Peeter Joot
 peeterjoot@protonmail.com

PHY1520H Graduate Quantum Mechanics. Lecture 12: Symmetry (cont.). Taught by Prof. Arun Paramekanti

Disclaimer Peeter's lecture notes from class. These may be incoherent and rough.
These are notes for the UofT course PHY1520, Graduate Quantum Mechanics, taught by Prof. Paramekanti, covering ch. 1 [1] content.

Parity (review)

$$
\begin{align*}
& \hat{\Pi} \hat{x} \hat{\Pi}=-\hat{x} \tag{1.1}\\
& \hat{\Pi} \hat{\rho} \hat{\Pi}=-\hat{p} \tag{1.2}
\end{align*}
$$

These are polar vectors, in contrast to an axial vector such as $\mathbf{L}=\mathbf{r} \times \mathbf{p}$.

$$
\begin{gather*}
\hat{\Pi}^{2}=1 \tag{1.3}\\
\Psi(x) \rightarrow \Psi(-x) \tag{1.4}
\end{gather*}
$$

If $[\hat{\Pi}, \hat{H}]=0$ then all the eigenstates are either

- even: $\hat{\Pi}$ eigenvalue is +1 .
- odd: $\hat{\Pi}$ eigenvalue is -1 .

We are done with discrete symmetry operators for now.
Translations Define a (continuous) translation operator

$$
\begin{equation*}
\hat{T}_{\epsilon}|x\rangle=|x+\epsilon\rangle \tag{1.5}
\end{equation*}
$$

The action of this operator is sketched in fig. 1.1.
This is a unitary operator

$$
\begin{equation*}
\hat{T}_{-\epsilon}=\hat{T}_{\epsilon}^{\dagger}=\hat{T}_{\epsilon}^{-1} \tag{1.6}
\end{equation*}
$$

In a position basis, the action of this operator is

Figure 1.1: Translation operation.

$$
\begin{align*}
&\langle x| \hat{T}_{\epsilon}|\psi\rangle=\langle x-\epsilon \mid \psi\rangle \tag{1.7}\\
&=\psi(x-\epsilon) \\
& \Psi(x-\epsilon) \approx \Psi(x)-\epsilon \frac{\partial \Psi}{\partial x} \tag{1.8}\\
&\langle x| \hat{T}_{\epsilon}|\Psi\rangle=\langle x \mid \Psi\rangle-\frac{\epsilon}{\hbar}\langle x| i \hat{p}|\Psi\rangle \tag{1.9}\\
& \hat{T}_{\epsilon} \approx\left(1-i \frac{\epsilon}{\hbar} \hat{p}\right) \tag{1.10}
\end{align*}
$$

A non-infinitesimal translation can be composed of many small translations, as sketched in fig. 1.2.

Figure 1.2: Composition of small translations
For $\epsilon \rightarrow 0, N \rightarrow \infty, N \epsilon=a$, the total translation operator is

$$
\begin{align*}
\hat{T}_{a} & =\hat{T}_{\epsilon}^{N} \\
& =\lim _{\epsilon \rightarrow 0, N \rightarrow \infty, N \epsilon=a}\left(1-\frac{\epsilon}{\hbar} \hat{p}\right)^{N} \tag{1.11}\\
& =e^{-i a \hat{p} / \hbar}
\end{align*}
$$

The momentum \hat{p} is called a "Generator" of translations. If a Hamiltonian H is translationally invariant, then

$$
\begin{equation*}
\left[\hat{T}_{a}, H\right]=0, \quad \forall a \tag{1.12}
\end{equation*}
$$

This means that momentum will be a good quantum number

$$
\begin{equation*}
[\hat{p}, H]=0 . \tag{1.13}
\end{equation*}
$$

Rotations Rotations form a non-Abelian group , since the order of rotations $\hat{R}_{1} \hat{R}_{2} \neq \hat{R}_{2} \hat{R}_{1}$. Given a rotation acting on a ket

$$
\begin{equation*}
\hat{R}|\mathbf{r}\rangle=|R \mathbf{r}\rangle, \tag{1.14}
\end{equation*}
$$

observe that the action of the rotation operator on a wave function is inverted

$$
\begin{align*}
\langle\mathbf{r}| \hat{R}|\Psi\rangle & =\left\langle R^{-1} \mathbf{r}\right||\Psi\rangle \tag{1.15}\\
& =\Psi\left(R^{-1} \mathbf{r}\right) .
\end{align*}
$$

Example 1.1: Z axis normal rotation

Consider an infinitesimal rotation about the z -axis as sketched in fig. 1.3.

