−1
2

〉 ∣∣∣ 1
2 −

1
2

〉
=

√
2
3

∣∣∣1 − 1; 1
2

1
2

〉
− 1√

3

∣∣∣10; 1
2 −

1
2

〉∣∣∣3
2
−3
2

〉
=

∣∣∣1 − 1; 1
2
−1
2

〉

Example 5.3: Spin two, spin one.

With j1 = 2 and j2 = 1, we have j ∈ 1, 2, 3, and can proceed the same way as sketched in
fig. 5.10.
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Figure 5.10: Spin two,one Clebsch-Gordan procedure.

Working through the details for this example is left to the problem set.

5.8 problems

Exercise 5.1 Angular momentum commutators.

Using L̂i = εi jkr̂ j p̂k, show that

(5.134)
[
L̂i, L̂ j

]
= i h̄εi jkL̂k

Answer for Exercise 5.1
Let’s start without using abstract index expressions, computing the commutator for L̂1, L̂2,

which should show the basic steps required

(5.135)
[
L̂1, L̂2

]
=

[
r̂2 p̂3 − r̂3 p̂2, r̂3 p̂1 − r̂1 p̂3

]
=

[
r̂2 p̂3, r̂3 p̂1

]
−

[
r̂2 p̂3, r̂1 p̂3

]
−

[
r̂3 p̂2, r̂3 p̂1

]
+

[
r̂3 p̂2, r̂1 p̂3

]
.

The first of these commutators is

(5.136)

[
r̂2 p̂3, r̂3 p̂1

]
= r̂2 p̂3r̂3 p̂1 − r̂3 p̂1r̂2 p̂3

= r̂2 p̂1
[
p̂3, r̂3

]
= −i h̄r̂2 p̂1.

We see that any factors in the commutator don’t have like indexes (i.e. r̂k, p̂k) on both position
and momentum terms, can be pulled out of the commutator. This leaves

(5.137)

[
L̂1, L̂2

]
= r̂2 p̂1

[
p̂3, r̂3

]
−���

���[r̂2 p̂3, r̂1 p̂3] −���
���[r̂3 p̂2, r̂3 p̂1] + r̂1 p̂2

[
r̂3, p̂3

]
= i h̄ (r̂1 p̂2 − r̂2 p̂1)
= i h̄L̂3.

With cyclic permutation this is really enough to consider eq. (5.134) proven. However, can
we do this in the general case with the abstract index expression? The quantity to simplify looks
forbidding

(5.138)
[
L̂i, L̂ j

]
= εiabε jst

[
r̂a p̂b, r̂s p̂t

]
Because there are no repeated indexes, this doesn’t submit to any of the normal reduction

identities. Note however, since we only care about the i , j case, that one of the indexes a, b
must be j for this quantity to be non-zero. Therefore (for i , j)
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(5.139)

[
L̂i, L̂ j

]
= εi jbε jst

[
r̂ j p̂b, r̂s p̂t

]
+ εia jε jst

[
r̂a p̂ j, r̂s p̂t

]
= εi jbε jst

([
r̂ j p̂b, r̂s p̂t

]
−

[
r̂b p̂ j, r̂s p̂t

])
= −δst

[ib]

[
r̂ j p̂b − r̂b p̂ j, r̂s p̂t

]
=

[
r̂ j p̂b − r̂b p̂ j, r̂b p̂i − r̂i p̂b

]
=

[
r̂ j p̂b, r̂b p̂i

]
−���

���[r̂ j p̂b, r̂i p̂b] −���
���[r̂b p̂ j, r̂b p̂i] +

[
r̂b p̂ j, r̂i p̂b

]
= r̂ j p̂i

[
p̂b, r̂b

]
+ r̂i p̂ j

[
r̂b, p̂b

]
= i h̄

(
r̂i p̂ j − r̂ j p̂i

)
= i h̄εi jkr̂i p̂ j.

Exercise 5.2 S y eigenvectors. ([11] pr. 4.1)

Find the eigenvectors of σy, and then find the probability that a measurement of S y will be
h̄/2 when the state is initially

(5.140)

α
β


Answer for Exercise 5.2

The eigenvalues should be ±1, which is easily checked

(5.141)

0 =
∣∣∣σy − λ

∣∣∣
=

∣∣∣∣∣∣∣−λ −i

i −λ

∣∣∣∣∣∣∣
= λ2 − 1.

For |+〉 = (a, b)T we must have

(5.142)−1a − ib = 0,

so

(5.143)|+〉 ∝

−i

1

 ,
or

(5.144)|+〉 =
1
√

2

1i
 .
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For |−〉 we must have

(5.145)a − ib = 0,

so

(5.146)|+〉 ∝

 i

1

 ,
or

(5.147)|+〉 =
1
√

2

 1

−i

 .
The normalized eigenvectors are

|±〉 =
1
√

2

 1

±i

 . (5.148)

For the probability question we are interested in

(5.149)

∣∣∣∣∣∣∣〈S y; +
∣∣∣ α
β


∣∣∣∣∣∣∣
2

=
1
2

∣∣∣∣∣∣∣[1 −i
] α
β


∣∣∣∣∣∣∣
2

=
1
2

(
|α|2 + |β|2

)
=

1
2
.

There is a 50% chance of finding the particle in the |S x; +〉 state, independent of the initial
state.

Exercise 5.3 Magnetic Hamiltonian eigenvectors. ([11] pr. 3.2)

Using Pauli matrices, find the eigenvectors for the magnetic spin interaction Hamiltonian

(5.150)H = −
1
h̄

2µS · B.

Answer for Exercise 5.3
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(5.151)

H = −µσ · B

= −µ

Bx

0 1

1 0

 + By

0 −i

i 0

 + Bz

1 0

0 −1




= −µ

 Bz Bx − iBy

Bx + iBy −Bz

 .
The characteristic equation is

(5.152)
0 =

∣∣∣∣∣∣∣ −µBz − λ −µ(Bx − iBy)

−µ(Bx + iBy) µBz − λ

∣∣∣∣∣∣∣
= −

(
(µBz)2 − λ2

)
− µ2

(
B2

x − (iBy)2
)

= λ2 − µ2B2.

That is

λ = ±µB. (5.153)

Now for the eigenvectors. We are looking for |±〉 = (a, b)T such that

(5.154)0 = (−µBz ∓ µB)a − µ(Bx − iBy)b

or

(5.155)|±〉 ∝

Bx − iBy

Bz ± B

 .
This squares to

(5.156)B2
x + B2

y + B2
z + B2 ± 2BBz = 2B(B ± Bz),

so the normalized eigenkets are

|±〉 =
1√

2B(B± Bz)

Bx − iBy

Bz ± B

 . (5.157)

Exercise 5.4 Unimodular transformation. ([11] pr. 3.3)
Given the matrix

(5.158)U =
a0 + iσ · a
a0 − iσ · a

,

where a0, a are real valued constant and vector respectively.
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a. Show that this is a unimodular and unitary transformation.

b. A unitary transformation can represent an arbitrary rotation. Determine the rotation an-
gle and direction in terms of a0, a.

Answer for Exercise 5.4

Part a. Let’s call these factors A±, which expand to

(5.159)

A± = a0 ± iσ · a

=

 a0 ± iaz ± (ay + iax)

∓(ay − iax) a0 ∓ iaz

 ,
or with z = a0 + iaz, and w = ay + iax, these are

(5.160)A+ =

 z w

−w∗ z∗


(5.161)A− =

 z∗ −w

w∗ z

 .
These both have a determinant of

(5.162)|z|2 + |w|2 = |a0 + iaz|
2 +

∣∣∣ay + iax
∣∣∣2

= a2
0 + a2.

The inverse of the latter is

(5.163)A−1
− =

1
a2

0 + a2

 z w

−w∗ z∗


Noting that the numerator and denominator commute the inverse can be applied in either

order. Picking one, the transformation of interest, after writing A = a2
0 + a2, is

(5.164)

U =
1
A

 z w

−w∗ z∗


 z w

−w∗ z∗


=

1
A

 z2 − |w|2 w(z + z∗)

−w∗(z∗ + z) (z∗)2 − |w|2

 .
Recall that a unimodular transformation is one that has the form
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(5.165)

 z w

−w∗ z∗

 ,
provided |z|2 + |w|2 = 1, so eq. (5.164) is unimodular if the following sum is unity, which is

the case∣∣∣z2 − |w|2
∣∣∣2(

|z|2 + |w|2
)2 + |w|2

|z + z∗|2(
|z|2 + |w|2

)2 =

(
z2 − |w|2

) (
(z∗)2 − |w|2

)
+ |w|2 (z + z∗)2(

|z|2 + |w|2
)2

=
|z|4 + |w|4 − |w|2

(
���

��z2 + (z∗)2
)

+ |w|2
(
���

��z2 + (z∗)2 + 2|z|2
)

(
|z|2 + |w|2

)2

= 1.
(5.166)

Part b. The most general rotation of a vector a, described by Pauli matrices is

(5.167)eiσ·n̂θ/2σ · ae−iσ·n̂θ/2 = σ · n̂ + (σ · a − (a · n̂)σ · n̂) cos θ + σ · (a × n̂) sin θ.

If the unimodular matrix above, applied as σ · a′ = U†σ · aU is to also describe this rotation,
we want the equivalence

(5.168)U = e−iσ·n̂θ/2,

or

(5.169)

1
a2

0 + a2

a2
0 − a2 + 2ia0az 2a0(ay + iax)

−2a0(ay − iax) a2
0 − a2 − 2ia0az


=

cos(θ/2) − inz sin(θ/2) (−ny − inx) sin(θ/2)

−(−ny + inx) sin(θ/2) cos(θ/2) + inz sin(θ/2)

 .
Equating components, that is

cos(θ/2) =
a2

0 − a2

a2
0 + a2

−nx sin(θ/2) =
2a0ax

a2
0 + a2

−ny sin(θ/2) =
2a0ay

a2
0 + a2

−nz sin(θ/2) =
2a0ay

a2
0 + a2

(5.170)
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Noting that

(5.171)

sin(θ/2) =

√√
1 −

(a2
0 − a2)2

(a2
0 + a2)2

=

√
(a2

0 + a2)2 − (a2
0 − a2)2

a2
0 + a2

=

√
4a2

0a2

a2
0 + a2

=
2a0|a|

a2
0 + a2

The vector normal direction can be written

(5.172)n = −
2a0

(a2
0 + a2) sin(θ/2)

a,

or

n = −
a
|a|
. (5.173)

The angle of rotation is

θ = 2 atan
2a0|a|

a2
0 − a2

. (5.174)

Exercise 5.5 Rotation angle and normal for a rotation through Euler angles. ([11] pr. 3.9)

Consider a sequence of Euler rotations represented by

(5.175)D1/2(α, β, γ) = e−iσzα/2e−iσyβ/2e−iσzγ2 .

Because rotations form a group, this sequence of rotations corresponds to a single rotation by
an angle θ about a new axis n̂. What is θ? What is n̂?
Answer for Exercise 5.5

PROBLEM SET RELATED MATERIAL REDACTED IN THIS DOCUMENT.PLEASE
FEEL FREE TO EMAIL ME FOR THE FULL VERSION IF YOU AREN’T TAKING PHY1520.

. .
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. .
.

. . .
. .

. . .
. .

. .
. END-REDACTION

Exercise 5.6 Angular momentum addition. (2015 ps6 p2)

You have to add angular momenta j1 = 1 and j2 = 2 to form total angular momentum states
with j = 1, 2, 3. There are a total of 15 | j,m〉 states in the total angular momentum basis. Express
each of them in terms of the old basis | j1, j2; m1,m2〉 set.
Answer for Exercise 5.6

PROBLEM SET RELATED MATERIAL REDACTED IN THIS DOCUMENT.PLEASE
FEEL FREE TO EMAIL ME FOR THE FULL VERSION IF YOU AREN’T TAKING PHY1520.

. .
. .

.
. . .

. .
. . .

. .
. .

. END-REDACTION

Exercise 5.7 Spin-1 rotations. (2015 ps6 p3)

Consider angular momentum j = 1.

a. Express 〈 j = 1,m′| Ĵy | j = 1,m〉 as a 3 × 3 matrix.

b. Show that for j = 1

(5.176)e−iĴyβ/ h̄ = 1 − i
Ĵy

h̄
sin β −

Ĵ2
y

h̄2 (1 − cos β) .

Answer for Exercise 5.7
PROBLEM SET RELATED MATERIAL REDACTED IN THIS DOCUMENT.PLEASE

FEEL FREE TO EMAIL ME FOR THE FULL VERSION IF YOU AREN’T TAKING PHY1520.
. .
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. .
.

. . .
. .

. . .
. .

. .
. END-REDACTION

Exercise 5.8 Lz and L2 eigenvalues and probabilities for a wave function. ([11] pr. 3.17)

Given a wave function

(5.177)ψ(r, θ, φ) = f (r) (x + y + 3z) ,

a. Determine if this wave function is an eigenfunction of L2, and the value of l if it is an
eigenfunction.

b. Determine the probabilities for the particle to be found in any given |l,m〉 state,

c. If it is known that ψ is an energy eigenfunction with energy E indicate how we can find
V(r).

Answer for Exercise 5.8

Part a. Using

L2 = − h̄2
(

1
sin2 θ

∂φφ +
1

sin θ
∂θ (sin θ∂θ)

)
, (5.178)

and

x = r sin θ cos φ

y = r sin θ sin φ

z = r cos θ

(5.179)

it’s a quick computation to show that

L2ψ = 2 h̄2ψ = 1(1 + 1) h̄2ψ, (5.180)

so this function is an eigenket of L2 with an eigenvalue of 2 h̄2, which corresponds to l = 1,
a p-orbital state.
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Part b. Recall that the angular representation of Lz is

Lz = −i h̄
∂,

∂φ
(5.181)

so we have

Lzx = i h̄y

Lzy = −i h̄x

Lzz = 0,

(5.182)

The Lz action on ψ is

Lzψ = −i h̄r f (r) (−y + x) . (5.183)

This wave function is not an eigenket of Lz. Expressed in terms of the Lz basis states eimφ,
this wave function is

(5.184)

ψ = r f (r) (sin θ (cos φ + sin φ) + cos θ)

= r f (r)
(
sin θ

2

(
eiφ

(
1 +

1
i

)
+ e−iφ

(
1 −

1
i

))
+ cos θ

)
= r f (r)

(
(1 − i) sin θ

2
e1iφ +

(1 + i) sin θ
2

e−1iφ + cos θe0iφ
)

Assuming that ψ is normalized, the probabilities for measuring m = 1,−1, 0 respectively are

(5.185)

P±1 = 2πρ
∣∣∣∣∣1 ∓ i

2

∣∣∣∣∣2 ∫ π

0
sin θdθ sin2 θ

= −2πρ
∫ −1

1
du(1 − u2)

= 2πρ
(
u −

u3

3

)∣∣∣∣∣∣1
−1

= 2πρ
(
2 −

2
3

)
=

8πρ
3
,

and
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(5.186)P0 = 2πρ
∫ π

0
sin θ cos θ

= 0,

where

(5.187)ρ =

∫ ∞

0
r4| f (r)|2dr.

Because the probabilities must sum to 1, this means the m = ±1 states are equiprobable with
P± = 1/2, fixing ρ = 3/16π, even without knowing f (r).

Part c. The operator r2p2 can be decomposed into a L2 component and some other portions,
from which we can write

(5.188)
Hψ =

(
p2

2m
+ V(r)

)
ψ

=

(
−

h̄2

2m

(
∂rr +

2
r
∂r −

1
h̄2r2

L2
)

+ V(r)
)
ψ.

(See: [11] eq. 6.21)
In this case where L2ψ = 2 h̄2ψ we can rearrange for V(r)

(5.189)
V(r) = E +

1
ψ

h̄2

2m

(
∂rr +

2
r
∂r −

2
r2

)
ψ

= E +
1

f (r)
h̄2

2m

(
∂rr +

2
r
∂r −

2
r2

)
f (r).

See sakuraiProblem3.17.nb for some verifications of some of the algebra for this problem.

Exercise 5.9 Angular momentum expectation values. ([11] pr. 3.18)

Compute the expectation values for the first and second powers of the angular momentum
operators with respect to states |lm〉.
Answer for Exercise 5.9

We can write the expectation values for the Lz powers immediately

(5.190)〈Lz〉 = m h̄,

and

(5.191)
〈
L2

z

〉
= (m h̄)2.
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For the x and y components first express the operators in terms of the ladder operators.

L+ = Lx + iLy

L− = Lx − iLy.
(5.192)

Rearranging gives

Lx =
1
2
(L+ + L−)

Ly =
1
2i

(L+ − L−) .
(5.193)

The first order expectations 〈Lx〉 ,
〈
Ly

〉
are both zero since 〈L+〉 = 〈L−〉. For the second order

expectation values we have

(5.194)

L2
x =

1
4

(L+ + L−) (L+ + L−)

=
1
4

(L+L+ + L−L− + L+L− + L−L+)

=
1
4

(
L+L+ + L−L− + 2(L2

x + L2
y)
)

=
1
4

(
L+L+ + L−L− + 2(L2 − L2

z )
)
,

and

(5.195)

L2
y = −

1
4

(L+ − L−) (L+ − L−)

= −
1
4

(L+L+ + L−L− − L+L− − L−L+)

= −
1
4

(
L+L+ + L−L− − 2(L2

x + L2
y)
)

= −
1
4

(
L+L+ + L−L− − 2(L2 − L2

z )
)
.

