Peeter Joot
 peeter.joot@gmail.com

Polarization review

It seems worthwhile to review how a generally polarized field phasor leads to linear, circular, and elliptic geometries.

The most general field polarized in the x, y plane has the form

$$
\begin{align*}
\mathbf{E} & =\left(\hat{\mathbf{x}} a e^{j \alpha}+\hat{\mathbf{y}} b e^{j \beta}\right) e^{j(\omega t-k z)} \tag{1.1}\\
& =\left(\hat{\mathbf{x}} a e^{j(\alpha-\beta) / 2}+\hat{\mathbf{y}} b e^{j(\beta-\alpha) / 2}\right) e^{j(\omega t-k z+(\alpha+\beta) / 2)} .
\end{align*}
$$

Knowing to factor out the average phase angle above is only because I tried initially without that and things got ugly and messy. I guessed this would help (it does).

Let $\mathcal{E}=\operatorname{Re} \mathbf{E}=\hat{\mathbf{x}} x+\hat{\mathbf{y}} y, \theta=\omega t+(\alpha+\beta) / 2$, and $\phi=(\alpha-\beta) / 2$, so that

$$
\begin{equation*}
\mathbf{E}=\left(\hat{\mathbf{x}} a e^{j \phi}+\hat{\mathbf{y}} b e^{-j \phi}\right) e^{j \theta} . \tag{1.2}
\end{equation*}
$$

The coordinates can now be read off

$$
\begin{align*}
& \frac{x}{a}=\cos \phi \cos \theta-\sin \phi \sin \theta \tag{1.3a}\\
& \frac{y}{b}=\cos \phi \cos \theta+\sin \phi \sin \theta, \tag{1.3b}
\end{align*}
$$

or in matrix form

$$
\left[\begin{array}{l}
x / a \tag{1.4}\\
y / b
\end{array}\right]=\left[\begin{array}{cc}
\cos \phi & -\sin \phi \\
\cos \phi & \sin \phi
\end{array}\right]\left[\begin{array}{c}
\cos \theta \\
\sin \theta
\end{array}\right] .
$$

The goal is to eliminate all the θ (i.e. time dependence), converting the parametric relationship into a conic form. Assuming that neither $\cos \theta$, nor $\sin \theta$ are zero for now (those are special cases and lead to linear polarization), inverting the matrix will allow the θ dependence to be eliminated

$$
\frac{1}{\sin (2 \phi)}\left[\begin{array}{cc}
\sin \phi & \sin \phi \tag{1.5}\\
-\cos \phi & \cos \phi
\end{array}\right]\left[\begin{array}{c}
x / a \\
y / b
\end{array}\right]=\left[\begin{array}{c}
\cos \theta \\
\sin \theta
\end{array}\right] .
$$

Squaring and summing both rows of these equation gives

$$
\begin{align*}
1 & =\frac{1}{\sin ^{2}(2 \phi)}\left(\sin ^{2} \phi\left(\frac{x}{a}+\frac{y}{b}\right)^{2}+\cos ^{2} \phi\left(-\frac{x}{a}+\frac{y}{b}\right)^{2}\right) \\
& =\frac{1}{\sin ^{2}(2 \phi)}\left(\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+2 \frac{x y}{a b}\left(\sin ^{2} \phi-\cos ^{2} \phi\right)\right) \tag{1.6}\\
& =\frac{1}{\sin ^{2}(2 \phi)}\left(\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}-2 \frac{x y}{a b} \cos (2 \phi)\right)
\end{align*}
$$

Time to summarize and handle the special cases.

1. To have $\cos \phi=0$, the phase angles must satisfy $\alpha-\beta=(1+2 k) \pi, k \in \mathbb{Z}$.

For this case eq. (1.3) reduces to

$$
\begin{equation*}
-\frac{x}{a}=\frac{y}{b}, \tag{1.7}
\end{equation*}
$$

which is just a line.
Example. Let $\alpha=0, \beta=-\pi$, so that the phasor has the value

$$
\begin{equation*}
\mathbf{E}=(\hat{\mathbf{x}} a-\hat{\mathbf{y}} b) e^{j \omega t} \tag{1.8}
\end{equation*}
$$

2. For have $\sin \phi=0$, the phase angles must satisfy $\alpha-\beta=2 \pi k, k \in \mathbb{Z}$.

For this case eq. (1.3) reduces to

$$
\begin{equation*}
\frac{x}{a}=\frac{y}{b}, \tag{1.9}
\end{equation*}
$$

also just a line.
Example. Let $\alpha=\beta=0$, so that the phasor has the value

$$
\begin{equation*}
\mathbf{E}=(\hat{\mathbf{x}} a+\hat{\mathbf{y}} b) e^{j \omega t} \tag{1.10}
\end{equation*}
$$

3. Last is the circular and elliptically polarized case. The system is clearly elliptically polarized if $\cos (2 \phi)=0$, or $\alpha-\beta=(\pi / 2)(1+2 k), k \in \mathbb{Z}$. When that is the case and $a=b$ also holds, the ellipse is a circle.
When the $\cos (2 \phi)=0$ condition does not hold, a rotation of coordinates

$$
\left[\begin{array}{l}
x \tag{1.11}\\
y
\end{array}\right]=\left[\begin{array}{cc}
\cos \mu & \sin \mu \\
-\sin \mu & \cos \mu
\end{array}\right]\left[\begin{array}{l}
u \\
v
\end{array}\right]
$$

where

$$
\begin{equation*}
\mu=\frac{1}{2} \tan ^{-1}\left(\frac{2 \cos (\alpha-\beta)}{b-a}\right) \tag{1.12}
\end{equation*}
$$

puts the trajectory into a standard (but messy) conic form

$$
\begin{equation*}
1=\frac{u^{2}}{a b}\left(\frac{b}{a} \cos ^{2} \mu+\frac{a}{b} \sin ^{2} \mu+\frac{1}{2} \sin (2 \mu+\alpha-\beta)\right)+\frac{v^{2}}{a b}\left(\frac{b}{a} \sin ^{2} \mu+\frac{a}{b} \cos ^{2} \mu-\frac{1}{2} \sin (2 \mu+\alpha-\beta)\right) \tag{1.13}
\end{equation*}
$$

It isn't obvious to me that the factors of the u^{2}, v^{2} terms are necessarily positive, which is required for the conic to be an ellipse and not a hyperbola.

Circular polarization example. With $a=b=E_{0}, \alpha=0, \beta= \pm \pi / 2$, all the circular polarization conditions are met, leaving the phasor with values

$$
\begin{equation*}
\mathbf{E}=E_{0}(\hat{\mathbf{x}} \pm j \hat{\mathbf{y}}) e^{j \omega t} \tag{1.14}
\end{equation*}
$$