(a)

(b)

Figure 1.3: Rotation about z-axis.

$$
\begin{align*}
& x^{\prime}=x-\epsilon y \\
& y^{\prime}=y+\epsilon y \tag{1.16}\\
& z^{\prime}=z
\end{align*}
$$

The rotated wave function is

$$
\begin{align*}
\tilde{\Psi}(x, y, z) & =\Psi(x+\epsilon y, y-\epsilon x, z) \\
& =\Psi(x, y, z)+\epsilon y \underbrace{\frac{\partial \Psi}{\partial x}}_{i \hat{p}_{x} / \hbar}-\epsilon x \underbrace{\frac{\partial \Psi}{\partial y}}_{i \hat{p}_{y} / \hbar} . \tag{1.17}
\end{align*}
$$

The state must then transform as

$$
\begin{equation*}
|\tilde{\Psi}\rangle=\left(1+i \frac{\epsilon}{\hbar} \hat{y} \hat{p}_{x}-i \frac{\epsilon}{\hbar} \hat{x} \hat{p}_{y}\right)|\Psi\rangle \tag{1.18}
\end{equation*}
$$

Observe that the combination $\hat{x} \hat{p}_{y}-\hat{y} \hat{p}_{x}$ is the \hat{L}_{z} component of angular momentum $\hat{\mathbf{L}}=\hat{\mathbf{r}} \times \hat{\mathbf{p}}$ ， so the infinitesimal rotation can be written

$$
\begin{equation*}
\hat{R}_{z}(\epsilon)|\Psi\rangle=\left(1-i \frac{\epsilon}{\hbar} \hat{L}_{z}\right)|\Psi\rangle \tag{1.19}
\end{equation*}
$$

For a finite rotation $\epsilon \rightarrow 0, N \rightarrow \infty, \phi=\epsilon N$ ，the total rotation is

$$
\begin{equation*}
\hat{R}_{z}(\phi)=\left(1-\frac{i \epsilon}{\hbar} \hat{L}_{z}\right)^{N} \tag{1.20}
\end{equation*}
$$

or

$$
\begin{equation*}
\hat{R}_{z}(\phi)=e^{-i \frac{\phi_{⿳ 亠 丷 厂 彡}^{1}}{} \hat{L}_{z}} \tag{1.21}
\end{equation*}
$$

Note that $\left[\hat{L}_{x}, \hat{L}_{y}\right] \neq 0$ ．
By construction using Euler angles or any other method，a general rotation will include contribu－ tions from components of all the angular momentum operator，and will have the structure

$$
\begin{equation*}
\hat{R}_{\hat{\mathbf{n}}}(\phi)=e^{-i \frac{\phi}{\hbar}(\hat{\mathbf{L}} \cdot \hat{\mathbf{n}})} \tag{1.22}
\end{equation*}
$$

Rotationally invariant \hat{H} ．Given a rotationally invariant Hamiltonian

$$
\begin{equation*}
\left[\hat{R}_{\hat{\mathbf{n}}}(\phi), \hat{H}\right]=0 \quad \forall \hat{\mathbf{n}}, \phi, \tag{1.23}
\end{equation*}
$$

then every

$$
\begin{equation*}
[\mathbf{L} \cdot \hat{\mathbf{n}}, \hat{H}]=0, \tag{1.24}
\end{equation*}
$$

or

$$
\begin{equation*}
\left[L_{i}, \hat{H}\right]=0, \tag{1.25}
\end{equation*}
$$

Non－Abelian implies degeneracies in the spectrum．
Time－reversal Imagine that we have something moving along a curve at time $t=0$ ，and ending up at the final position at time $t=t_{f}$ ，as sketched in fig．1．4．

Figure 1．4：Time reversal trajectory．

Now imagine that we flip the direction of motion (i.e. flipping the velocity) and run time backwards so the final-time state becomes the initial state.

If the time reversal operator is designated $\hat{\Theta}$, with operation

$$
\begin{equation*}
\hat{\Theta}|\Psi\rangle=|\tilde{\Psi}\rangle, \tag{1.26}
\end{equation*}
$$

so that

$$
\begin{equation*}
\hat{\Theta}^{-1} e^{-i \hat{H} t / \hbar} \hat{\Theta}|\Psi(t)\rangle=|\Psi(0)\rangle, \tag{1.27}
\end{equation*}
$$

or

$$
\begin{equation*}
\hat{\Theta}^{-1} e^{-i \hat{H} t / \hbar} \hat{\Theta}|\Psi(0)\rangle=|\Psi(-t)\rangle . \tag{1.28}
\end{equation*}
$$

Bibliography

[1] Jun John Sakurai and Jim J Napolitano. Modern quantum mechanics. Pearson Higher Ed, 2014. 1