Any expectation value 〈lm| L+L+ |lm〉 or 〈lm| L−L− |lm〉 will be zero, leaving

(5.196)

〈
L2

x

〉
=

〈
L2

y

〉
=

1
4

〈
2(L2 − L2

z )
〉

=
1
2

(
h̄2l(l + 1) − ( h̄m)2

)
.
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Observe that we have〈
L2

x

〉
+

〈
L2

y

〉
+

〈
L2

z

〉
= h̄2l(l + 1) =

〈
L2

〉
, (5.197)

which is the quantum mechanical analogue of the classical scalar equation L2 = L2
x + L2

y + L2
z .

Exercise 5.10 Spin three halves spin interaction. ([11] pr. 3.33)

A spin 3/2 nucleus subjected to an external electric field has an interaction Hamiltonian of
the form

(5.198)H =
eQ

2s(s − 1) h̄2

((
∂2φ

∂x2

)
0

S 2
x +

(
∂2φ

∂y2

)
0

S 2
y +

(
∂2φ

∂z2

)
0

S 2
z

)
.

a. Show that the interaction energy can be written as

(5.199)A(3S 2
z − S2) + B(S 2

+ + S 2
−).

b. Find the energy eigenvalues for such a Hamiltonian.

Answer for Exercise 5.10

Part a. Reordering

S + = S x + iS y

S − = S x − iS y,
(5.200)

gives

S x =
1
2
(S + + S −)

S y =
1
2i

(S + − S −) .
(5.201)

The squared spin operators are

(5.202)

S 2
x =

1
4

(
S 2

+ + S 2
− + S +S − + S −S +

)
=

1
4

(
S 2

+ + S 2
− + 2(S 2

x + S 2
y)
)

=
1
4

(
S 2

+ + S 2
− + 2(S2 − S 2

z )
)
,
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(5.203)

S 2
y = −

1
4

(
S 2

+ + S 2
− − S +S − − S −S +

)
= −

1
4

(
S 2

+ + S 2
− − 2(S 2

x + S 2
y)
)

= −
1
4

(
S 2

+ + S 2
− − 2(S2 − S 2

z )
)
.

This gives

(5.204)

H =
eQ

2s(s − 1) h̄2 (
1
4

(
∂2φ

∂x2

)
0

(
S 2

+ + S 2
− + 2(S2 − S 2

z )
)

−

(
∂2φ

∂y2

)
0

(
S 2

+ + S 2
− − 2(S2 − S 2

z )
)

+

(
∂2φ

∂z2

)
0

S 2
z )

=
eQ

2s(s − 1) h̄2 (
1
4

((
∂2φ

∂x2

)
0
−

(
∂2φ

∂y2

)
0

) (
S 2

+ + S 2
−

)
+

1
2

((
∂2φ

∂x2

)
0

+

(
∂2φ

∂y2

)
0

)
S2

+

((
∂2φ

∂z2

)
0
−

1
2

(
∂2φ

∂x2

)
0
−

1
2

(
∂2φ

∂y2

)
0

)
S 2

z ).

For a static electric field we have

(5.205)∇
2φ = −

ρ

ε0
,

but are evaluating it at a point away from the generating charge distribution, so ∇2φ = 0 at
that point. This gives

(5.206)
H =

eQ

4s(s − 1) h̄2 (
1
2

((
∂2φ

∂x2

)
0
−

(
∂2φ

∂y2

)
0

) (
S 2

+ + S 2
−

)
+

((
∂2φ

∂x2

)
0

+

(
∂2φ

∂y2

)
0

)
(S2 − 3S 2

z )),

so

(5.207)A = −
eQ

4s(s − 1) h̄2

((
∂2φ

∂x2

)
0

+

(
∂2φ

∂y2

)
0

)

(5.208)B =
eQ

8s(s − 1) h̄2

((
∂2φ

∂x2

)
0
−

(
∂2φ

∂y2

)
0

)
.
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Part b. Using sakuraiProblem3.33.nb, matrix representations for the spin three halves opera-
tors and the Hamiltonian were constructed with respect to the basis {|3/2〉 , |1/2〉 , |−1/2〉 , |−3/2〉}

S + = h̄


0
√

3 0 0

0 0 2 0

0 0 0
√

3

0 0 0 0



S − = h̄


0 0 0 0
√

3 0 0 0

0 2 0 0

0 0
√

3 0



S x = h̄


0

√
3/2 0 0

√
3/2 0 1 0

0 1 0
√

3/2

0 0
√

3/2 0



S y = i h̄


0 −

√
3/2 0 0

√
3/2 0 −1 0

0 1 0 −
√

3/2

0 0
√

3/2 0



S z =
h̄
2


3 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 −3



H =


3A 0 2

√
3B 0

0 −3A 0 2
√

3B

2
√

3B 0 −3A 0

0 2
√

3B 0 3A


.

(5.209)

The energy eigenvalues are found to be

E = ± h̄2
√

9A2 + 12B2, (5.210)

with two fold degeneracies for each eigenvalue.
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A P P ROX I M AT I O N M E T H O D S

6.1 approximation methods

Suppose we have a perturbed Hamiltonian

H = H0 + λV, (6.1)

where λ = 0 represents a solvable (perhaps known) system, and λ = 1 is the case of interest.
There are two approaches of interest

1. Direct solution of H with λ = 1.

2. Take λ small, and do a series expansion. This is perturbation theory.

6.2 variational methods

Given

(6.2)H |φn〉 = En |φn〉 ,

where we don’t know |φn〉, we can compute the expectation with respect to an arbitrary state
|ψ〉

(6.3)

〈ψ|H |ψ〉 = 〈ψ|H

∑
n

|φn〉 〈φn|

 |ψ〉
=

∑
n

En 〈ψ|φn〉 〈φn|ψ〉

=
∑

n

En|〈ψ|φn〉|
2.

Define

(6.4)E =
〈ψ|H |ψ〉
〈ψ|ψ〉

.

Assuming that it is possible to express the state in the Hamiltonian energy basis

239
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(6.5)|ψ〉 =
∑

n

an |φn〉 ,

this average energy is

(6.6)

E =

∑
m,n 〈φm| a∗mHan |φn〉∑

n |an|
2

=

∑
n |an|

2En∑
n |an|

2 .

=
∑

n

|an|
2∑

n |an|
2 En

=
∑

n

Pn∑
m Pm

En,

where Pm = |am|
2, which has the structure of a probability coefficient once divided by

∑
m Pm,

as sketched in fig. 6.1.

Figure 6.1: A decreasing probability distribution.

This average energy is a probability weighted average of the individual energy basis states.
One of those energies is the ground state energy E1, so we necessarily have

E ≥ E1. (6.7)

Example 6.1: Particle in an offset box.

For the infinite potential box sketched in fig. 6.2.
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Figure 6.2: Infinite potential [0, L] box.

The exact solutions for such a system are found to be

(6.8)ψ(x) =

√
2
L

sin
(nπ

L
x
)
,

where the energies are

(6.9)E =
h̄2

2m
n2π2

L2 .

The function ψ′ = x(L − x) also satisfies the boundary value constraints? How close in
energy is that function to the ground state?

(6.10)

E = −
h̄2

2m

∫ L
0 dxx(L − x) d2

dx2 (x(L − x))∫ L
0 dxx2(L − x)2

=
h̄2

2m

2L3

6
L5

30

=
h̄2

2m
10
L2 .

This average energy is quite close to the ground state energy

(6.11)
E
E1

=
10
π2

= 1.014.
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Example 6.2: Particle in a symmetric box.
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Figure 6.3: Infinite potential [−L/2, L/2] box.
Shifting the boundaries, as sketched in fig. 6.3 doesn’t change the energy levels. For this

potential let’s try a shifted trial function

(6.12)
ψ(x) =

(
x −

L
2

) (
x +

L
2

)
= x2 −

L2

4
,

without worrying about the form of the exact solution. This produces the same result as
above

(6.13)

E = −
h̄2

2m

∫ L
0 dx

(
x2 − L2

4

)
d2

dx2

(
x2 − L2

4

)
∫ L

0 dx
(
x2 − L2

4

)2

= −
h̄2

2m
−2L3/6

L5

30

=
h̄2

2m
10
L2 .

Summary (Nishant) The above example is that of a particle in a box. The actual wave function
is a sin as shown. But we can come up with a guess wave function that meets the boundary
conditions and ask how accurate it is compared to the actual one.

Basically we are assuming a wave function form and then seeing how it differs from the exact
form. We cannot do this if we have nothing to compare it against. But, we note that the variance
of the number operator in the systems eigenstate is zero. So we can still calculate the variance
and try to minimize it. This is one way of coming up with an approximate wave function. This
does not necessarily give the ground state wave function though. For this we need to minimize
the energy itself.
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6.3 variational method

Today we want to use the variational degree of freedom to try to solve some problems that we
don’t have analytic solutions for.

Anharmonic oscillator

V(x) =
1
2

mω2x2 + λx4, λ ≥ 0. (6.14)

With the potential growing faster than the harmonic oscillator, which had a ground state
solution

(6.15)ψ(x) =
1
π1/4

1

a1/2
0

e−x2/2a2
0 ,

where

(6.16)a0 =

√
h̄

mω
.

Let’s try allowing a0 → a, to be a variational degree of freedom

(6.17)ψa(x) =
1
π1/4

1
a1/2 e−x2/2a2

,

(6.18)〈ψa|H |ψa〉 = 〈ψa|
p2

2m
+

1
2

mω2x2 + λx4 |ψa〉

We can find

(6.19)
〈
x2

〉
=

1
2

a2

(6.20)
〈
x4

〉
=

3
4

a4

Define

(6.21)ω̃ =
h̄

ma2 ,

so that

(6.22)

Ea = 〈ψa|

(
p2

2m
+

1
2

mω̃2x2
)

+

(
1
2

m
(
ω2 − ω̃2

)
x2 + λx4

)
|ψa〉

=
1
2

h̄ω̃ +
1
2

m
(
ω2 − ω̃2

) 1
2

a2 +
3
4
λa4.
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Figure 6.4: Energy after perturbation.

Write this as

(6.23)Eω̃ =
1
2

h̄ω̃ +
1
4

h̄
ω̃

(
ω2 − ω̃2

)
+

3
4
λ

h̄2

m2ω̃2 .

This might look something like fig. 6.4.
Demand that

(6.24)

0 =
∂Eω̃

∂ω̃

=
h̄
2
−

h̄
4
ω2

ω̃2 −
h̄
4

+
3
4

(−2)
λ h̄2

m2ω̃3

=
h̄
4

(
1 −

ω2

ω̃2 − 6
λ h̄

m2ω̃3

)
or

(6.25)ω̃3 − ω2ω̃ −
6λ h̄
m2 = 0.

for λa4
0 � h̄ω, we have something like ω̃ = ω + ε. Expanding eq. (6.25) to first order in ε,

this gives

ω3 + 3ω2ε −ω2 (ω + ε) −
6λ h̄
m2 = 0, (6.26)

so that

2ω2ε =
6λ h̄
m2 , (6.27)
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and

h̄ε =
3λ h̄2

m2ω2 = 3λa4
0. (6.28)

Plugging into

(6.29)

Eω+ε =
1
2

h̄ (ω + ε) +
1
4

h̄
ω

(
−2ωε + ε2

)
+

3
4
λ

h̄2

m2ω2

≈
1
2

h̄ (ω + ε) −
1
2

h̄ε +
3
4
λ

h̄2

m2ω2

=
1
2

h̄ω +
3
4
λa4

0.

With eq. (6.28), that is

Eω̃=ω+ε ≈
1
2

h̄
(
ω +

ε

2

)
. (6.30)

The energy levels are shifted slightly for each shift in the Hamiltonian frequency.
What do we have in the extreme anharmonic limit, where λa4

0 � h̄ω. Now we get

ω̃∗ =

(
6 h̄λ
m2

)1/3

, (6.31)

and

Eω̃∗ =
h̄4/3λ1/3

m2/3

3
8

61/3. (6.32)

(this last result is pulled from a web treatment somewhere of the anharmonic oscillator). Note
that the first factor in this energy, with h̄4λ/m2 traveling together could have been worked out
on dimensional grounds.

This variational method tends to work quite well in these limits. For a system where m = ω =

h̄ = 1, for this problem, we have

Example: (sketch) double well potential

V(x) =
mω2

8a2 (x − a)2 (x + a)2
. (6.33)

Note that this potential, and the Hamiltonian, both commute with parity.
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Table 6.1: Comparing numeric and variational solutions

h̄/ω numeric variational

100 3.13 3.16

1000 6.69 6.81

Figure 6.5: Double well potential.

We are interested in the regime where a2
0 = h̄

mω � a2.
Near x = ±a, this will be approximately

V(x) =
1
2

mω2 (x ± a)2
. (6.34)

Guessing a wave function that is an eigenstate of parity

Ψ± = g± (φR(x) ± φL(x)) . (6.35)

perhaps looking like the even and odd functions sketched in fig. 6.6, and fig. 6.7.

Figure 6.6: Even double well function.
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Figure 6.7: Odd double well function.

Using harmonic oscillator functions

φL(x) = ΨH.O.(x + a)

φR(x) = ΨH.O.(x − a)
(6.36)

After doing a lot of integral (i.e. in the problem set), we will see a splitting of the variational
energy levels as sketched in fig. 6.8.

Figure 6.8: Splitting for double well potential.

This sort of level splitting was what was used in the very first mazers.

6.4 perturbation theory (outline)

Given

H = H0 + λV, (6.37)

where λV is “small”. We want to figure out the eigenvalues and eigenstates of this Hamilto-
nian

H |n〉 = En |n〉 . (6.38)

We don’t know what these are, but do know that

H0
∣∣∣n(0)

〉
= E(0)

n

∣∣∣n(0)
〉
. (6.39)
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Figure 6.9: Adiabatic transitions.

We are hoping that the level transitions have adiabatic transitions between the original and
perturbed levels as sketched in fig. 6.9.

and not crossed level transitions as sketched in fig. 6.10.

Figure 6.10: Crossed level transitions.

If we have level crossings (which can in general occur), as opposed to adiabatic transitions,
then we have no hope of using perturbation theory.

6.5 simplest perturbation example .

Given a 2 × 2 Hamiltonian H = H0 + V , where

(6.40)H =

 a c

c∗ b

 ,
note that if c = 0 is

H = H0 =

a 0

0 b

 . (6.41)

The off diagonal terms can be considered to be a perturbation

(6.42)V =

 0 c

c∗ 0

 ,
with H = H0 + V .
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Energy levels after perturbation We can solve for the eigenvalues of H easily, finding

(6.43)λ± =
a + b

2
±

√(
a − b

2

)2

+ |c|2.

Plots of a few a, b variations of λ± are shown in fig. 6.11. The quadratic (non-degenerate)
domain is found near the c = 0 points of all but the first ( a = b ) plot, and the degenerate (linear
in |c|2) regions are visible for larger values of c.

(a) (b)

(c) (d)

Figure 6.11: Plots of λ± for (a, b) ∈ {(1, 1), (1, 0), (1, 5), (−8, 8)}

Some approximations Suppose that |c| � |a − b|, then

(6.44)λ± ≈
a + b

2
±

∣∣∣∣∣a − b
2

∣∣∣∣∣ (1 + 2
|c|2

|a − b|2

)
.

If a > b, then

(6.45)λ± ≈
a + b

2
±

a − b
2

(
1 + 2

|c|2

(a − b)2

)
.
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(6.46)

λ+ =
a + b

2
+

a − b
2

(
1 + 2

|c|2

(a − b)2

)
= a + (a − b)

|c|2

(a − b)2

= a +
|c|2

a − b
,

and

(6.47)

λ− =
a + b

2
−

a − b
2

(
1 + 2

|c|2

(a − b)2

)
= b + (a − b)

|c|2

(a − b)2

= b +
|c|2

a − b
.

This adiabatic evolution displays a “level repulsion”, quadratic in |c|, and is described as a
non-degenerate permutation.

If |c| � |a − b|, then

(6.48)

λ± =
a + b

2
± |c|

√
1 +

1

|c|2

(
a − b

2

)2

≈
a + b

2
± |c|

1 +
1

2|c|2

(
a − b

2

)2
=

a + b
2
± |c| ±

(a − b)2

8|c|
.

Here we loose the adiabaticity, and have “level repulsion” that is linear in |c|. We no longer
have the sign of a − b in the expansion. This is described as a degenerate permutation.

6.6 general non-degenerate perturbation

Given an unperturbed system with solutions of the form

H0
∣∣∣n(0)

〉
= E(0)

n

∣∣∣n(0)
〉
, (6.49)

we want to solve the perturbed Hamiltonian equation

(H0 + λV) |n〉 =
(
E(0)

n + ∆n
)
|n〉 . (6.50)
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Here ∆n is an energy shift as that goes to zero as λ→ 0. We can write this as

(
E(0)

n − H0
)
|n〉 = (λV − ∆n) |n〉 . (6.51)

We are hoping to iterate with application of the inverse to an initial estimate of |n〉

|n〉 =
(
E(0)

n − H0
)−1

(λV − ∆n) |n〉 . (6.52)

This gets us into trouble if λ→ 0, which can be fixed by using

|n〉 =
(
E(0)

n − H0
)−1

(λV − ∆n) |n〉 +
∣∣∣n(0)

〉
, (6.53)

which can be seen to be a solution to eq. (6.51). We want to ask if

(λV − ∆n) |n〉 , (6.54)

contains a bit of
∣∣∣n(0)

〉
? To determine this act with

〈
n(0)

∣∣∣ on the left

(6.55)

〈
n(0)

∣∣∣ (λV − ∆n) |n〉 =
〈
n(0)

∣∣∣ (E(0)
n − H0

)
|n〉

=
(
E(0)

n − E(0)
n

) 〈
n(0)

∣∣∣n〉
= 0.

