# Peeter Joot <br> peeter.joot@gmail.com 

## Heisenberg picture position commutator

## Exercise 1.1 Heisenberg picture position commutator ([1] pr. 2.5)

Evaluate

$$
\begin{equation*}
[x(t), x(0)], \tag{1.1}
\end{equation*}
$$

for a Heisenberg picture operator $x(t)$ for a free particle.
Answer for Exercise 1.1
The free particle Hamiltonian is

$$
\begin{equation*}
H=\frac{p^{2}}{2 m}, \tag{1.2}
\end{equation*}
$$

so the time evolution operator is

$$
\begin{equation*}
U(t)=e^{-i p^{2} t /(2 m \hbar)} . \tag{1.3}
\end{equation*}
$$

The Heisenberg picture position operator is

$$
\begin{align*}
x^{\mathrm{H}} & =U^{\dagger} x U \\
& =e^{i p^{2} t /(2 m \hbar)} x e^{-i p^{2} t /(2 m \hbar)} \\
& =\sum_{k=0}^{\infty} \frac{1}{k!}\left(\frac{i p^{2} t}{2 m \hbar}\right)^{k} x e^{-i p^{2} t /(2 m \hbar)} \\
& =\sum_{k=0}^{\infty} \frac{1}{k!}\left(\frac{i t}{2 m \hbar}\right)^{k} p^{2 k} x e^{-i p^{2} t /(2 m \hbar)} \\
& =\sum_{k=0}^{\infty} \frac{1}{k!}\left(\frac{i t}{2 m \hbar}\right)^{k}\left(\left[p^{2 k}, x\right]+x p^{2 k}\right) e^{-i p^{2} t /(2 m \hbar)} \\
& =x+\sum_{k=0}^{\infty} \frac{1}{k!}\left(\frac{i t}{2 m \hbar}\right)^{k}\left[p^{2 k}, x\right] e^{-i p^{2} t /(2 m \hbar)}  \tag{1.4}\\
& =x+\sum_{k=0}^{\infty} \frac{1}{k!}\left(\frac{i t}{2 m \hbar}\right)^{k}\left(-i \hbar \frac{\partial p^{2 k}}{\partial p}\right) e^{-i p^{2} t /(2 m \hbar)} \\
& =x+\sum_{k=0}^{\infty} \frac{1}{k!}\left(\frac{i t}{2 m \hbar}\right)^{k}\left(-i \hbar 2 k p^{2 k-1}\right) e^{-i p^{2} t /(2 m \hbar)} \\
& =x+-2 i \hbar p \frac{i t}{2 m \hbar} \sum_{k=1}^{\infty} \frac{1}{(k-1)!}\left(\frac{i t}{2 m \hbar}\right)^{k-1} p^{2(k-1)} e^{-i p^{2} t /(2 m \hbar)} \\
& =x+t \frac{p}{m} .
\end{align*}
$$

This has the structure of a classical free particle $x(t)=x+v t$, but in this case $x, p$ are operators. The evolved position commutator is

$$
\begin{align*}
{[x(t), x(0)] } & =[x+t p / m, x] \\
& =\frac{t}{m}[p, x]  \tag{1.5}\\
& =-i \hbar \frac{t}{m} .
\end{align*}
$$

Compare this to the classical Poisson bracket

$$
\begin{align*}
{[x(t), x(0)]_{\text {classical }} } & =\frac{\partial}{\partial x}(x+p t / m) \frac{\partial x}{\partial p}-\frac{\partial}{\partial p}(x+p t / m) \frac{\partial x}{\partial x}  \tag{1.6}\\
& =-\frac{t}{m}
\end{align*}
$$

This has the expected relation $[x(t), x(0)]=i \hbar[x(t), x(0)]_{\text {classical }}$.

## Bibliography

[1] Jun John Sakurai and Jim J Napolitano. Modern quantum mechanics. Pearson Higher Ed, 2014. 1.1

