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PHY1520H Graduate Quantum Mechanics. Lecture 13: Time reversal
(cont.), and angular momentum. Taught by Prof. Arun Paramekanti

Disclaimer — Peeter’s lecture notes from class. These may be incoherent and rough.
These are notes for the UofT course PHY1520, Graduate Quantum Mechanics, taught by Prof.
Paramekanti, covering ch. 4, ch. 3 [1] content.

1.1 Time reversal (cont.)

Given a time reversed state
(1)) = ©[¥(0)) (L1)
which can alternately be written
O |¥(t) = [¥(~1) = /" [¥(0)) (12)

The left hand side can be expanded as the evolution of the state as found at time —¢

O [¥(t)) = @ e H/M [P (1))

. (1.3)
=0 e 110 ¥ (0)) .
To first order for a small time increment 6t, we have
(1 + ifét) [¥(0)) =@ ! (1 — iI;IcSt) @ [¥(0)), (1.4)
or
iI;I(St |'¥(0)) = @‘1(—1')[’;1(51‘@ |'¥(0)) . (1.5)
Since this holds for any state |¥(0)), the time reversal operator satisfies
il =0 Y(-i)HO. (1.6)

Note that the factors of i have not been canceled on purpose, since we are allowing for the time
reversal operator to not necessarily commute with imaginary numbers.
There are two possible solutions



e If © is unitary where @i = i©, then

A=-0"1A0, (1.7)

or

A

OH = —HO. (1.8)

Consider the implications of this on energy eigenstates

H|Y,) =E,|¥,), (1.9)
@H |Y,) = E,0|¥,), (1.10)
but
~HO|Y,) = E,O|¥,), (1.11)
or
H(©[¥:)) = —E; (©[¥,)). (1.12)

This would mean that (® |¥,,)) is an eigenket of H, but with a negative energy eigenvalue.

e O is antiunitary, where @i = —i®.
This time
if =i© 'HO, (1.13)
SO
OH = HO. (1.14)

Acting on an energy eigenket, we've got

OH [¥,) = E, (O [¥y)), (1.15)

and
(HO) [¥.) = H(@O[Y¥.)), (1.16)

so O |¥,) is an eigenstate with energy E,,.



What properties do we expect from ©@?  We expect

=>
=

(1.17)

|
L 41
= é)

where we have a sign flip in the time dependent momentum operator (and therefore angular mo-
mentum), but not for position. If we have

0 1@ =1%, (1.18)

if that’s true, then how about the momentum operator in the position basis

O 1pe=0""! (—iha> 0

ox
=@ ! (—ih) @i
= Y (1.19)
d
- ihe 1L
= zh? ®ax
= _P’
How about the x, p commutator? For that we have
O '[%,p]|®@=0"1(n0O
- — 2]
For the the angular momentum operators
]il' = eijk?jﬁkl (121)

the time reversal operator should flip the sign due to its action on p.

Time reversal acting on spin 1/2 (Fermions). Attempt 1.~ Consider two spin states | 1), |]). What should
the action of the time reversal operator on such a state be? Let’s (incorrectly) start by supposing that
the time reversal operator effects are

Ul .
O)=[1).
Given a general state so that if
) =alt)+bll), (1.23)

the action of the time reversal operator would be



O ) =a’|)+b" |1).

That action is:

a— b*
b—a*

Let’s consider whether or not such an action a spin operator with properties
[gi/ g]] = ieijkﬁk.

produce the desired inversion of sign
@7152'@ = —SAZ'.

The expectations of the spin operators (without any application of time reversal) are

(Y] 52 [¥) = 5 @ (1] + 0" (L) ox @[ T) + D [4))
(@ ([ +0" (L)@ ) +b]1)

(a*b+b*a),

NSNS N

A ]
(Fl5y [¥) =5 @ (M + 0" (Woy @[T) + b )
hi
= S @ (11 + b ()@ lh) = b))
h * *
=5 (a*b — b*a),

(¥15:[¥) =2 (@ (1] +b" (L oz @[t) —b[L)

(lal* = 18I*)

NSNS

The time reversed actions are

(¥1@718:0[¥) = 5 (a* (J[+b" (T ox @[L) +b][1))
(@ (H+6" (D @[1) +b 1)

(@*b+b*a),

SN S NS

"2

(1.24)

(1.25)

(1.26)

(1.27)

(1.28)

(1.29)

(1.30)

(1.31)



(¥1©15,0 %) = 2 (@ (1| +b* () ay (@ |1) + b[1)
=@ b (D al ) + b 1)
= % (—a*b+b*a),

(Y|@715.0[¥) =5 (@* (I +b" (T oz (@[l) +b[1))

@ (L +0" (M) (=al}) +b]T))
=5 (~laP+1oF)

SN S NS

We see that this is not right, because the sign for the x component has not been flipped.

Spin 1/2 (Fermions). Attempt II. ~ Again assuming

¥)=alt)+bll),
now try the action
QY)=a"|)—b"|1).
This is the action:
a— —b*
b—a*

The correct action of time reversal on the basis states (up to a phase choice) is

om=-h
o) =-I)

Note that acting the time reversal operator twice has the effects

@) =0
=—I1

@*[l) =0(— 1))
=—|1).