This shows that |n〉 is entirely orthogonal to
∣∣∣n(0)

〉
.

Define a projection operator

(6.56)Pn =
∣∣∣n(0)

〉 〈
n(0)

∣∣∣ ,
which has the idempotent property P2

n = Pn that we expect of a projection operator.
Define a rejection operator

(6.57)
Pn = 1 −

∣∣∣n(0)
〉 〈

n(0)
∣∣∣

=
∑
m,n

∣∣∣m(0)
〉 〈

m(0)
∣∣∣ .

Because |n〉 has no component in the direction
∣∣∣n(0)

〉
, the rejection operator can be inserted

much like we normally do with the identity operator, yielding

(6.58)|n〉 ′ =
(
E(0)

n − H0
)−1

Pn (λV − ∆n) |n〉 +
∣∣∣n(0)

〉
,

valid for any initial |n〉.



6.6 general non-degenerate perturbation 253

Power series perturbation expansion Instead of iterating, suppose that the unknown state and
unknown energy difference operator can be expanded in a λ power series, say

(6.59)|n〉 = |n0〉 + λ |n1〉 + λ2 |n2〉 + λ3 |n3〉 + · · ·

and
(6.60)∆n = ∆n0 + λ∆n1 + λ2∆n2 + λ3∆n3 + · · ·

We usually interpret functions of operators in terms of power series expansions. In the case of(
E(0)

n − H0
)−1

, we have a concrete interpretation when acting on one of the unperturbed eigen-
states

(6.61)
1

E(0)
n − H0

∣∣∣m(0)
〉

=
1

E(0)
n − E0

m

∣∣∣m(0)
〉
.

This gives

(6.62)|n〉 =
1

E(0)
n − H0

∑
m,n

∣∣∣m(0)
〉 〈

m(0)
∣∣∣ (λV − ∆n) |n〉 +

∣∣∣n(0)
〉
,

or

|n〉 =
∣∣∣n(0)

〉
+

∑
m,n

∣∣∣m(0)
〉 〈

m(0)
∣∣∣

E(0)
n − E(0)

m

(λV − ∆n) |n〉 . (6.63)

From eq. (6.51), note that

∆n =

〈
n(0)

∣∣∣ λV |n〉〈
n0

∣∣∣n〉 , (6.64)

however, we will normalize by setting
〈
n0

∣∣∣n〉 = 1, so

∆n =
〈
n(0)

∣∣∣ λV |n〉 . (6.65)

to O(λ0) If all λn, n > 0 are zero, then we have

(6.66a)|n0〉 =
∣∣∣n(0)

〉
+

∑
m,n

∣∣∣m(0)
〉 〈

m(0)
∣∣∣

E(0)
n − E(0)

m

(
−∆n0

)
|n0〉

(6.66b)∆n0

〈
n(0)

∣∣∣n0
〉

= 0

so

(6.67)
|n0〉 =

∣∣∣n(0)
〉

∆n0 = 0.
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to O(λ1) Requiring identity for all λ1 terms means

(6.68)|n1〉 λ =
∑
m,n

∣∣∣m(0)
〉 〈

m(0)
∣∣∣

E(0)
n − E(0)

m

(
λV − ∆n1λ

)
|n0〉 ,

so

(6.69)|n1〉 =
∑
m,n

∣∣∣m(0)
〉 〈

m(0)
∣∣∣

E(0)
n − E(0)

m

(
V − ∆n1

)
|n0〉 .

With the assumption that
∣∣∣n(0)

〉
is normalized, and with the shorthand

(6.70)Vmn =
〈
m(0)

∣∣∣ V ∣∣∣n(0)
〉
,

that is

|n1〉 =
∑
m,n

∣∣∣m(0)
〉

E(0)
n − E(0)

m

Vmn

∆n1 =
〈
n(0)

∣∣∣ V ∣∣∣n(0)
〉

= Vnn.

(6.71)

to O(λ2) The second order perturbation states are found by selecting only the λ2 contributions
to

(6.72)λ2 |n2〉 =
∑
m,n

∣∣∣m(0)
〉 〈

m(0)
∣∣∣

E(0)
n − E(0)

m

(
λV − (λ∆n1 + λ2∆n2)

)
(|n0〉 + λ |n1〉) .

Because |n0〉 =
∣∣∣n(0)

〉
, the λ2∆n2 is killed, leaving

(6.73)
|n2〉 =

∑
m,n

∣∣∣m(0)
〉 〈

m(0)
∣∣∣

E(0)
n − E(0)

m

(
V − ∆n1

)
|n1〉

=
∑
m,n

∣∣∣m(0)
〉 〈

m(0)
∣∣∣

E(0)
n − E(0)

m

(
V − ∆n1

)∑
l,n

∣∣∣l(0)
〉

E(0)
n − E(0)

l

Vln,

which can be written as

(6.74)|n2〉 =
∑

l,m,n

∣∣∣m(0)
〉 VmlVln(

E(0)
n − E(0)

m

) (
E(0)

n − E(0)
l

) −∑
m,n

∣∣∣m(0)
〉 VnnVmn(

E(0)
n − E(0)

m

)2 .

For the second energy perturbation we have
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(6.75)λ2∆n2 =
〈
n(0)

∣∣∣ λV (λ |n1〉) ,

or

(6.76)

∆n2 =
〈
n(0)

∣∣∣ V |n1〉

=
〈
n(0)

∣∣∣ V ∑
m,n

∣∣∣m(0)
〉

E(0)
n − E(0)

m

Vmn.

That is

(6.77)∆n2 =
∑
m,n

VnmVmn

E(0)
n − E(0)

m

.

to O(λ3) Similarly, it can be shown that

(6.78)∆n3 =
∑

l,m,n

VnmVmlVln(
E(0)

n − E(0)
m

) (
E(0)

n − E(0)
l

) −∑
m,n

VnmVnnVmn(
E(0)

n − E(0)
m

)2 .

In general, the energy perturbation is given by

(6.79)∆(l)
n =

〈
n(0)

∣∣∣ V |nl−1〉 .

6.7 stark effect

(6.80)H = Hatom + eEz,

where Hatom is assumed to be Hydrogen-like with Hamiltonian

(6.81)Hatom =
p2

2m
−

e2

4πε0r
,

and wave functions

(6.82)〈r|ψnlm〉 = Rnl(r)Ylm(θ, φ)

Referring to eq. (A.117), the first level correction to the energy

(6.83)
∆1 = 〈ψ100| eEz |ψ100〉

= eE
∫

dΩ
4π

cos θ
∫

drr2R2
100(r)

The cosine integral is obliterated, so we have ∆1 = 0.
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How about the second order energy correction? That is

(6.84)∆2 =
∑

nlm,100

|〈ψ100| eEz |nlm〉|2

E(0)
100 − Enlm

The matrix element in the numerator is the absolute square of

(6.85)V100,nlm = eE
∫

dΩ
1
√

4π
cos θYlm(θ, φ)

∫
drr3R100(r)Rnl(r).

For all m , 0, Ylm includes a eimφ factor, so this cosine integral is zero. For m = 0, each of the
Ylm functions appears to contain either even or odd powers of cosines (see: eq. (A.115)). This
shows that for even 2k = l, the cosine integral is zero

∫ π

0
sin θ cos θ

∑
k

ak cos2k θdθ = 0, (6.86)

since cos2k(θ) is even and sin θ cos θ is odd over the same interval. We find zero for
∫ π

0 sin θ cos θY30(θ, φ)dθ,
and Mathematica appears to show that the rest of these integrals for l > 1 are also zero.

FIXME: find the property of the spherical harmonics that can be used to prove that this is
true in general for l > 1.

This leaves

(6.87)
∆2 =

∑
n,1

|〈ψ100| eEz |n10〉|2

E(0)
100 − En10

= −e2E2
∑
n,1

|〈ψ100| z |n10〉|2

En10 − E(0)
100

.

This is sometimes written in terms of a polarizability α

(6.88)∆2 = −
E2

2
α,

where

(6.89)α = 2e2
∑
n,1

|〈ψ100| z |n10〉|2

En10 − E(0)
100

.

With

P = αE, (6.90)
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the energy change upon turning on the electric field from 0→ E is simply −P · dE integrated
from 0→ E. Putting P = αEẑ, we have

(6.91)
−

∫ E

0
PzdE = −

∫ E

0
αEdE

= −
1
2
αE2

leading to an energy change −αE2/2, so we can directly compute 〈P〉 or we can compute
change in energy, and both contain information about the polarization factor α.

There is an exact answer to the sum eq. (6.89), but we aren’t going to try to get it here. Instead
let’s look for bounds

∆min
2 < ∆2 < ∆max

2 (6.92)

(6.93)αmin = 2e2 |〈ψ100| z |ψ210〉|
2

E(0)
210 − E(0)

100

For the hydrogen atom we have

(6.94)En = −
e2

2n2a0
,

allowing any difference of energy levels to be expressed as a fraction of the ground state
energy, such as

(6.95)
E(0)

210 =
1
4

E(0)
100

=
1
4
− h̄2

2ma2
0

So

(6.96)E(0)
210 − E(0)

100 =
3
4

h̄2

2ma2
0

In the numerator we have
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(6.97)

〈ψ100| z |ψ210〉 =

∫
r2dΩ

 1
√
πa3/2

0

e−r/a0

 r cos θ

 1

4
√

2πa3/2
0

r
a0

e−r/2a0 cos θ


= (2π)

1
√
π

1

4
√

2π
a0

∫ π

0
dθ sin θ cos2 θ

∫ ∞

0

dr
a0

r4

a4
0

e−r/a0−r/2a0

= (2�π)
�
�
�1
√
π

1

4
√

2�π
a0

−u3

3

∣∣∣∣∣∣−1

1

 ∫ ∞

0
s4dse−3s/2

=
1

2
√

2

2
3

a0
256
81

=
1

3
√

2

256
81

a0

≈ 0.75a0.

This gives

(6.98)

αmin =
2e2(0.75)2a2

0
3
4

h̄2

2ma2
0

=
6
4

2me2a4
0

h̄2

= 3
me2a4

0

h̄2

= 3
4πε0

a0
a4

0

≈ 4πε0a3
0 × 3.

The factor 4πε0a3
0 are the natural units for the polarizability.

There is a neat trick that generalizes to many problems to find the upper bound. Recall that
the general polarizability was

(6.99)α = 2e2
∑

nlm,100

|〈100| z |nlm〉|2

Enlm − E(0)
100

.

If we are looking for the upper bound, and replace the denominator by the smallest energy
difference that will be encountered, it can be brought out of the sum, for

(6.100)αmax = 2e2 1

E210 − E(0)
100

∑
nlm,100

〈100| z |nlm〉 〈nlm| z |100〉
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Because 〈nlm| z |100〉 = 0, the constraint in the sum can be removed, and the identity summa-
tion evaluated

(6.101)

αmax = 2e2 1

E210 − E(0)
100

∑
nlm

〈100| z |nlm〉 〈nlm| z |100〉

=
2e2

3
4

h̄2

2ma2
0

〈100| z2 |100〉

=
16e2ma2

0

3 h̄2 × a2
0

= 4πε0a3
0 ×

16
3
.

The bounds are

3 ≥
α

αat <
16
3
, (6.102)

where

(6.103)αat = 4πε0a3
0.

The actual value is

(6.104)
α

αat =
9
2
.

See lecture21someSphericalHarmonicsAndTheirIntegrals.nb, for some of the integrals above,
and for spherical harmonic tables.

Example: Computing the dipole moment

〈Pz〉 = αE = 〈ψ100| ez |ψ100〉 . (6.105)

Without any perturbation this is zero. After perturbation, retaining only the terms that are first
order in δψ100 we have

(6.106)〈ψ100 + δψ100| ez |ψ100 + δψ100〉 ≈ 〈ψ100| ez |δψ100〉 + 〈δψ100| ez |ψ100〉 .

Next time: van der Walls We will look at two hyrdogenic atomic systems interacting where
the pair of nuclei are supposed to be infinitely heavy and stationary. The wave functions each set
of atoms are individually known, but we can consider the problem of the interactions of atom
1’s electrons with atom 2’s nucleus and atom 2’s electrons, and also the opposite interactions of
atom 2’s electrons with atom 1’s nucleus and its electrons. This leads to a result that is linear in
the electric field (unlike the above result, which is called the quadratic Stark effect).
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Another approach (for last time?) Imagine we perturb a potential, say a harmonic oscillator
with an electric field

(6.107)V0(x) =
1
2

kx2

(6.108)V(x) = Eex

After minimizing the energy, using ∂V/∂x = 0, we get

(6.109)
1
2

kx2 + Eex→ kx∗

= −eE

(6.110)
p∗ = −ex∗

= −
e2E

k

For such a system the polarizability is

(6.111)α =
e2

k

(6.112)

1
2

k
(
−

eE
k

)2

+ Ee
(
−

eE
k

)
= −

1
2

(
e2

k

)
E2

= −
1
2
αE2

6.8 van der walls potential

(6.113)H0 = H01 + H02,

where

H0α =
p2
α

2m
−

e2

4πε0|rα −Rα|
, α = 1, 2 (6.114)

The full interaction potential is

(6.115)V =
e2

4πε0

(
1

|R1 − R2|
+

1
|r1 − r2|

−
1

|r1 − R2|
−

1
|r2 − R1|

)
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Figure 6.12: Two atom interaction.

Let

(6.116)xα = rα − Rα,

(6.117)R = R1 − R2,

as sketched in fig. 6.12.

(6.118)H0α =
p2

2m
−

e2

4πε0|xα|

which allows the total interaction potential to be written

(6.119)V =
e2

4πε0R

(
1 +

R
|x1 − x2 + R|

−
R

|x1 + R|
−

R
|−x2 + R|

)
For R � x1, x2, this interaction potential, after a multipole expansion, is approximately

(6.120)V =
e2

4πε0

(
x1 · x2

|R|3
− 3

(x1 · R)(x2 · R)

|R|5

)
Showing this is left as a exercise.

1. O(λ) .
With

(6.121)ψ0 = |1s, 1s〉

(6.122)∆E(1) = 〈ψ0|V |ψ0〉

The two particle wave functions are of the form

(6.123)〈x1, x2|ψ0〉 = ψ1s(x1)ψ1s(x2),
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so braket integrals must be evaluated over a six-fold space. Recall that

(6.124)ψ1s =
1

√
πa3/2

0

e−r/a0 ,

so

(6.125)〈ψ1s| xi |ψ1s〉 ∝

∫ π

0
sin θdθ

∫ 2π

0
dφxi

where
(6.126)xi ∈ {r sin θ cos φ, r sin θ sin φ, r cos θ} .

The x, y integrals are zero because of the φ integral, and the z integral is proportional to∫ π

0 sin(2θ)dθ, which is also zero. This leads to zero averages

〈x1〉 = 0 = 〈x2〉 (6.127)

so

(6.128)∆E(1) = 0.

2. O(λ2) .

(6.129)
∆E(2) =

∑
n,0

|〈ψn|V |ψ0〉|
2

E0 − En

=
∑
n,0

〈ψ0|V |ψn〉 〈ψn|V |ψ0〉

E0 − En
.

This is a sum over all excited states.
We expect that this will be of the form

(6.130)∆E(2) = −

(
e2

4πε0

)2 C6

R6

x1 and x2 are dipole operators. The first time this has a non-zero expectation is when we go
from the 1s to the 2p states (both 1s and 2s states are spherically symmetric).

Noting that En = −e2/2n2a0, we can compute a minimum bound for the energy denominator

(6.131)

(En − E0)min = 2
(
E2p − E1s

)
= 2E1s

(
1
4
− 1

)
= 2

3
4
|E1s|

=
3
2
|E1s|.
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Note that the factor of two above comes from summing over the energies for both electrons.
This gives us

(6.132)C6 =
3
2
|E1s| 〈ψ0| Ṽ |ψ0〉 ,

where

(6.133)Ṽ =
(
x1 · x2 − 3(x1 · R̂)(x2 · R̂)

)
What about degeneracy?

(6.134)∆E(2)
n =

∑
m,n

|〈ψn|V |ψ0〉|
2

E0 − En

If 〈ψn|V |ψm〉 ∝ δnm then it’s okay. In general the we can’t expect the matrix element will be
anything but fully populated, say

(6.135)V =


V11 V12 V13 V14

V21 V22 V23 V24

V31 V32 V33 V34

V41 V42 V43 V44


,

If we choose a basis so that

(6.136)V =


V11

V22

V33

V44


.

When this is the case, we have no mixing of elements in the sum of eq. (6.134)

Degeneracy in the Stark effect

(6.137)H = H0 + eEz,

where

(6.138)H0 =
p2

2m
−

e
4πε0

1
|x|

Consider the states 2s, 2px, 2py, 2pz, for which E(0)
n ≡ E2s, as sketched in fig. 6.13.
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Figure 6.13: 2s 2p degeneracy.

