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PHY1520H Graduate Quantum Mechanics. Lecture 10: 1D Dirac
scattering off potential step. Taught by Prof. Arun Paramekanti

Disclaimer Peeter’s lecture notes from class. These may be incoherent and rough.
These are notes for the UofT course PHY1520, Graduate Quantum Mechanics, taught by Prof.

Paramekanti.

Dirac scattering off a potential step For the non-relativistic case we have

E < V0 =⇒ T = 0, R = 1
E > V0 =⇒ T > 0, R < 1.

(1.1)

What happens for a relativistic 1D particle?
Referring to fig. 1.1.

Figure 1.1: Potential step

the region I Hamiltonian is

H =
[

p̂c mc2

mc2 − p̂c

]
, (1.2)

for which the solution is

(1.3)Φ = eik1x
[

cos θ1
sin θ1

]
,

where

(1.4)
cos 2θ1 =

h̄ck1

Ek1

sin 2θ1 =
mc2

Ek1
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To consider the k1 < 0 case, note that

cos2 θ1 − sin2 θ1 = cos 2θ1

2 sin θ1 cos θ1 = sin 2θ1
(1.5)

so after flipping the signs on all the k1 terms we find for the reflected wave

(1.6)Φ = e−ik1x
[

sin θ1
cos θ1

]
.

FIXME: this reasoning doesn’t entirely make sense to me. Make sense of this by trying this solution
as was done for the form of the incident wave solution.

The region I wave has the form

(1.7)ΦI = Aeik1x
[

cos θ1
sin θ1

]
+ Be−ik1x

[
sin θ1
cos θ1

]
.

By the time we are done we want to have computed the reflection coefficient

(1.8)R =
|B|2

|A|2
.

The region I energy is

(1.9)E =
√(

mc2
)2 + (h̄ck1)2.

We must have
E =

√
(mc2)2 + (h̄ck2)

2 + V0 =
√
(mc2)2 + (h̄ck1)

2, (1.10)

so

(1.11)
(h̄ck2)2 = (E − V0)2 −

(
mc2)2

= (E − V0 + mc)︸ ︷︷ ︸
r1

(E − V0 − mc)︸ ︷︷ ︸
r2

.

The r1 and r2 branches are sketched in fig. 1.2.
For low energies, we have a set of potentials for which we will have propagation, despite having

a potential barrier. For still higher values of the potential barrier the product r1r2 will be negative, so
the solutions will be decaying. Finally, for even higher energies, there will again be propagation.

The non-relativistic case is sketched in fig. 1.3.
For the relativistic case we must consider three different cases, sketched in fig. 1.4, fig. 1.5, and

fig. 1.6 respectively. For the low potential energy, a particle with positive group velocity (what we’ve
called right moving) can be matched to an equal energy portion of the potential shifted parabola in
region II. This is a case where we have transmission, but no antiparticle creation. There will be an
energy region where the region II wave function has only a dissipative term, since there is no region
of either of the region II parabolic branches available at the incident energy. When the potential is
shifted still higher so that V0 > E + mc2, a positive group velocity in region I with a given energy can
be matched to an antiparticle branch in the region II parabolic energy curve.
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Figure 1.2: Energy signs

Figure 1.3: Effects of increasing potential for non-relativistic case

Figure 1.4: Low potential energy

Figure 1.5: High enough potential energy for no propagation

Figure 1.6: High potential energy
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Boundary value conditions We want to ensure that the current across the barrier is conserved (no
particles are lost), as sketched in fig. 1.7.

Figure 1.7: Transmitted, reflected and incident components.

Recall that given a wave function

(1.12)Ψ =
[

ψ1
ψ2

]
,

the density and currents are respectively

ρ = ψ∗1 ψ1 + ψ∗2 ψ2

j = ψ∗1 ψ1 − ψ∗2 ψ2
(1.13)

Matching boundary value conditions requires

1. For both the relativistic and non-relativistic cases we must have

ΨL = ΨR, at x = 0. (1.14)

2. For the non-relativistic case we want∫ ε

−ε
− h̄2

2m
∂2Ψ
∂x2 =

����������∫ ε

−ε
(E−V(x))Ψ(x) (1.15)

− h̄2

2m

(
∂Ψ
∂x

∣∣∣∣
R
− ∂Ψ

∂x

∣∣∣∣
L

)
= 0. (1.16)

We have to match

For the relativistic case

(1.17)−ih̄σz

∫ ε

−ε

∂Ψ
∂x

+
��

����
mc2σx

∫ ε

−ε
ψ =

��������
∫ ε

−ε
(E − V0)ψ,

so

− ih̄cσz (ψ(ε)− ψ(−ε)) = −ih̄cσz (ψR − ψL) . (1.18)

so we must match
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σzψR = σzψL. (1.19)

It appears that things are simpler, because we only have to match the wave function values at the
boundary, and don’t have to match the derivatives too. However, we have a two component wave
function, so there are still two tasks.

Solving the system Let’s look for a solution for the E + mc2 > V0 case on the right branch, as sketched
in fig. 1.8.

Figure 1.8: High potential region. Anti-particle transmission.

While the right branch in this case is left going, this might work out since that is an antiparticle.
We could try both.

Try

(1.20)ΨI I = Deik2x
[
− sin θ2
cos θ2

]
.

This is justified by

(1.21)+E→
[

cos θ
sin θ

]
,

so

(1.22)−E→
[
− sin θ
cos θ

]
At x = 0 the exponentials vanish, so equating the waves at that point means

(1.23)
[

cos θ1
sin θ1

]
+

B
A

[
sin θ1
cos θ1

]
=

D
A

[
− sin θ2
cos θ2

]
.

Solving this yields

(1.24)
B
A

= −cos(θ1 − θ2)
sin(θ1 + θ2)

.

This yields
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R =
1 + cos(2θ1 − 2θ2)
1− cos(2θ1 − 2θ2)

. (1.25)

As V0 → ∞ this simplifies to

(1.26)R =
E −

√
E2 −

(
mc2

)2

E +
√

E2 −
(
mc2

)2
.

Filling in the details for these results part of problem set 4.
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