Because of spherical symmetry

〈2s| eEz |2s〉 = 0

〈2px| eEz |2px〉 = 0〈
2py

∣∣∣ eEz
∣∣∣2py

〉
= 0

〈2pz| eEz |2pz〉 = 0

(6.139)

Looking at odd and even properties, it turns out that the only off-diagonal matrix element is

〈2s| eEz |2pz〉 = V1 = −3eEa0. (6.140)

With a
{
2s, 2px, 2py, 2pz

}
basis the potential matrix is

(6.141)


0 0 0 V1

0 0 0 0

0 0 0 0

V∗1 0 0 0


(6.142)

 0 −|V1|

−|V1| 0


implies that the energy splitting goes as

E2s → E2s ± |V1|, (6.143)

as sketched in fig. 6.14.
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Figure 6.14: Stark effect energy level splitting.

The diagonalizing states corresponding to eigenvalues ±3a0E, are (|2s〉 ∓ |2pz〉)/
√

2.
The matrix element above is calculated explicitly in lecture22Integrals.nb.
The degeneracy that is left unsplit here, and has to be accounted for should we attempt higher

order perturbation calculations.

6.9 problems

Exercise 6.1 van der Walls multipole expansion.

Prove eq. (6.120).
Answer for Exercise 6.1

Noting that

(6.144)(1 + ε)−1/2 = 1 −
1
2
ε −

1
2

(
−3
2

)
1
2!
ε2 = 1 −

1
2
ε +

3
8
ε2,

we have

(6.145)

R
|ε + R|

=
1∣∣∣ εR + R̂

∣∣∣
=

(
1 + 2

ε

R
· R̂ +

( ε
R

)2
)−1/2

= 1 −
ε

R
· R̂ −

1
2

( ε
R

)2
+

3
8

(
2
ε

R
· R̂ +

( ε
R

)2
)2

= 1 −
ε

R
· R̂ −

1
2

( ε
R

)2
+

3
8

(
4
( ε
R
· R̂

)2
+

( ε
R

)4
+ 4

ε

R
· R̂

( ε
R

)2
)

≈ 1 −
ε

R
· R̂ −

1
2

( ε
R

)2
+

3
2

( ε
R
· R̂

)2
.
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Inserting the values from the brackets of eq. (6.119) we have

(6.146)

1 +
R

|x1 − x2 + R|
−

R
|x1 + R|

−
R

|−x2 + R|

= −
(x1 − x2)

R
· R̂ −

1
2

(
(x1 − x2)

R

)2

+
3
2

(
(x1 − x2)

R
· R̂

)2

+
x1

R
· R̂ +

1
2

(x1

R

)2
−

3
2

(x1

R
· R̂

)2

−
x2

R
· R̂ +

1
2

(x2

R

)2
−

3
2

(x2

R
· R̂

)2

=
x1

R
·

x2

R
+

3
2

(
(x1 − x2)

R
· R̂

)2

−
3
2

(x1

R
· R̂

)2

−
3
2

(x2

R
· R̂

)2

=
x1

R
·

x2

R
− 3

x1

R
· R̂

x2

R
· R̂.

This proves eq. (6.120).

Exercise 6.2 Harmonic oscillator with energy shift. ([11] pr. 5.1)

Given a perturbed 1D SHO Hamiltonian

(6.147)H =
1

2m
p2 +

1
2

mω2x2 + λbx,

calculate the first non-zero perturbation to the ground state energy. Then solve for that energy
directly and compare.
Answer for Exercise 6.2

The first order energy shift is seen to be zero

(6.148)

∆(0)
0 = V00

= 〈0| bx |0〉

=
x0
√

2
〈0| a + a† |0〉

=
x0
√

2
〈0|1〉

= 0.

The first order perturbation to the ground state is
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(6.149)

∣∣∣0(1)
〉

=
∑
m,0

|m〉 〈m| bx |0〉
h̄ω/2 − h̄ω(m − 1/2)

= −b
x0
√

2 h̄ω

∑
m,0

|m〉 〈m|1〉
m

= −b
x0
√

2 h̄ω
|1〉 .

The second order ground state energy perturbation is

(6.150)

∆(2)
0 = 〈0| bx

∣∣∣0(1)
〉

=
bx0
√

2
〈0| a + a†

(
−b

x0
√

2 h̄ω
|1〉

)
=

bx0
√

2

(
−b

x0
√

2 h̄ω

)
= −

b2x2
0

2 h̄ω

= −
b2

2 h̄ω
h̄

mω

= −
b2

2mω2 ,

so the total energy perturbation up to second order is

(6.151)∆0 = −λ2 b2

2mω2 .

To compare to the exact result, rewrite the Hamiltonian as

(6.152)
H =

1
2m

p2 +
1
2

mω2
(
x2 +

2λbx
mω2

)
=

1
2m

p2 +
1
2

mω2
(
x +

λb
mω2

)2

−
1
2

mω2
(
λb

mω2

)2

.

The Hamiltonian is subject to a constant energy shift

(6.153)
∆E = −

1
2

mω2 λ
2b2

m2ω4

= −
λ2b2

2mω2 .

This is an exact match with the second order perturbation result of eq. (6.151).
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Exercise 6.3 Double well potential. (2015 ps7 p1)
Consider a particle in the double well potential

(6.154)V(x) =
mω2

8a2 (x + a)2 (x − a)2 .

Expanding V(x) around x = ±a leads to a harmonic potential with frequency ω. Construct
variational states with even/odd parity as ψ±(x) = g± (φ(x − a) ± φ(x + a)) where φ(x) is the
normalized ground state of the usual harmonic oscillator with frequency ω, i.e.,

φ(x) =

 1
πa2

0

1/4

e
− x2

2a2
0 ; a0 =

√
h̄

mω
. (6.155)

a. Determine the normalization constants g±. Next using these wavefunctions, determine
the variational energies of these two states. Hence determine the ‘tunnel splitting’ be-
tween the two states, induced by the tunneling through the barrier region. In your cal-
culations, you can assume a � a0, so retain only the leading terms in any polynomials
you might encounter when you do the integrals.

b. If we pay attention to these lowest two states (left well and right well) in the full Hilbert
space, we can write a phenomenological 2 × 2 Hamiltonian

(6.156)H =

 ε0 −γ

−γ ε0

 ,
where ε0 is the energy on each side, and γ leads to tunneling, so if we start off in the
left well, t leads to a nonzero amplitude to find it in the right well at a later time. Find
its eigenvalues and eigenvectors. Comparing with your variational result for the energy
splitting, determine the ‘tunnel coupling’ γ.

Answer for Exercise 6.3
PROBLEM SET RELATED MATERIAL REDACTED IN THIS DOCUMENT.PLEASE

FEEL FREE TO EMAIL ME FOR THE FULL VERSION IF YOU AREN’T TAKING PHY1520.
. .

. .
.

. . .
. .

. . .
. .

. .
. END-REDACTION
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Exercise 6.4 Helium-4 atom. (2015 ps7 p2)

Consider the Helium atom with atomic number Z = 2, which leads to the nuclear charge
Z = 2e, and two electrons with charge −e each.

a. Show that ignoring electron-electron interactions leads to a ground state energy EHe =

4EH where EH is the ground state energy of the hydrogen atom.

b. Consider the full problem which retains the Coulomb interaction between the electrons,
i.e.

(6.157)H =
1

2m

(
p2

1 + p2
2

)
− 2e2 1

4πε0

(
1
r1

+
1
r2

)
+ e2 1

4πε0

1
|r1 − r2|

.

and consider the variational wavefunction

(6.158)ψ(r1, r2) = Ne−
1
a (r1+r2).

where N is the normalization constant, and a is a variational parameter. Determine the
variational ground state energy, and minimize with respect to a to find the best estimate
for the ground state energy of Helium. Compare with numerical estimates of the energy.

Answer for Exercise 6.4
PROBLEM SET RELATED MATERIAL REDACTED IN THIS DOCUMENT.PLEASE

FEEL FREE TO EMAIL ME FOR THE FULL VERSION IF YOU AREN’T TAKING PHY1520.
. .

. .
.

. . .
. .

. . .
. .

. .
. END-REDACTION

Exercise 6.5 Harmonic oscillator variation. ([2] pr. 24.3)

Consider a 1D harmonic oscillator with an unnormalized trial wavefunction ψv(x) = e−β|x|.
Minimize the ground state energy with respect to β, thus obtaining the optimal β as well as the
variational ground state energy. Compare with the exact result. Note that you need to be careful
evaluating derivatives since the wavefunction has a ‘cusp’ at x = 0.
Answer for Exercise 6.5

PROBLEM SET RELATED MATERIAL REDACTED IN THIS DOCUMENT.PLEASE
FEEL FREE TO EMAIL ME FOR THE FULL VERSION IF YOU AREN’T TAKING PHY1520.
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. .
. .

.
. . .

. .
. . .

. .
. .

. END-REDACTION

Exercise 6.6 Energy estimate for an absolute value potential. ([11] pr. 5.21)
Estimate the lowest eigenvalue λ of the differential equation

(6.159)
d2

dx2ψ + (λ − |x|)ψ = 0.

Using α variation with the trial function

(6.160)ψ =

 c(α − |x|) |x| < α

0 |x| > α

Answer for Exercise 6.6
First rewrite the differential equation in a Hamiltonian like fashion

Hψ = −
d2

dx2ψ + |x|ψ = λψ. (6.161)

We need the derivatives of the trial distribution. The first derivative is

(6.162)

d
dx
ψ = −c

d
dx
|x|

= −c
d
dx

(xθ(x) − xθ(−x))

= −c (θ(x) − θ(−x) + xδ(x) + xδ(−x))
= −c (θ(x) − θ(−x) + 2xδ(x)) .

The second derivative is

(6.163)

d2

dx2ψ = −c
d
dx

(θ(x) − θ(−x) + 2xδ(x))

= −c
(
δ(x) + δ(−x) + 2δ(x) + 2xδ′(x)

)
= −c

(
4δ(x) + 2x

−δ(x)
x

)
= −2cδ(x).
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This gives

(6.164)Hψ = −2cδ(x) + |x|c (α − |x|) .

We are now set to compute some of the inner products. The normalization is the simplest

(6.165)

〈ψ|ψ〉 = c2
∫ α

−α
(α − |x|)2dx

= 2c2
∫ α

0
(x − α)2dx

= 2c2
∫ 0

−α
u2du

= 2c2
(
−

(−α)3

3

)
=

2
3

c2α3.

For the energy

(6.166)

〈ψ|Hψ〉 = c2
∫

dx (α − |x|) (−2δ(x) + |x| (α − |x|))

= c2
(
−2α +

∫ α

−α
dx (α − |x|)2

|x|
)

= c2
(
−2α + 2

∫ 0

−α
duu2 (u + α)

)
= c2

−2α + 2
(
u4

4
+ α

u3

3

)∣∣∣∣∣∣0
−α


= c2

(
−2α − 2

(
α4

4
−
α4

3

))
= c2

(
−2α +

1
6
α4

)
.

The energy estimate is

(6.167)

E =
〈ψ|Hψ〉
〈ψ|ψ〉

=
−2α + 1

6α
4

2
3α

3

= −
3
α2 +

1
4
α.



272 approximation methods

This has its minimum at

(6.168)0 = −
6
α3 +

1
4
,

or

(6.169)α = 2 × 31/3.

Back substitution into the energy gives

(6.170)
E = −

3
4 × 32/3 +

1
2

31/3

=
34/3

4
≈ 1.08.

The problem says the exact answer is 1.019, so the variation gets within 6 %.

Exercise 6.7 Anharmonic oscillator. (2015 ps8 p1)

Consider a quantum particle in the ground state of a 1D anharmonic oscillator potential

(6.171)V(x) =
1
2

mω2x2 + λx4

= V0 + λV ′.

Compute the first and second order energy shift of this oscillator perturbatively in λ.
Answer for Exercise 6.7

PROBLEM SET RELATED MATERIAL REDACTED IN THIS DOCUMENT.PLEASE
FEEL FREE TO EMAIL ME FOR THE FULL VERSION IF YOU AREN’T TAKING PHY1520.

. .
. .

.
. . .

. .
. . .

. .
. .

. END-REDACTION

Exercise 6.8 Quadrupolar potential. (2015 ps8 p2)
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Consider a p-orbital electron of hydrogen with |n, l = 1,m〉, with m = 0,±1, subject to an
external potential

(6.172)V(x, y, z) = λ(x2 − y2),

with λ being a constant. For fixed n, obtain the correct eigenstates which diagonalize the
perturbation, without worrying about doing radial integrals explicitly. Show that the three-fold
degeneracy of the p-orbital is completely broken by the perturbation to linear order in λ.
Answer for Exercise 6.8

PROBLEM SET RELATED MATERIAL REDACTED IN THIS DOCUMENT.PLEASE
FEEL FREE TO EMAIL ME FOR THE FULL VERSION IF YOU AREN’T TAKING PHY1520.

. .
. .

.
. . .

. .
. . .

. .
. .

. END-REDACTION

Exercise 6.9 Harmonic oscillator. (2015 ps8 p3)

Consider a 2D harmonic oscillator with

(6.173)H =
p2

x

2m
+

p2
y

2m
+

1
2

mω2
(
x2 + y2

)
Turn on an anharmonic perturbation

(6.174)V = λg1
m2ω3

h̄

(
x4 + y4

)
+ λ2g2mω2xy,

Note that the potentials have been altered from the original problem statement to have dimen-
sions of energy with dimensionless scale factors g1, g2, λ.

a. Derive the equations for the energy shifts and perturbed states for a second order per-
turbing potential of the form above.

b. Find the perturbed eigenstate and the corresponding energy shifts up to O(λ2) for the
ground state. Ignore terms of O(λ3).

c. Do the same for the first two degenerate states.



274 approximation methods

Answer for Exercise 6.9
PROBLEM SET RELATED MATERIAL REDACTED IN THIS DOCUMENT.PLEASE

FEEL FREE TO EMAIL ME FOR THE FULL VERSION IF YOU AREN’T TAKING PHY1520.
. .

. .
.

. . .
. .

. . .
. .

. .
. END-REDACTION

Exercise 6.10 Hyperfine levels. (2015 ps8 p4)

We can schematically model the hyperfine interaction between the electron and proton spins
as ASe · Sp where A is the hyperfine interaction energy.

a. Consider the spin-1/2 proton interacting with a spin-1/2 electron. What are the spin
eigenstates and eigenvalues?

b. Now consider applying a magnetic field which leads to an extra term

(6.175)−B
(
geµeS z

e + gpµpS z
p

)
with gyromagnetic ratios ge ≈ −2 and gp ≈ 5.5, with magnetic moments µe = e/2me

and µp = e/2mp. The large nuclear mass ensures µe/µp ∼ 2000, so let us simply set
µp = 0. For convenience, set Bgeµe → Beff so the Hamiltonian becomes

(6.176)H = ASe · Sp − BeffS z
e,

so the only dimensionless parameter is Beff/A.
Using perturbation theory (degenerate or non-degenerate as appropriate) find how the
coupled hyperfine levels split for weak field Beff/A � 1. Also consider the strong field
limit Beff/A � 1.

c. Compute the full field evolution of the levels and compare with the perturbative low
field regime result and the high field regime result.

Answer for Exercise 6.10
PROBLEM SET RELATED MATERIAL REDACTED IN THIS DOCUMENT.PLEASE

FEEL FREE TO EMAIL ME FOR THE FULL VERSION IF YOU AREN’T TAKING PHY1520.
. .

. .
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.
. . .

. .
. . .

. .
. .

. END-REDACTION

Exercise 6.11 2D SHO xy perturbation. ([11] pr. 5.4)

Given a 2D SHO with Hamiltonian

(6.177)H0 =
1

2m

(
p2

x + p2
y

)
+

mω2

2

(
x2 + y2

)
,

a. What are the energies and degeneracies of the three lowest states?

b. With perturbation

(6.178)V = mω2xy,

calculate the first order energy perturbations and the zeroth order perturbed states.

c. Solve the H0 + δV problem exactly, and compare.

Answer for Exercise 6.11

Part a. Recall that we have

(6.179)H |n1, n2〉 = h̄ω (n1 + n2 + 1) |n1, n2〉 ,

So the three lowest energy states are |0, 0〉 , |1, 0〉 , |0, 1〉 with energies h̄ω, 2 h̄ω, 2 h̄ω respec-
tively (with a two fold degeneracy for the second two energy eigenkets).

Part b. Consider the action of xy on the β = {|0, 0〉 , |1, 0〉 , |0, 1〉} subspace. Those are

(6.180)

xy |0, 0〉 =
x2

0

2

(
a + a†

) (
b + b†

)
|0, 0〉

=
x2

0

2

(
b + b†

)
|1, 0〉

=
x2

0

2
|1, 1〉 .
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(6.181)

xy |1, 0〉 =
x2

0

2

(
a + a†

) (
b + b†

)
|1, 0〉

=
x2

0

2

(
a + a†

)
|1, 1〉

=
x2

0

2

(
|0, 1〉 +

√
2 |2, 1〉

)
.

(6.182)

xy |0, 1〉 =
x2

0

2

(
a + a†

) (
b + b†

)
|0, 1〉

=
x2

0

2

(
b + b†

)
|1, 1〉

=
x2

0

2

(
|1, 0〉 +

√
2 |1, 2〉

)
.

The matrix representation of mω2xy with respect to the subspace spanned by basis β above is

(6.183)xy ∼
1
2

h̄ω


0 0 0

0 0 1

0 1 0

 .
This diagonalizes with

(6.184a)U =

1 0

0 Ũ


(6.184b)Ũ =

1
√

2

1 1

1 −1



(6.184c)D =
1
2

h̄ω


0 0 0

0 1 0

0 0 −1


xy = UDU† = UDU. (6.184d)

The unperturbed Hamiltonian in the original basis is

(6.185)H0 = h̄ω

1 0

0 2I

 ,



6.9 problems 277

So the transformation to the diagonal xy basis leaves the initial Hamiltonian unaltered

(6.186)

H′0 = U†H0U

= h̄ω

1 0

0 Ũ2IŨ


= h̄ω

1 0

0 2I

 .
Now we can compute the first order energy shifts almost by inspection. Writing the new basis

as β′ = {|0〉 , |1〉 , |2〉} those energy shifts are just the diagonal elements from the xy operators
matrix representation

(6.187)

E(1)
0 = 〈0|V |0〉 = 0

E(1)
1 = 〈1|V |1〉 =

1
2

h̄ω

E(1)
2 = 〈2|V |2〉 = −

1
2

h̄ω.

The new energies are

(6.188)

E0 → h̄ω

E1 → h̄ω (2 + δ/2)

E2 → h̄ω (2 − δ/2) .

Part c. For the exact solution, it’s possible to rotate the coordinate system in a way that kills
the explicit xy term of the perturbation. That we could do this for x, y operators wasn’t obvious
to me, but after doing so (and rotating the momentum operators the same way) the new operators
still have the required commutators. Let

(6.189)

uv
 =

 cos θ sin θ

− sin θ cos θ


x

y


=

 x cos θ + y sin θ

−x sin θ + y cos θ

 .
Similarly, for the momentum operators, let

(6.190)

pu

pv

 =

 cos θ sin θ

− sin θ cos θ


px

py


=

 px cos θ + py sin θ

−px sin θ + py cos θ

 .
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For the commutators of the new operators we have

(6.191)

[
u, pu

]
=

[
x cos θ + y sin θ, px cos θ + py sin θ

]
=

[
x, px

]
cos2 θ +

[
y, py

]
sin2 θ

= i h̄
(
cos2 θ + sin2 θ

)
= i h̄.

(6.192)

[
v, pv

]
=

[
−x sin θ + y cos θ,−px sin θ + py cos θ

]
=

[
x, px

]
sin2 θ +

[
y, py

]
cos2 θ

= i h̄.

(6.193)

[
u, pv

]
=

[
x cos θ + y sin θ,−px sin θ + py cos θ

]
= cos θ sin θ

(
−

[
x, px

]
+

[
y, pp

])
= 0.

(6.194)

[
v, pu

]
=

[
−x sin θ + y cos θ, px cos θ + py sin θ

]
= cos θ sin θ

(
−

[
x, px

]
+

[
y, pp

])
= 0.

We see that the new operators are canonical conjugate as required. For this problem, we just
want a 45 degree rotation, with

x =
1
√

2
(u + v)

y =
1
√

2
(u − v) .

(6.195)

We have

(6.196)

x2 + y2 =
1
2

(
(u + v)2 + (u − v)2

)
=

1
2

(
2u2 + 2v2 + 2uv − 2uv

)
= u2 + v2,
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(6.197)

p2
x + p2

y =
1
2

(
(pu + pv)2 + (pu − pv)2

)
=

1
2

(
2p2

u + 2p2
v + 2pu pv − 2pu pv

)
= p2

u + p2
v ,

and

(6.198)
xy =

1
2

((u + v)(u − v))

=
1
2

(
u2 − v2

)
.

The perturbed Hamiltonian is

(6.199)
H0 + δV =

1
2m

(
p2

u + p2
v

)
+

1
2

mω2
(
u2 + v2 + δu2 − δv2

)
=

1
2m

(
p2

u + p2
v

)
+

1
2

mω2
(
u2(1 + δ) + v2(1 − δ)

)
.

In this coordinate system, the corresponding eigensystem is

(6.200)H |n1, n2〉 = h̄ω
(
1 + n1

√
1 + δ + n2

√
1 − δ

)
|n1, n2〉 .

For small δ

(6.201)n1
√

1 + δ + n2
√

1 − δ ≈ n1 + n2 +
1
2

n1δ −
1
2

n2δ,

so

(6.202)H |n1, n2〉 ≈ h̄ω
(
1 + n1 + n2 +

1
2

n1δ −
1
2

n2δ

)
|n1, n2〉 .

The lowest order perturbed energy levels are

(6.203)|0, 0〉 → h̄ω

(6.204)|1, 0〉 → h̄ω
(
2 +

1
2
δ

)

(6.205)|0, 1〉 → h̄ω
(
2 −

1
2
δ

)
The degeneracy of the |0, 1〉 , |1, 0〉 states has been split, and to first order match the zeroth

order perturbation result.
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Exercise 6.12 Perturbation of two state Hamiltonian. ([11] pr. 5.11)

Given a two-state system

(6.206)

H = H0 + λV

=

E1 λ∆

λ∆ E2


a. Solve the system exactly.

b. Find the first order perturbed states and second order energy shifts, and compare to the
exact solution.

c. Solve the degenerate case for E1 = E2, and compare to the exact solution.

Answer for Exercise 6.12

Part a. The energy eigenvalues ε are given by

(6.207)0 = (E1 − ε) (E2 − ε) − (λ∆)2,

or

(6.208)ε2 − ε (E1 + E2) + E1E2 = (λ∆)2.

After rearranging this is

(6.209)ε =
E1 + E2

2
±

√(E1 − E2

2

)2
+ (λ∆)2.

Notice that for E2 = E1 we have

(6.210)ε = E1 ± λ∆.

Since a change of basis can always put the problem in a form so that E1 > E2, let’s assume
that to make an approximation of the energy eigenvalues for |λ∆| � (E1 − E2)/2

(6.211)

ε =
E1 + E2

2
±

E1 − E2

2

√
1 +

(2λ∆)2

(E1 − E2)2

≈
E1 + E2

2
±

E1 − E2

2

(
1 + 2

(λ∆)2

(E1 − E2)2

)
=

E1 + E2

2
±

E1 − E2

2
±

(λ∆)2

E1 − E2

= E1 +
(λ∆)2

E1 − E2
, E2 +

(λ∆)2

E2 − E1
.



6.9 problems 281

For the perturbed states, starting with the plus case, if

(6.212)|+〉 ∝

ab
 ,

we must have

(6.213)
0 = (E1 −

(
E1 +

(λ∆)2

E1 − E2

)
)a + λ∆b

= (−
(λ∆)2

E1 − E2
)a + λ∆b,

so

(6.214)
|+〉 →

 1
λ∆

E1−E2


= |+〉 +

λ∆
E1 − E2

|−〉 .

Similarly for the minus case we must have

(6.215)
0 = λ∆a + (E2 −

(
E2 +

(λ∆)2

E2 − E1

)
)b

= λ∆b + (−
(λ∆)2

E2 − E1
)b,

for

(6.216)|−〉 → |−〉 +
λ∆

E2 − E1
|+〉 .

Part b. For the perturbation the first energy shift for perturbation of the |+〉 state is

(6.217)

E(1)
+ = |+〉V |+〉

= λ∆
[
1 0

] 0 1

1 0


10


= λ∆

[
1 0

] 01


= 0.
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The first order energy shift for the perturbation of the |−〉 state is also zero. The perturbed |+〉
state is

(6.218)
|+〉(1) =

P+

E1 − H0
V |+〉

=
|−〉 〈−|

E1 − E2
V |+〉

The numerator matrix element is

(6.219)

〈−|V |+〉 =
[
0 1

] 0 ∆

∆ 0


10


=

[
0 1

] 0

∆


= ∆,

so

(6.220)|+〉 → |+〉 + |−〉
∆

E1 − E2
.

Observe that this matches the first order series expansion of the exact value above.
For the perturbation of |−〉 we need the matrix element

(6.221)

〈+|V |−〉 =
[
1 0

] 0 ∆

∆ 0


01


=

[
1 0

] ∆0


= ∆,

so it’s clear that the perturbed ket is

(6.222)|−〉 → |−〉 + |+〉
∆

E2 − E1
,

also matching the approximation found from the exact computation. The second order energy
shifts can now be calculated
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(6.223)

〈+|V |+〉 ′ =
[
1 0

] 0 ∆

∆ 0


 1

∆
E1−E2


=

[
1 0

]  ∆2

E1−E2

∆


=

∆2

E1 − E2
,

and

(6.224)

〈−|V |−〉 ′ =
[
0 1

] 0 ∆

∆ 0


 ∆

E2−E1

1


=

[
0 1

]  ∆
∆2

E2−E1


=

∆2

E2 − E1
,

The energy perturbations are therefore

(6.225)
E1 → E1 +

(λ∆)2

E1 − E2

E2 → E2 +
(λ∆)2

E2 − E1
.

This is what we had by approximating the exact case.

Part c. For the E2 = E1 case, we’ll have to diagonalize the perturbation potential. That is

(6.226)

V = U
∧

U†∧
=

∆ 0

0 −∆


U = U† =

1
√

2

1 1

1 −1

 .
A change of basis for the Hamiltonian is
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(6.227)

H′ = U†HU
= U†H0U + λU†VU
= E1U† + λU†VU
= H0 + λ

∧
.

We can now calculate the perturbation energy with respect to the new basis, say {|1〉 , |2〉}.
Those energy shifts are

(6.228)
∆(1) = 〈1|V |1〉 = ∆

∆(2) = 〈2|V |2〉 = −∆.

The perturbed energies are therefore

E1 → E1 + λ∆

E2 → E2 − λ∆,
(6.229)

which matches eq. (6.210), the exact result.

Exercise 6.13 Expectation of spherically symmetric 3D potential derivative. ([11] pr. 5.16)

a. For a particle in a spherically symmetric potential V(r) show that

(6.230)|ψ(0)|2 =
m

2π h̄2

〈
dV
dr

〉
,

for all s-states, ground or excited.

b. Show this is the case for the 3D SHO and hydrogen wave functions.

Answer for Exercise 6.13

Part a. The text works a problem that looks similar to this by considering the commutator of
an operator A, later set to A = pr = −i h̄∂/∂r the radial momentum operator. First it is noted
that

(6.231)0 = 〈nlm| [H, A] |nlm〉 ,

since H operating to either the right or the left is the energy eigenvalue En. Next it appears
the author uses an angular momentum factoring of the squared momentum operator. Looking
earlier in the text that factoring is found to be

(6.232)
p2

2m
=

1
2mr2 L2 −

h̄2

2m

(
∂2

∂r2 +
2
r
∂

∂r

)
.
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With

(6.233)R = −
h̄2

2m

(
∂2

∂r2 +
2
r
∂

∂r

)
.

we have

(6.234)

0 = 〈nlm|
[
H, pr

]
|nlm〉

= 〈nlm|
[

p2

2m
+ V(r), pr

]
|nlm〉

= 〈nlm|
[

1
2mr2 L2 + R + V(r), pr

]
|nlm〉

= 〈nlm|
[
− h̄2l(l + 1)

2mr2 + R + V(r), pr

]
|nlm〉 .

Let’s consider the commutator of each term separately. First

(6.235)

[
V, pr

]
ψ = V prψ − prVψ

= V prψ − (prV)ψ − V prψ

= −(prV)ψ

= i h̄
∂V
∂r
ψ.

Setting V(r) = 1/r2, we also have

(6.236)
[

1
r2 , pr

]
ψ = −

2i h̄
r3 ψ.

Finally

(6.237)

[
∂2

∂r2 +
2
r
∂

∂r
,
∂

∂r

]
=

(
∂rr +

2
r
∂r

)
∂r − ∂r

(
∂rr +

2
r
∂r

)
= ∂rrr +

2
r
∂rr −

(
∂rrr −

2
r2 ∂r +

2
r
∂rr

)
= −

2
r2 ∂r,

so

(6.238)

[
R, pr

]
= −

2
r2

− h̄2

2m
pr

=
h̄2

mr2 pr.



286 approximation methods

Putting all the pieces back together, we’ve got

(6.239)

0 = 〈nlm|
[
− h̄2l(l + 1)

2mr2 + R + V(r), pr

]
|nlm〉

= i h̄ 〈nlm|
(

h̄2l(l + 1)
mr3 −

i h̄
mr2 pr +

∂V
∂r

)
|nlm〉 .

Since s-states are those for which l = 0, this means

(6.240)

〈
∂V
∂r

〉
=

i h̄
m

〈
1
r2 pr

〉
=

h̄2

m

〈
1
r2

∂

∂r

〉
=

h̄2

m

∫ ∞

0
dr

∫ π

0
dθ

∫ 2π

0
dφr2 sin θψ∗(r, θ, φ)

1
r2

∂ψ(r, θ, φ)
∂r

.

Since s-states are spherically symmetric, this is

(6.241)
〈
∂V
∂r

〉
=

4π h̄2

m

∫ ∞

0
drψ∗

∂ψ

∂r
.

That integral is

(6.242)
∫ ∞

0
drψ∗

∂ψ

∂r
= |ψ|2

∣∣∣∞
0 −

∫ ∞

0
dr
∂ψ∗

∂r
ψ.

With the hydrogen atom, our radial wave functions are real valued. It’s reasonable to assume
that we can do the same for other real-valued spherical potentials. If that is the case, we have

(6.243)2
∫ ∞

0
drψ∗

∂ψ

∂r
= |ψ(0)|2,

and

〈
∂V
∂r

〉
=

2π h̄2

m
|ψ(0)|2, (6.244)

which completes this part of the problem.
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Part b. For a hydrogen like atom, in atomic units, we have

(6.245)

〈
∂V
∂r

〉
=

〈
∂

∂r

(
−

Ze2

r

)〉
= Ze2

〈
1
r2

〉
= Ze2 Z2

n3a2
0 (l + 1/2)

=
h̄2

ma0

2Z3

n3a2
0

=
2 h̄2Z3

mn3a3
0

.

On the other hand for n = 1, we have

(6.246)

2π h̄2

m
|R10(0)|2|Y00|

2 =
2π h̄2

m
Z3

a3
0

4
1

4π

=
2 h̄2Z3

ma3
0

,

and for n = 2, we have

(6.247)

2π h̄2

m
|R20(0)|2|Y00|

2 =
2π h̄2

m
Z3

8a3
0

4
1

4π

=
h̄2Z3

4ma3
0

.

These both match the potential derivative expectation when evaluated for the s-orbital (l = 0).
In sakuraiProblem5.16bSHO.nb is a verification for the 3D SHO ground state. There it was

found that

(6.248)

〈
∂V
∂r

〉
=

2π h̄2

m
|ψ(0)|2

= 2

√
mω3 h̄
π
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Exercise 6.14 Ly perturbation. ([11] pr. 5.17(a))

Find the first non-zero energy shift for the perturbed Hamiltonian

(6.249)H = AL2 + BLz + CLy

= H0 + V.

Answer for Exercise 6.14
The energy eigenvalues for state |l,m〉 prior to perturbation are

(6.250)A h̄2l(l + 1) + B h̄m.

The first order energy shift is zero

(6.251)
∆1 = 〈l,m|CLy |l,m〉

=
C
2i
〈l,m| (L+ − L−) |l,m〉

= 0,

so we need the second order shift. Assuming no degeneracy to start, the perturbed state is

(6.252)|l,m〉 ′ =

′∑ |l′,m′〉 〈l′,m′|
El,m − El′,m′

V |l,m〉 ,

and the next order energy shift is

(6.253)

∆2 = 〈lm|V
′∑ |l′,m′〉 〈l′,m′|

El,m − El′,m′
V |l,m〉

=

′∑ 〈l,m|V |l′,m′〉 〈l′,m′|
El,m − El′,m′

V |l,m〉

=

′∑ |〈l′,m′|V |l,m〉|2

El,m − El′,m′

=
∑

m′,m

|〈l,m′|V |l,m〉|2

El,m − El,m′

=
∑

m′,m

|〈l,m′|V |l,m〉|2(
A h̄2l(l + 1) + B h̄m

)
−

(
A h̄2l(l + 1) + B h̄m′

)
=

1
B h̄

∑
m′,m

|〈l,m′|V |l,m〉|2

m − m′
.

The sum over l′ was eliminated because V only changes the m of any state |l,m〉, so the matrix
element 〈l′,m′|V |l,m〉 must includes a δl′,l factor. Since we are now summing over m′ , m,
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some of the matrix elements in the numerator should now be non-zero, unlike the case when
the zero first order energy shift was calculated in eq. (6.251).

〈
l,m′

∣∣∣CLy |l,m〉 =
C
2i

〈
l,m′

∣∣∣ (L+ − L−) |l,m〉

=
C
2i

〈
l,m′

∣∣∣ (L+ |l,m〉 − L− |l,m〉)

=
C h̄
2i

〈
l,m′

∣∣∣ ( √(l − m)(l + m + 1) |l,m + 1〉 −
√

(l + m)(l − m + 1) |l,m − 1〉
)

=
C h̄
2i

( √
(l − m)(l + m + 1)δm′,m+1 −

√
(l + m)(l − m + 1)δm′,m−1

)
.

(6.254)

After squaring and summing, the cross terms will be zero since they involve products of delta
functions with different indices. That leaves

(6.255)

∆2 =
C2 h̄
4B

∑
m′,m

(l − m)(l + m + 1)δm′,m+1 − (l + m)(l − m + 1)δm′,m−1

m − m′

=
C2 h̄
4B

(
(l − m)(l + m + 1)

m − (m + 1)
−

(l + m)(l − m + 1)
m − (m − 1)

)
=

C2 h̄
4B

(
−(l2 − m2 + l − m) − (l2 − m2 + l + m)

)
= −

C2 h̄
2B

(l2 − m2 + l),

so to first order the energy shift is

A h̄2l(l + 1) + B h̄m→ h̄l(l + 1)
(
A h̄ −

C2

2B

)
+ B h̄m +

C2m2 h̄
2B

. (6.256)

Exact perturbation equation If we wanted to solve the Hamiltonian exactly, we’ve have to
diagonalize the 2m + 1 dimensional Hamiltonian

(6.257)

〈
l,m′

∣∣∣ H |l,m〉 =
(
A h̄2l(l + 1)

+ B h̄m
)
δm′,m +

C h̄
2i

( √
(l − m)(l + m + 1)δm′,m+1−

√
(l + m)(l − m + 1)δm′,m−1

)
.
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This Hamiltonian matrix has a very regular structure

H = (Al(l + 1) h̄2 − B h̄(l + 1))I

+ B h̄



1

2

3
. . .

2l + 1



+
C h̄

i



0 −
√

(2l − 1)(1)√
(2l − 1)(1) 0 −

√
(2l − 2)(2)√

(2l − 2)(2)
. . .

0 −
√

(1)(2l − 1)√
(1)(2l − 1) 0


(6.258)

Solving for the eigenvalues of this Hamiltonian for increasing l in Mathematica (sakuraiProb-
lem5.17a.nb), it appears that the eigenvalues are

(6.259)λm = A h̄2(l)(l + 1) + h̄mB

√
1 +

4C2

B2 ,

so to first order in C2, these are

(6.260)λm = A h̄2(l)(l + 1) + h̄mB
(
1 +

2C2

B2

)
.

We have a C2 h̄/B term in both the perturbative energy shift eq. (6.255), and the first order
expansion of the exact solution eq. (6.259). Comparing this for the l = 5 case, the coefficients of
C2 h̄/B in eq. (6.255) are all negative−17.5,−17.,−16.5,−16.,−15.5,−15.,−14.5,−14.,−13.5,−13.,−12.5,
whereas the coefficient of C2 h̄/B in the first order expansion of the exact solution eq. (6.259)
are 2m, ranging from [−10, 10].

Exercise 6.15 Quadratic Zeeman effect. ([11] pr. 5.18)

Work out the quadratic Zeeman effect for the ground state hydrogen atom due to the usually
neglected e2A2/2mec2 term in the Hamiltonian.
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Answer for Exercise 6.15
The first order energy shift is
For a z-oriented magnetic field we can use

(6.261)A =
B
2

(−y, x, 0) ,

so the perturbation potential is

(6.262)

V =
e2A2

2mec2

=
e2B2(x2 + y2)

8mec2

=
e2B2r2 sin2 θ

8mec2

The ground state wave function is

(6.263)

ψ0 = 〈x|0〉

=
1√
πa3

0

e−r/a0 ,

so the energy shift is

(6.264)

∆ = 〈0|V |0〉

=
1
πa3

0

2π
e2B2

8mec2

∫ ∞

0
r2 sin θe−2r/a0r2 sin2 θdrdθ

=
e2B2

4a3
0mec2

∫ ∞

0
r4e−2r/a0dr

∫ π

0
sin3 θdθ

= −
e2B2

4a3
0mec2

4!
(2/a0)4+1

(
u −

u3

3

)∣∣∣∣∣∣−1

1

=
e2a2

0B2

4mec2 .

If this energy shift is written in terms of a diamagnetic susceptibility χ defined by

(6.265)∆ = −
1
2
χB2,

the diamagnetic susceptibility is

(6.266)χ = −
e2a2

0

2mec2 .





Part II

A P P E N D I C E S





A
U S E F U L F O R M U L A S A N D R E V I E W

Trig

(A.1)1 + cos x = 2 cos2 x
2

(A.2)1 − cos x = 2 sin2 x
2

(A.3)sin x = 2 sin
x
2

cos
x
2

(A.4)2 cos a cos b = cos(a + b) + cos(a − b)

(A.5)2 sin a sin b = cos(a − b) − cos(a − b)

(A.6)2 cos a sin b = sin(a + b) − sin(a − b)

(A.7)2 sin a cos b = sin(a − b) + sin(a + b)

(A.8)cos(a ± b) = cos a cos b ∓ sin a sin b

(A.9)sin(a ± b) = sin a cos b ± cos a sin b

Basics

(A.10)〈x|p〉 ∝ eipx/ h̄

(A.11)|Ψ(t)〉 = U |Ψ(0)〉

(A.12)U = e−iHt/ h̄, for time independent H

(A.13)p = −i h̄
∂

∂x

295
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(A.14)x = i h̄
∂

∂p

(A.15)H = i h̄
∂

∂t

(A.16)A ∼ (〈arow| A |acolumn〉)

ρ = ψ∗ψ

j =
h̄
m

Im (ψ∗∇ψ) = −
i h̄
2m

(ψ∗∇ψ − ψ∇ψ∗)
(A.17)

(A.18)
∂ρ

∂t
+ ∇ · j = 0

Commutators

(A.19)
[
x, p

]
= i h̄

[x j, F(p)] = i h̄
∂F
∂p j

[p j,G(x)] = −i h̄
∂G
∂x j

(A.20)

eAµBe−Aµ = B + µ [A, B] +
µ2

2!
[A, [A, B]] + · · · (A.21)

[A, B]classical =
∂A
∂q

∂B
∂p
−
∂A
∂p

∂B
∂q

(A.22)

Heisenberg picture

(A.23)AH = U†AU

(A.24)
dAH

dt
=

1
i h̄

[AH,H]

(A.25)
d
dt
〈x · p〉 =

〈
p2

m

〉
− 〈x · ∇V〉
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Density operator

ρ =
∑

i

wi
∣∣∣αi

〉 〈
αi

∣∣∣ , ∑
i

wi = 1. (A.26)

[A] =
∑

i

wi
〈
αi

∣∣∣ A
∣∣∣αi

〉
= tr(ρA). (A.27)

S = − tr(ρ ln ρ) = − tr(ρkk ln ρkk) (A.28)

|ψmn〉 = |am〉1 ⊗ |an〉

|ψ〉 =
∑
mn

cmn |ψmn〉

ρ = |ψ〉 〈ψ|

tr2(ρ) = ρ2 =
∑

a
2〈a|ρ |a〉2∑

a
1〈a| tr2(ρ) |a〉1 =

∑
n

|cmn|
2

(A.29)

Pauli matrices

(A.30)

σx =

0 1

1 0


σy =

0 −i

i 0


σz =

1 0

0 −1


[σa, σb] = 2iεabcσc (A.31)

(A.32a)|S x;±〉 =
1
√

2

 1

±1


(A.32b)

∣∣∣S y;±
〉

=
1
√

2

 1

±i


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(A.32c)|S z;±〉 =

10
 ,

01


For n̂ = (sin θ cos φ, sin θ sin φ, cos θ), the eigenkets of S · n̂ are

|n̂; +〉 =

cos (θ/2) e−iφ/2

sin (θ/2) eiφ/2

 = e−iσzφ/2e−iσyθ/2 |ẑ; +〉 (A.33)

|n̂;−〉 =

− sin (θ/2) e−iφ/2

cos (θ/2) eiφ/2

 = e−iσzφ/2e−iσy(θ+π)/2 |ẑ; +〉 (A.34)

H = −
e

mc
S ·B = −

eB
mc

S z (A.35)

Harmonic oscillator

(A.36)x2
0 =

h̄
mω

(A.37)p2
0 = mω h̄

(A.38)x(t) =
x0
√

2

(
ae−iωt + a†eiωt

)

(A.39)p(t) =
i h̄
√

2x0

(
a†eiωt − ae−iωt

)
a, a† =

1
√

2x0

(
x ∓ x2

0
d
dx

)
(A.40)

(A.41)a |n〉 =
√

n |n − 1〉

(A.42)a† |n〉 =
√

n + 1 |n + 1〉

(A.43)x(t) = x(0) cosωt +
p(0)
mω

sinωt
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(A.44)p(t) = p(0) cosωt − mωx(0) sinωt

(A.45)x(t)2 =
h̄ω
2

(
ae−iωt + a†eiωt

)2

(A.46)p(t)2 =
h̄ω
2

(
ae−iωt − a†eiωt

) (
a†eiωt − ae−iωt

)

N = a†a (A.47)

N |n〉 = n |n〉 (A.48)

[N, a] = −a (A.49)

[
N, a†

]
= a† (A.50)

(A.51)H = h̄ω
(
N +

1
2

)

(A.52)
[
a, a†

]
= 1

(A.53)a =
1

x0
√

2

(
x +

ip
mω

)

〈x|n〉 =
1

π1/4
√

2nn!
x−(n+1/2)

0

(
x − x2

0
d
dx

)n

e−(x/x0)2/2 (A.54)

|n〉 =

(
a†

)n

√
n!
|0〉 (A.55)
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Coherent states

a |z〉 = z |z〉 (A.56)

|z〉 = e−|z|
2/2+za† |0〉 (A.57)

〈z| aa† |z〉 = 〈z| 1 + a†a |z〉 (A.58)

(A.59)
〈x〉 (0) = x0 ≡

√
2 h̄
mω

Re z =

√
h̄

2mω
(z + z∗)

〈p〉 (0) = p0 ≡
√

2m h̄ω Im z = −i

√
m h̄ω

2
(z − z∗) .

Electromagnetism

(A′, φ′) = (A +∇χ, φ − ∂tχ) (A.60)

E = −
∂A
∂t
−∇φ

B = ∇ ×A
(A.61)

(A.62)A =


Bρ2

a
2ρ φ̂ if ρ ≥ ρa =⇒ B = 0

Bρ
2 φ̂ if ρ < ρa =⇒ B = Bẑ

Φ ≡
∮

A · dl (A.63)

Aharonov-Bohm and Magnetic fields

H =
1

2m

(
p −

q
c

A
)

+ qφ (A.64)
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Π = p −
e
c

A

[Πx,Πy] =
ie h̄
c

Bz

H =
1

2m
Π2 = h̄ω

(
b†b +

1
2

)
ω =

eB0

mc

b =
1

√
2mω h̄

(Πx + iΠy)

(A.65)

A =
B0

2
(−y, x, 0) ,A = B0 (0, x, 0) =⇒ B = B0ẑ (A.66)

Dirac equation

H =

p̂c + V mc2

mc2 −p̂c + V

 = p̂cσz + mc2σx + V (A.67)

ψ = e±ikx−iEt/ h̄

|+k;±ε〉 =

cos θ

sin θ

 ,
− sin θ

cos θ


|−k;±ε〉 =

sin θ

cos θ

 ,
− cos θ

sin θ


tan(2θ) = mc/ h̄|k|

ε2 =
(
mc2

)2
+ ( h̄kc)2

(A.68)

ψ = e∓kx−iEt/ h̄

|±〉 =
1
√

2

±e±iφ/2

e∓iφ/2


ε2 =

(
mc2

)2
− ( h̄kc)2

eiφ =
ε ± ik h̄c

mc2

(A.69)

j = cΨ†σzΨ (A.70)
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Generators

Ta = e−ip·a/ h̄ (A.71)

Tp̃ = eip̃·x/ h̄ (A.72)

(A.73)D(n̂, φ) = exp (−iJ · n̂φ/ h̄)

Calculus

∇
2ψ =

1
ρ
∂ρ (ρ∂ρψ) +

1
ρ2 ∂φφψ + ∂zzψ (A.74)

∇
2ψ =

1
r2 ∂r

(
r2∂rψ

)
+

1
r2 sin θ

∂θ (sin θ∂θψ) +
1

r2 sin2 θ
∂φφ (A.75)

∫ ∞

−∞

exp(ax2)dx =

√
−π

a
(A.76)

Γ(t) =

∫ ∞

0
xt−1e−xdx = (t − 1)! (A.77)

∫ ∞

0
e−αrrndr =

n!
αn+1 (A.78)

(A.79)lim
N →∞

(
1 +

x
N

)N
= ex

Symmetries

(A.80)π† = π

= π−1

(A.81)π†xπ = −x

(A.82)π†pπ = −p



useful formulas and review 303

π |x〉 = |−x〉 (A.83)

〈x| π |ψ〉 = 〈−x|ψ〉 = ψ(−x) (A.84)

(A.85)[π, J] = 0

(A.86)ΘH = HΘ

(A.87)ΘpΘ−1 = −p

(A.88)ΘJΘ−1 = −J

(A.89)ΘxΘ−1 = x

(A.90)〈x|Θ |α〉 = 〈α|x〉

(A.91)Θ | j,m〉 = i2m | j,−m〉

(A.92)Θ2 = (−1)2 j

(A.93)

Θ = −iσyηK, η = i

Ki = −i

Θ |n̂; +〉 = η |n̂;−〉

Θ |n̂;−〉 = −η |n̂; +〉

Spin

(A.94)
[
Jx, Jy

]
= i h̄Jz

(A.95)[Jr, Js] = i h̄εrst Jt

(A.96)
[
J2, J±

]
= 0

(A.97)
[
Jz, J±

]
= ± h̄J±

(A.98)[J+, J−] = 2 h̄Jz

(A.99)J = L ⊗ 1 + 1 ⊗ S
= L + S

(A.100)Jz | j,m〉 = m h̄ | j,m〉

(A.101)J2 | j,m〉 = j( j + 1) h̄2 | j,m〉

(A.102)J± | j,m〉 = h̄
√

( j ∓ m)( j ± m + 1) | j,m〉

(A.103)D(R) = exp (−iL · n̂φ/ h̄) ⊗ exp (−iS · n̂φ/ h̄)
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Spin one representation

(A.104)Jx =
h̄
√

2


0 1 0

1 0 1

0 1 0



(A.105)Jy =
h̄i
√

2


0 −1 0

1 0 −1

0 1 0



(A.106)Jz = h̄


1 0 0

0 0 0

0 0 −1

 .
Angular momentum

(A.107)

L2 = L2
z +

1
2

(L+L− + L−L+)

= − h̄2
(

1
sin2 θ

∂φφ +
1

sin θ
∂θ (sin θ∂θ)

)
= x2p2 − (x · p)2 + i h̄x · p
= r2p2 + h̄2

(
r2∂rr + 2r∂r

)

Lx = −i h̄ (− sin φ∂θ − cot θ cos φ∂φ)

Ly = −i h̄ (cos φ∂θ − cot θ sin φ∂φ)

Lz = −i h̄∂φ

(A.108)

(A.109)
[
Lx, Ly

]
= i h̄Lz

{L+, L−} = 2(L2
x + L2

y) = 2(L2 − L2
z ) (A.110)

L± = −i h̄e±iφ (±i∂θ − cot θ∂φ) = Lx ± iLy (A.111)
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L± |l,m〉 = h̄
√

(l ∓m)(l ±m + 1) |l,m ± 1〉 (A.112)

L2 |l,m〉 = l(l + 1) h̄2 |l,m〉 (A.113)

Lz |l,m〉 = m h̄ |l,m〉 (A.114)

Spherical harmonics

Y00 =
1

2
√
π

Y10 =
1
2

√
3
π

cos(θ)

Y20 =
1
4

√
5
π

(
3 cos2(θ) − 1

)
Y30 =

1
4

√
7
π

(
5 cos3(θ) − 3 cos(θ)

)
Y40 =

3
(
(35 cos4(θ) − 30 cos2(θ) + 3

)
16
√
π

Y50 =
1

16

√
11
π

(
63 cos5(θ) − 70 cos3(θ) + 15 cos(θ)

)
Y60 =

1
32

√
13
π

(
231 cos6(θ) − 315 cos4(θ) + 105 cos2(θ) − 5

)
Y70 =

1
32

√
15
π

(
429 cos7(θ) − 693 cos5(θ) + 315 cos3(θ) − 35 cos(θ)

)
Y80 =

1
256

√
17
π

(
6435 cos8(θ) − 12012 cos6(θ) + 6930 cos4(θ) − 1260 cos2(θ) + 35

)

(A.115)

(A.116)Yl,−m = (−1)mY∗lm

FIXME: complete this table.
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Hydrogen wavefunctions From [14], with the a0 factors added in.

ψ1s = ψ100 =
1
√
π

(
Z
a0

)3/2

e−Zr/a0 (A.117a)

ψ2s = ψ200 =
1

4
√

2π

(
Z
a0

)3/2 (
2 −

rZ
a0

)
e−Zr/2a0 (A.117b)

ψ2px =
1
√

2
(ψ2,1,−1 − ψ2,1,1) =

1

4
√

2π

(
Z
a0

)3/2 rZ
a0

e−rZ/2a0 sin θ cos φ (A.117c)

ψ2py =
i
√

2
(ψ2,1,−1 + ψ2,1,1) =

1

4
√

2π

(
Z
a0

)3/2 rZ
a0

e−rZ/2a0 sin θ sin φ (A.117d)

ψ2pz = ψ210 =
1

4
√

2π

(
Z
a0

)3/2 rZ
a0

e−rZ/2a0 cos θ. (A.117e)

I looked to [7] to see where to add in the a0 factors.
Energy levels are n dependent only

(A.118)En = −
Z2e2

2n2a0
.

a0 =
4πε0 h̄2

me2 (A.119)

Perturbation

H = H0 + λV (A.120a)

|n〉 =
∑
j=0

λ j
∣∣∣n j

〉
(A.120b)

∆n =
∑
j=1

λ j∆n j (A.120c)
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Pn =
∑
m,n

|m〉 〈m| (A.120d)

|n0〉 =
∣∣∣n(0)

〉
|n1〉 =

Pn

E(0)
n − H0

V |n0〉

|n2〉 =
Pn

E(0)
n − H0

(V − ∆n1) |n1〉

|n3〉 =
Pn

E(0)
n − H0

(V |n2〉 − ∆n1 |n2〉 − ∆n2 |n1〉)

∣∣∣n j
〉

=
Pn

E(0)
n − H0

V ∣∣∣n j−1
〉
−

j−1∑
k=1

∆nk

∣∣∣n j−k
〉

(A.121)

∆n j = 〈n0|V
∣∣∣n j−1

〉
(A.122)

(A.123)f (|x|) = Θ(x) f (x) + Θ(−x) f (−x)

(A.124)
d
dx
δ(x) = −

δ(x)
x

Clebsch Ex. l1 = 2, l2 = 1

|3, 3〉 = |2, 2〉 ⊗ |1, 1〉

|3, 2〉 =
1

〈3, 2| L− |3, 3〉
((L− |2, 2〉) ⊗ |1, 1〉 + |2, 2〉 ⊗ L− |1, 1〉)

|2, 2〉 : a |1〉 + b |2〉 → −b |1〉 + a |2〉

|1, 1〉 = |3, 1〉 × |2, 1〉

(A.125)





B
O D D S A N D E N D S

b.1 schwartz inequality in bra-ket notation

Motivation In [11] the Schwartz inequality

〈a|a〉 〈b|b〉 ≥ |〈a|b〉|2, (B.1)

is used in the derivation of the uncertainty relation. The proof of the Schwartz inequality uses
a sneaky substitution that doesn’t seem obvious, and is even less obvious since there is a typo
in the value to be substituted. Let’s understand where that sneakiness is coming from.

Without being sneaky My ancient first year linear algebra text [8] contains a non-sneaky proof,
but it only works for real vector spaces. Recast in bra-ket notation, this method examines the
bounds of the norms of sums and differences of unit state vectors (i.e. 〈a|a〉 = 〈b|b〉 = 1.)

(B.2)〈a − b|a − b〉 = 〈a|a〉 + 〈b|b〉 − 〈a|b〉 − 〈b|a〉 = 2 − 2 Re 〈a|b〉 ≥ 0,

so

(B.3)1 ≥ Re 〈a|b〉 .

Similarly

(B.4)〈a + b|a + b〉 = 〈a|a〉 + 〈b|b〉 + 〈a|b〉 + 〈b|a〉 = 2 + 2 Re 〈a|b〉 ≥ 0,

so

(B.5)Re 〈a|b〉 ≥ −1.

This means that for normalized state vectors

−1 ≤ Re 〈a|b〉 ≤ 1, (B.6)

or

(B.7)|Re 〈a|b〉| ≤ 1.

Writing out the unit vectors explicitly, that last inequality is

309
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(B.8)

∣∣∣∣∣∣Re
〈

a
√
〈a|a〉

∣∣∣∣∣∣ b
√
〈b|b〉

〉∣∣∣∣∣∣ ≤ 1,

squaring and rearranging gives

(B.9)|Re 〈a|b〉|2 ≤ 〈a|a〉 〈b|b〉 .

This is similar to, but not identical to the Schwartz inequality. Since |Re 〈a|b〉| ≤ |〈a|b〉| the
Schwartz inequality cannot be demonstrated with this argument. This first year algebra method
works nicely for demonstrating the inequality for real vector spaces, so a different argument is
required for a complex vector space (i.e. quantum mechanics state space.)

Arguing with projected and rejected components Notice that the equality condition holds
when the vectors are colinear, and the largest inequality (0 ≤ 1) holds when the vectors are
normal to each other. Given those geometrical observations, it seems reasonable to examine the
norms of projected or rejected components of a vector. To do so in bra-ket notation, the correct
form of a projection operation must be determined. Care is required to get the ordering of the
bra-kets right when expressing such a projection (or rejection)

Suppose we wish to calculation the rejection of |a〉 from |b〉, that is |b − αa〉, such that

(B.10)0 = 〈a|b − αa〉
= 〈a|b〉 − α 〈a|a〉 ,

or

(B.11)α =
〈a|b〉
〈a|a〉

.

Therefore, the projection of |b〉 on |a〉 is

Proj|a〉 |b〉 =
〈a|b〉
〈a|a〉

|a〉 =
〈b|a〉∗

〈a|a〉
|a〉 . (B.12)

The conventional way to write this in QM is in the operator form

(B.13)Proj|a〉 |b〉 =
|a〉 〈a|
〈a|a〉

|b〉 .

In this form the rejection of |a〉 from |b〉 can be expressed as

(B.14)Rej|a〉 |b〉 = |b〉 −
|a〉 〈a|
〈a|a〉

|b〉 .

This state vector is normal to |a〉 as desired
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(B.15)
〈
a
∣∣∣∣∣b − 〈a|b〉〈a|a〉

a
〉

= 〈a|b〉 −
〈a|b〉

��
�〈a|a〉�
��〈a|a〉 = 0.

How about it’s length? That is

〈
b −
〈a|b〉
〈a|a〉

a
∣∣∣∣∣b − 〈a|b〉〈a|a〉

a
〉

= 〈b|b〉 − 2
|〈a|b〉|2

〈a|a〉
+
|〈a|b〉|2

〈a|a〉2
〈a|a〉

= 〈b|b〉 −
|〈a|b〉|2

〈a|a〉
.

(B.16)

Observe that this must be greater to or equal to zero, so

〈b|b〉 ≥
|〈a|b〉|2

〈a|a〉
. (B.17)

Rearranging this gives eq. (B.1) as desired. The Schwartz proof in [11] obscures the geometry
involved and starts with

(B.18)〈b + λa|b + λa〉 ≥ 0,

where the “proof” is nothing more than a statement that one can “pick” λ = − 〈b|a〉 /〈a|a〉.
The Pythagorean context of the Schwartz inequality is not mentioned, and without thinking
about it, one is left wondering what sort of magic hat that λ selection came from.

b.2 an observation about the geometry of pauli x ,y matrices

Motivation The conventional form for the Pauli matrices is

σx =

0 1

1 0


σy =

0 −i

i 0


σz =

1 0

0 −1


. (B.19)

In [2] these forms are derived based on the commutation relations

[σr, σs] = 2iεrstσt, (B.20)

by defining raising and lowering operators σ± = σx ± iσy and figuring out what form the
matrix must take. I noticed an interesting geometrical relation hiding in that derivation if σ+ is
not assumed to be real.
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Derivation For completeness, I’ll repeat the argument of [2], which builds on the commuta-
tion relations of the raising and lowering operators. Those are

(B.21)

[
σz, σ±

]
= σz

(
σx ± iσy

)
−

(
σx ± iσy

)
σz

=
[
σz, σx

]
± i

[
σz, σy

]
= 2iσy ± i(−2i)σx

= ±2
(
σx ± iσy

)
= ±2σ±,

and

(B.22)

[σ+, σ−] =
(
σx + iσy

) (
σx − iσy

)
−

(
σx − iσy

) (
σx + iσy

)
= −iσxσy + iσyσx − iσxσy + iσyσx

= 2i
[
σy, σx

]
= 2i(−2i)σz

= 4σz

From these a matrix representation containing unknown values can be assumed. Let

(B.23)σ+ =

a b

c d

 .
The commutator with σz can be computed

(B.24)

[
σz, σ+

]
=

1 0

0 −1


a b

c d

 −
a b

c d


1 0

0 −1


=

 a b

−c −d

 −
a −b

c −d


= 2

 0 b

−c 0


Now compare this with eq. (B.21)

(B.25)

2

 0 b

−c 0

 = 2σ+

= 2

a b

d d

 .
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This shows that a = 0, and d = 0. Similarly the σz commutator with the lowering operator is

(B.26)

[
σz, σ−

]
=

1 0

0 −1


 0 −c∗

b∗ 0

 −
 0 −c∗

b∗ 0


1 0

0 −1


=

 0 −c∗

−b∗ 0

 −
 0 c∗

b∗ 0


= −2

 0 c∗

b∗ 0


Again comparing to eq. (B.21), we have

(B.27)

−2

 0 c∗

b∗ 0

 = −2σ−

= −2

 0 −c∗

b∗ 0

 ,
so c = 0. Computing the commutator of the raising and lowering operators fixes b

(B.28)

[σ+, σ−] =

0 b

0 0


 0 0

b∗ 0

 −
 0 0

b∗ 0


0 b

0 0


=

|b|2 0

0 0

 − [
0 00 −|b|2

]
= |b|2

1 0

0 −1


= |b|2σz.

From eq. (B.22) it must be that |b|2 = 4, so the most general form of the raising operator is

(B.29)σ+ = 2

0 eiφ

0 0

 .
Observation The conventional choice is to set φ = 0, but I found it interesting to see the form
of σx, σy without that choice. That is
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(B.30)
σx =

1
2

(σ+ + σ−)

=

 0 eiφ

e−iφ 0



(B.31)

σy =
1
2i

(σ+ − σ−)

=

 0 −ieiφ

−ie−iφ 0


=

 0 ei(φ−π/2)

e−i(φ−π/2) 0

 .
Notice that the Pauli matrices σx and σy actually both have the same form as σx, but the

phase of the complex argument of each differs by 90◦. That 90◦ separation isn’t obvious in the
standard form eq. (B.19).

It’s a small detail, but I thought it was kind of cool that the orthogonality of these matrix unit
vector representations is built directly into the structure of their matrix representations.

b.3 operator matrix element

Weird dreams I woke up today having a dream still in my head from the night, but it was a
strange one. I was expanding out the Dirac notation representation of an operator in matrix form,
but the symbols in the kets were elaborate pictures of Disney princesses that I was drawing with
forestry scenery in the background, including little bears. At the point that I woke up from the
dream, I noticed that I’d gotten the proportion of the bears wrong in one of the pictures, and
they looked like they were ready to eat one of the princess characters.

Guts As a side effect of this weird dream I actually started thinking about matrix element
representation of operators.

When forming the matrix element of an operator using Dirac notation the elements are of
the form 〈row| A |column〉. I’ve gotten that mixed up a couple of times, so I thought it would be
helpful to write this out explicitly for a 2 × 2 operator representation for clarity.

To start, consider a change of basis for a single matrix element from basis {|q〉 , |r〉}, to basis
{|a〉 , |b〉}
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(B.32)

〈q| A |r〉 = 〈q|a〉 〈a| A |r〉 + 〈q|b〉 〈b| A |r〉

= 〈q|a〉 〈a| A |a〉 〈a|r〉 + 〈q|a〉 〈a| A |b〉 〈b|r〉

+ 〈q|b〉 〈b| A |a〉 〈a|r〉 + 〈q|b〉 〈b| A |b〉 〈b|r〉

= 〈q|a〉
[
〈a| A |a〉 〈a| A |b〉

] 〈a|r〉
〈b|r〉

 + 〈q|b〉
[
〈b| A |a〉 〈b| A |b〉

] 〈a|r〉
〈b|r〉


=

[
〈q|a〉 〈q|b〉

] 〈a| A |a〉 〈a| A |b〉
〈b| A |a〉 〈b| A |b〉


〈a|r〉
〈b|r〉

 .
Suppose the matrix representation of |q〉 , |r〉 are respectively

(B.33)

|q〉 ∼

〈a|q〉
〈b|q〉


|r〉 ∼

〈a|r〉
〈b|r〉


,

then

(B.34)
〈q| ∼

〈a|q〉
〈b|q〉


†

=
[
〈q|a〉 〈q|b〉

]
.

The matrix element is then

(B.35)〈q| A |r〉 ∼ 〈q|

〈a| A |a〉 〈a| A |b〉
〈b| A |a〉 〈b| A |b〉

 |r〉 ,
and the corresponding matrix representation of the operator is

(B.36)A ∼

〈a| A |a〉 〈a| A |b〉
〈b| A |a〉 〈b| A |b〉

 .
b.4 generalized gaussian integrals

Both [11] and [16] use Gaussian integrals with both (negative) real, and imaginary arguments,
which give the impression that the following is true:

(B.37)
∫ ∞

−∞

exp
(
ax2

)
dx =

√
−π

a
,
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even when a is not a real negative constant, and in particular, with values a = ±i. Clearly
this doesn’t follow by just making a substitution x → x/

√
a, since that moves the integration

range onto a rotated path in the complex plane when a is ±i. However, with some care, it can be
shown that eq. (B.37) holds provided Re a ≤ 0.

To show this, this integral will be considered for the pure real case, purely imaginary, and
finally the complex case with non-zero real and imaginary parts for a.

Real (negative) case. The first special case is
∫ ∞
−∞

exp
(
−x2

)
dx =

√
π which is easy to derive

using the usual square it and integrate in circular coordinates trick.

Purely imaginary cases. Let’s handle the a = ±i cases next. These can be evaluated by con-
sidering integrals over the contours of fig. B.1, where the upper plane contour is used for a = i
and the lower plane contour for a = −i.

Figure B.1: Contours for a = ±i.

Since there are no poles, the integral over either such contour is zero. Credit for figuring out
how to tackle that integral and what contour to use goes to Dr MV, on stackexchange [6].

For the upper plane contour we have

(B.38)
0 =

�
exp

(
iz2

)
dz

=

∫ R

0
exp

(
ix2

)
dx +

∫ π/4

0
exp

(
iR2e2iθ

)
Rieiθdθ +

∫ 0

R
exp

(
i2t2

)
eiπ/4dt.

Observe that ie2iθ = i cos(2θ) − sin(2θ) which has a negative real part for all values of θ , 0.
Provided the contour is slightly deformed from the axis, that second integral has a term of the
form ∼ Re−R2

which tends to zero as R→ ∞. So in the limit, this is
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(B.39)
∫ ∞

0
exp

(
ix2

)
dx =

√
πeiπ/4/2,

or

(B.40)
∫ ∞

−∞

exp
(
ix2

)
dx =

√
iπ,

a special case of eq. (B.37) as desired. For a = −i integrating around the lower plane contour,
we have

(B.41)

0 =



exp

(
−iz2

)
dz

=

∫ R

0
exp

(
ix2

)
dx +

∫ −π/4

0
exp

(
−iR2e2iθ

)
Rieiθdθ +

∫ 0

R
exp

(
−i(−i)t2

)
e−iπ/4dt.

This time, in the second integral we also have −iR2e2iθ = iR2 cos(2θ) + sin(2θ), which also
has a negative real part for θ ∈ (0, π/4]. Again the contour needs to be infinitesimally deformed1,
placed just lower than the axis.

This time we find

(B.42)
∫ ∞

−∞

exp
(
−ix2

)
dx =

√
−iπ,

another special case of eq. (B.37).

Completely complex case. A similar trick can be used to evaluate the more general cases,
but a bit of thought is required to figure out the contours required. More precisely, while these
contours will still have a wedge of pie shape, as sketched in fig. B.2, we have to figure out the
angle subtended by the edge of this piece of pie.

To evaluate an integral consider

(B.43)
0 =

∮
exp

(
eiφz2

)
dz

=

∫ R

0
exp

(
eiφx2

)
dx +

∫ θ

0
exp

(
eiφR2e2iµ

)
Rieiµdµ +

∫ 0

R
exp

(
eiφe2iθt2

)
eiθdt,

where φ ∈ (π/2, π) ∪ (π, 3π/2). We have a hope of evaluating this last integral if φ + 2θ = π,
or

(B.44)θ = (π − φ)/2,

1 Distorting the contour in this fashion seems somewhat like handwaving. A better approach would probably follow
[5] where Jordan’s lemma is covered. It doesn’t look like Jordan’s lemma applies as is to this case, but the arguments
look like they could be adapted appropriately.
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Figure B.2: Contours for complex a.

giving∫ R

0
exp

(
eiφx2

)
dx = ei(π−φ)/2

∫ R

0
exp

(
−t2

)
dt−

∫ θ

0
exp

(
R2 (cos (φ+2µ)+i sin (φ+2µ))

)
Rieiµdµ.

(B.45)

If the cosine is always negative on the chosen contours, then that integral will vanish in
the R → ∞ limit. This turns out to be the case, which can be confirmed by considering each
of the contours in sequence. If the upper plane contour is used to evaluate eq. (B.43) for the
φ ∈ (π/2, π) case, we have

(B.46)θ ∈ (0, π/4).

Since φ + 2θ = π, we have
(B.47)φ + 2µ ∈ (π/2, π),

and find that the cosine is strictly negative on that contour for that range of φ. Picking the
lower plane contour for the φ ∈ (π, 3π/2) range, we have

(B.48)θ ∈ (−π/4, 0),

and so
(B.49)φ + 2µ ∈ (π/2, 3π/2).

For this range of φ the cosine on the lower plane contour is again negative as desired, so in
the infinite R limit we have

(B.50)
∫ ∞

0
exp

(
eiφx2

)
dx =

1
2

√
−πe−iφ.

The points at φ = π/2, π, 3π/2 were omitted, but we’ve found the same result at those points,
completing the verification of eq. (B.37) for all Re a ≤ 0.
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b.5 a curious proof of the baker-campbell-hausdorff formula

Equation (39) of [3] states the Baker-Campbell-Hausdorff formula for two operators a, b that
commute with their commutator [a, b]

(B.51)eaeb = ea+b+[a,b]/2,

and provides the outline of an interesting method of proof. That method is to consider the
derivative of

(B.52)f (λ) = eλaeλbe−λ(a+b),

That derivative is

(B.53)

d f
dλ

= eλaaeλbe−λ(a+b) + eλabeλbe−λ(a+b) − eλabeλb(a + b)e−λ(a+b)

= eλa
(
aeλb + beλb − eλb(a + b)

)
e−λ(a+b)

= eλa
([

a, eλb
]

+
��

��
[
b, eλb

])
e−λ(a+b)

= eλa
[
a, eλb

]
e−λ(a+b).

The commutator above is proportional to [a, b]

(B.54)

[
a, eλb

]
=

∞∑
k=0

λk

k!

[
a, bk

]
=

∞∑
k=0

λk

k!
kbk−1 [a, b]

= λ

∞∑
k=1

λk−1

(k − 1)!
bk−1 [a, b]

= λeλb [a, b] ,

so

(B.55)
d f
dλ

= λ [a, b] f .

To get the above, we should also do the induction demonstration for
[
a, bk

]
= kbk−1 [a, b].

This clearly holds for k = 0, 1. For any other k we have
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(B.56)

[
a, bk+1

]
= abk+1 − bk+1a

=
([

a, bk
]

+ bka
)

b − bk+1a

= kbk−1 [a, b] b + bk (
[a, b] +��ba

)
−��

�bk+1a
= kbk [a, b] + bk [a, b]
= (k + 1)bk [a, b] �

Observe that eq. (B.55) is solved by

(B.57)f = eλ
2[a,b]/2,

which gives

(B.58)eλ
2[a,b]/2 = eλaeλbe−λ(a+b).

Right multiplication by eλ(a+b) which commutes with eλ
2[a,b]/2 and setting λ = 1 recovers

eq. (B.51) as desired.
What I wonder looking at this, is what thought process led to trying this in the first place?

This is not what I would consider an obvious approach to demonstrating this identity.

b.6 position operator in momentum space representation

A derivation of the position space representation of the momentum operator −i h̄∂x is made in
[2], starting with the position-momentum commutator. Here I’ll repeat that argument for the
momentum space representation of the position operator.

What we want to do is expand the matrix element of the commutator. First using the definition
of the commutator

(B.59)
〈
p′

∣∣∣ XP − PX
∣∣∣p′′〉 = i h̄

〈
p′

∣∣∣p′′〉
= i h̄δp′ − p′′,

and then by inserting an identity operation in a momentum space basis

(B.60)

〈
p′

∣∣∣ XP − PX
∣∣∣p′′〉 =

∫
dp

〈
p′

∣∣∣ X |p〉 〈p| P
∣∣∣p′′〉 − ∫

dp
〈
p′

∣∣∣ P |p〉 〈p| X
∣∣∣p′′〉

=

∫
dp

〈
p′

∣∣∣ X |p〉 pδ(p − p′′) −
∫

dppδ(p′ − p) 〈p| X
∣∣∣p′′〉

=
〈
p′

∣∣∣ X
∣∣∣p′′〉 p′′ − p′

〈
p′

∣∣∣ X
∣∣∣p′′〉 .

So we have
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(B.61)
〈
p′

∣∣∣ X
∣∣∣p′′〉 p′′ − p′

〈
p′

∣∣∣ X
∣∣∣p′′〉 = i h̄δp′ − p′′.

Because the RHS is zero whenever p′ , p′′, the matrix element 〈p′| X |p′′〉 must also include
a delta function. Let

(B.62)
〈
p′

∣∣∣ X
∣∣∣p′′〉 = δ(p′ − p′′)X(p′′).

Because eq. (B.61) is an operator equation that really only takes on meaning when applied to
a wave function and integrated, we do that∫

dp′′δ(p′ − p′′)X(p′′)p′′ψ(p′′)−
∫

dp′′p′δ(p′ − p′′)X(p′′)ψ(p′′) =

∫
dp′′i h̄δp′ − p′′ψ(p′′),

(B.63)

or

(B.64)i h̄ψ(p′) = X(p′)p′ψ(p′) − p′X(p′)ψ(p′).

Provided X(p′) operates on everything to its right, this equation is solved by setting

X(p′) = i h̄
∂

∂p′
. (B.65)

b.7 expansion of the squared angular momentum operator

In [11] eq. 6.16 is

L2 = x2p2 − (x · p)2
+ i h̄x · p, (B.66)

and a derivation of the same. The derivation is clear right until the end, where the details for
the last steps are left off. When I attempted those last steps I got a different sign for the x · p
term. I also get that same difference in sign if I do this expansion myself:

(B.67)

L2 = εi jkxi p jεrskxr ps

= δ[rs]
i j xi p jxr ps

= xi p jxi p j − xi p jx j pi

= xi
(
xi p j − i h̄δi j

)
p j − xi p j

(
pix j + i h̄δi j

)
= x2p2 − i h̄x · p − xi p j pix j − i h̄x · p
= x2p2 − 2i h̄x · p − xi pi p jx j

= x2p2 − 2i h̄x · p − (x · p)
(
x j p j − i h̄

)
= x2p2 − i h̄x · p − (x · p)2.
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I couldn’t spot an error anywhere above, but Prof Paramekanti spotted it when I asked. The
error is in the second last step above, since p jx j = p1x1 + p2x2 + p3x3 and flipping the order
must be done to each.

(B.68)L2 = x2p2 − 2i h̄x · p − (x · p)
(
x j p j − 3i h̄

)
= x2p2 + i h̄x · p − (x · p)2.

The text is correct.



C
J U L I A N OT E B O O K S

These Julia notebooks, can be found in
https://github.com/peeterjoot/julia.
These notebooks are text files. The julia program, available freely at www.julialang.org, is

required to execute them. Some Julia code can also be evaluated with Matlab.

• Sep 24, 2015 phy1520/vectorSolenoid.jl

Plot of solenoid potential for constant interior magnetic field

• Nov 15, 2015 phy1520/rodbalancing.jl

Plug in some numbers for uncertainty time rod balancing calculation.
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https://raw.github.com/peeterjoot/julia/master/phy1520/rodbalancing.jl




D
M AT H E M AT I C A N OT E B O O K S

These Mathematica notebooks, some just trivial ones used to generate figures, others more
elaborate, and perhaps some even polished, can be found in

https://github.com/peeterjoot/mathematica/tree/master/.
The free Wolfram CDF player, is capable of read-only viewing these notebooks to some

extent.

• Sep 28, 2015 phy1520/anticommutingWithZeroEigenvalue.nb

Construct and verify an example of a pair of anticommuting matrices each having a zero
eigenvalue, and a shared eigenvector. This was for Sakurai p.1.17, and includes some
numeric commutator expansions to verify the example constructions done with that prob-
lem.

• Oct 25, 2015 phy1520/energyVsMomentumForDiracStepPotentialWaveFunctions.nb

A Manipulate to explore the energy vs momentum curves for a stepped potential barrier
and the Dirac Hamiltonian.

• Nov 1, 2015 phy1520/spinOneHalfSymbolicManipulation.nb

For a spin one-half system Sakurai leaves it to the reader (and also to problem 3.10)
to verify that knowledge of the three ensemble averages 〈S x〉 ,

〈
S y

〉
, 〈S z〉 is sufficient to

reconstruct the density operator. Showing that is algebraically messy, and well suited to
do in Mathematica.

• Nov 2, 2015 phy1520/eulerAngleVsNormalRotationPauliMatrices.nb

Comparing a unimodular transformation to an arbitrary rotation matrix was trivial. To
do the same for an Euler angle rotation matrix and arbitrary matrix is less so because
of sign differences. Here is a dumb symbol expansion of the full rotation on a general
vector in Pauli matrix form to have a look at the two results and see if there is anything
striking. It turns out there is not anything striking. Both expressions are messy even after
FullSimplify.

• Nov 16, 2015 phy1520/spinOneOperatorRepresentation.nb

Spin one operators. Sakurai only seems to list the S y spin one matrix representation. See
these in Desai, but need to verify that all my corrections to Desai eq. (27.117) are correct.
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• Nov 19, 2015 phy1520/diracDeltaFunctionIntegrals.nb

Double check the integral done in the Dirac delta function problem, and perform the first
Fourier transformation.

• Nov 24, 2015 phy1520/spinOneDensityOperatorRepresentationInTermsOfEnsembleAverages.nb

Solution for Sakurai problem 3.12: What must we know in addition to the ensemble
averages of the spin operators to completely characterize the density matrix of a spin
1 system? I guessed that we also needed the ensemble averages of at least the squares,
but that and the unit trace, was not enough, since those relations do not provide nine
equations, for the nine unknowns. Omitting the trace requirement, but also introducing
variables for the other second order products was enough to solve the problem. Printing
out all those products is helpful to show why this is the case: you can see visually that
these products appear to span the space of 3 × 3 matrices.

• Nov 24, 2015 phy1520/squareOfAngularMomentumOperatorSphericalCoordinates.nb

Expand out L in spherical coordinates in terms of Lx, Ly, Lz operators and compare to
stated result (Sakurai (6.15)).

• Nov 26, 2015 phy1520/lecture19integralsAndPlots.nb

Confirm some of the lecture 19 (variational method) integrals, and plot the energy distri-
bution.

• Dec 2, 2015 phy1520/visualizationOfEigenvaluesOfTwoByTwoHermitianMatrix.nb

Dynamic visualization of eigenvalues of 2 × 2 Hermitian matrix, as sketched in lecture
20, plus some plots with specific values.

• Dec 3, 2015 phy1520/lecture21someSphericalHarmonicsAndTheirIntegrals.nb

Lecture 21. Print out some spherical harmonic functions and their integrals, to look at the
conditions for the integral of Ylmz to be zero. Also evaluate the z and z2 brakets mentioned
in the lecture.

• Dec 6, 2015 phy1520/sakuraiProblem5.13c.nb

Sakurai. Problem 5.11 (c). Verify hand calculations (diagonalization).

• Dec 8, 2015 phy1520/vanDerWalls.nb

Do a second order expansion of the van der Walls potential to compare to value stated.
Did not figure out how to get Mathematica to simplify this gracefully and did it by hand
manually instead.

https://raw.github.com/peeterjoot/mathematica/master/phy1520/diracDeltaFunctionIntegrals.nb
https://raw.github.com/peeterjoot/mathematica/master/phy1520/spinOneDensityOperatorRepresentationInTermsOfEnsembleAverages.nb
https://raw.github.com/peeterjoot/mathematica/master/phy1520/squareOfAngularMomentumOperatorSphericalCoordinates.nb
https://raw.github.com/peeterjoot/mathematica/master/phy1520/lecture19integralsAndPlots.nb
https://raw.github.com/peeterjoot/mathematica/master/phy1520/visualizationOfEigenvaluesOfTwoByTwoHermitianMatrix.nb
https://raw.github.com/peeterjoot/mathematica/master/phy1520/lecture21someSphericalHarmonicsAndTheirIntegrals.nb
https://raw.github.com/peeterjoot/mathematica/master/phy1520/sakuraiProblem5.13c.nb
https://raw.github.com/peeterjoot/mathematica/master/phy1520/vanDerWalls.nb
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• Dec 10, 2015 phy1520/lecture22Integrals.nb

Integrals from lecture 22 (van der Walls potential).

• Dec 11, 2015 phy1520/sakuraiProblem3.17.nb

sakuraiProblem3.17

• Dec 13, 2015 phy1520/sakuraiProblem5.17a.nb

Sakurai pr. 5.17 (a): Find energy eigenvalues for H = AL2 + BLz + CLy.

• Dec 14, 2015 phy1520/commutatorOfRadialPortionOfMomentumSquaredOperator.nb

Compute the commutator
[
− h̄2

2mr2 ∂r(r2∂r),−i h̄∂r
]

= − h̄2

2mr2 pr. The first operator is a com-
ponent of p2/2m with the L2 contribution removed.

• Dec 14, 2015 phy1520/sakuraiProblem5.16bSHO.nb

Verify the relation from Sakurai pr. 5.16(a) using the ground state of the 3D SHO. Veri-
fication of the potential derivative expectations for higher values of n do not complete in
reasonable times.

• Dec 15, 2015 phy1520/sakuraiProblem3.33.nb

Spin three halves operator question (Sakurai 3.33). Implement operators for S +, S −, S z

that act on kets |±3/2〉 , |±1/2〉. These operators act on only a single basis element, but are
used to construct the matrix representations for these operators (which are more general).
Use those matrices to compute the representation of the Hamiltonian for the problem and
compute its energy eigenvalues. Display the end result and the representations for all of
S +, S −, S x, S y, S z,H = A(3S 2

z − S2) + B(S 2
+ + S 2

−).

• Dec 15, 2015 phy1520/spinMatrices.nb

Compute and display S +, S −, S x, S y, S z, S 2 for a given spin (with h̄ = 1). Use this to
display the matrix representations of these operators for each of: spin 1/2, spin 1, spin
3/2, spin 2, spin 5/2. Use this to solve the (spin one) eigensystem in Sakurai pr. 4.12.

https://raw.github.com/peeterjoot/mathematica/master/phy1520/lecture22Integrals.nb
https://raw.github.com/peeterjoot/mathematica/master/phy1520/sakuraiProblem3.17.nb
https://raw.github.com/peeterjoot/mathematica/master/phy1520/sakuraiProblem5.17a.nb
https://raw.github.com/peeterjoot/mathematica/master/phy1520/commutatorOfRadialPortionOfMomentumSquaredOperator.nb
https://raw.github.com/peeterjoot/mathematica/master/phy1520/sakuraiProblem5.16bSHO.nb
https://raw.github.com/peeterjoot/mathematica/master/phy1520/sakuraiProblem3.33.nb
https://raw.github.com/peeterjoot/mathematica/master/phy1520/spinMatrices.nb
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Abelian group, 179
Aharonov-Bohm effect, 75, 135, 137
angular momentum, 189, 232

addition, 213, 214, 231
azimthual quantum number, 205
commutators, 224
expectation, 234
magnetic quantum number, 205
Pauli matrix, 211
perturbation, 288
rotation operator, 210
Schwinger, 206

angular momentum operator, 201
anharmonic oscillator, 244, 272
anti-unitary, 172
anticommuting, 189
applied electric field, 236
approximation methods, 239
associated Legendre polynomials, 213

basis, 4
boost, 188
braket, 4, 21

central force potential, 36
classical Hamiltonian

Lorentz force, 91
classical harmonic oscillator, 63
Clebsch-Gordan, 219, 231
coherent state, 65, 134

position operator, 69
time evolution, 67
uncertainty, 70

commutator

classical, 296
polynomial functions, 51

correlation function, 112
crystal spin, 198

degeneracy, 35, 47, 81, 263
Stark effect, 263

density matrix, 55
density operator, 10, 57

left observable, 15
observable expectation, 14

dipole moment, 259
Dirac equation, 145

boundary conditions, 155
current, 161
current density, 151
diagonalization, 148
free particle, 148
plane wave, 147
potential step, 163
probability density, 151
right going solution, 158
scattering, 152, 163
with potential, 148

Dirac sea, 149
dispersion, 98
distinguishable particles, 189
double well potential, 246, 268

electric field, 73
entanglement entropy, 16
Euler angle, 230
expectation, 4

coherent state, 68
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field theory, 71
free particle, 128
free particle propagator

momentum space, 127

gauge invariance, 72, 92
gauge transformation, 93, 128

probability current, 132
Gaussian integral, 315
generator

translation, 179
ground state, 126
group, 173

Hamiltonian, 7
non-Hermitian, 96
symmetric real, 104
two state, 29

harmonic oscillator, 63, 106
anharmonic perturbation, 273
ground state, 115
perturbation, 266
translation operator, 106
variational method, 269
xy perturbation, 275

Heisenberg picture, 10, 102
coherent state, 67

helium-4, 269
Hermite polynomial, 120
hyperfine levels, 274

idempotent, 11
infitesimal rotation, 179
irreducible, 173

Jackiw-Rebbi problem, 162

Klein-Gordon equation, 146
Kramer’s degeneracy, 187
Kramer’s theorem, 188

ladder operator, 64
Landau levels, 82

symmetric gauge, 136
Little-Parks superconductor, 79
Lorentz force, 131
lowering operator, 64

magnetic field, 72, 73, 79, 226
Mathematica, 58, 234, 238, 259, 265, 287,

290, 325
matrix element, 314
matrix representation, 24
measurement, 8
momentum

basis, 4
expectation, 119
operator, 6

momentum basis, 4

non-commuting observables, 35
normalization, 4
null operator, 26
number operator, 64

orbital angular momentum, 201

pair creation, 149
parity, 173, 189
parity operator, 175
particle in a box, 189
partition function, 126
Pauli matrix, 18, 59

orthonality, 311
trace, 18

perturbation, 239, 248
non-degenerate, 251
simplest, 249

Poisson bracket, 50, 296
probability

amplitude, 4
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current, 132
density function, 4
flux, 119

projection operator, 58
propagator

free particle, 124

quadrupolar potential, 272

raising operator, 64
reduced density

matrix, 56
operator, 15

rotation, 19, 231
determinant, 19

rotation invariance, 180

Schrödinger equation
momentum space, 109

Schrödinger picture, 9
Schwartz inequality, 309
similarity transformation, 49
simultaneous eigenstate, 34, 47, 189
spherical harmonics, 196, 212
spherically symmetric potential

derivative, 284
spin half, 56, 189, 225

dispersion, 30, 98
ensemble averages, 56
expectation, 62
states, 28
time reversal, 187
two particles, 15

spin one, 188, 231
spin precession, 93
spin three halves, 236
spin wave, 210
Stark effect, 255
state vector, 4
Stern-Gerlach, 32

superconductor, 78
symmetry

classical, 171
group, 173
unitary, 172

time evolution, 7, 9
time reversal, 181, 188, 189, 196, 198

plane wave, 194
properties, 183
spinor, 194
squared, 187

trace, 14
translation

expectation, 54, 106
generator, 188
operator, 50, 177
symmetry, 177

two state
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