(1.32)

(1.33)

(1.34)

(1.35)

(1.36)

(1.37)

(1.38)

(1.39)

We end up with the same state we started with, but with the opposite sign. This means that as an

operator



-1 (1.40)
| |

This is try for half integer particles (Fermions) S = 1/2,3/2,5/2, - - -, but for Bosons with integer
spin S.

e%=1. (1.41)

Kramer’s degeneracy for Spin 1/2 (Fermions) Suppose we imagine there is state for which the action
of the time reversal operator products the same state, just different in phase

O[¥,) = [¥,) =’ |¥,), (1.42)
then o
©*[¥,) = @’ |¥y) (1.43)
— pi0,i0 7,),
but
e’ |¥,) = e O ¥)
— etzéezé ‘an> (1.44)
= ]‘I’n}
#—|¥u).

This is a contradiction, so we must have at least a two-fold degeneracy. This is called Kramer’s
degeneracy. In the homework we will show that this is not the case for integer spin particles.

1.2 Angular momentum

In classical mechanics the (orbital) angular momentum is
L=rxp. (1.45)

Here “orbital” is to distinguish from spin angular momentum.
In quantum mechanics, the mapping to operators, in component form, is

A

Ll' = eijk?jﬁk- (1.46)

These operators do not commute o X
[Li/ L]] = iheijkLk. (147)

which means that we can’t simultaneously determine £; for all i.
Aside: In quantum mechanics, we define an operator V to be a vector operator if

[t,‘, ‘7]] = ihez-jka. (1.48)



The commutator of the squared angular momentum operator with any L;, say L, is zero

L2402+ 12 L) = LyLyLy — Ly Ly + LLLy — LL.L.

]
+L, ([iz,ix +1 Az) — ([Lx L] +1 Ax) L. (1.49)
Y

Suppose we have a state [¥) with a well defined L, eigenvalue and well defined L2 eigenvalue,
written as

[¥) = |a,b), (1.50)

where the label a is used for the eigenvalue of L2 and b labels the eigenvalue of L.. Then
L% |a,b) = H*a|a,b)
L.|a,b) =hbla,b).

Things aren’t so nice when we act with other angular momentum operators, producing a scram-
bled mess

(1.51)

tx |a, b> = Z ’AZ,b,u’,b’ ﬂ/, b/>
a b
. ’ (1.52)
Ly|a,b) = Z Az,b,u’,b’ a',b')
a b
With this representation, we have
L,L%|a,b) = Liia Y AL o ld b)) (1.53)
a' b’
tztx ’11, b> = hz Z a/ izc,b,a’,b’ a/, b,> . (154)
a',b’
Since f.z, ﬁx commute, we must have
Ag,b’a,’b/ = (5ala1Afl‘,;b,b/, (1.55)
and similarly
Y _ Yy
‘Aa,b,a’,b’ = (5,1,,1/Aﬂ,;b,b,. (1.56)

Simplifying things we can write the action of L, ﬁy on the state as



Lx|ﬂ b ZAabb/

t |a,b) ZAubb’

)

Let’s define

Because these are sums of L, iy they must also commute with L2

A S

(L%, Li] =0.

The commutators with L, are non-zero

(L., L] =L.(Ly +il,) — (Ly +il,) L.
= [L., L) +i L., L]
=ih (L, Fily)
=h(il, £ Ly)
= +h (L, +iL,)
= +hl,.

Explicitly, that is

(1.57)

(1.58)

(1.59)

(1.60)

(1.61)

Now we are set to compute actions of these (assumed) raising and lowering operators on the eigen-

state of .,, L2

izti |€l, b> = hti |El, b> + titz |El, b>
= ﬁti ’tZ, b> + ﬁbti ‘IZ, b>
=h(b+1)Ls|ab).

There must be a proportionality of the form
|Li) o la,b+1),

The products of the raising and lowering operators are

(1.62)

(1.63)

(1.64)



and

Ll = (Le+ily) (Ly —ily)
=12+ 12 — il L, +il L,
i 2 72 T 7
= (L= L7) —i[Ly Ly] (1.65)
S . ; +hL,,
So we must have
0<(a,b|L_L,|ab)=(ab|(L? - L2 —HhL.) |a,b) = i*a — F*b* — KD, (1.66)
and
0< (a,b|L.L_|ab)=(ab| (L*—L2+hL,) |a,b) = H*a — F*b* + *D. (1.67)

This puts constraints on a, b, roughly of the form

1.
a—blb+1)>0 (1.68)
With bax > 0, bnax = /4.
2.
a—bb—-1)>0 (1.69)
With bmm < 0, bmax =~ _\/E.
Exercise 1 Angular momentum commutators
Using L= €ijx?jPx, show that
[ti, t]} = ihei]‘ktk (1.70)

Answer of exercise 1

Let’s start without using abstract index expressions, computing the commutator for L1, L.,, which
should show the basic steps required

a N

(L1, Ly] = [P2p3 — P3P, P3p1 — P1P3] (1.71)
= [Paps, Pap1] — [PoP3, P1P3] — [P3pa, Papa] + [Papa, P1pP3] -
The first of these commutators is
(P23, Pafn| = Papafapr — Papafaps

= Pop1 [P3, 3]
= _iltapy.

(1.72)



We see that any factors in the commutator don’t have like indexes (i.e. 7, px) on both position and
momentum terms, can be pulled out of the commutator. This leaves

(L1, Lo] = #2p1 [p3, 73] M—M-Fﬁpz #3, p3)
— 4 ( 5 f,

(1.73)

With cyclic permutation this is really enough to consider eq. (1.70) proven. However, can we do
this in the general case with the abstract index expression? The quantity to simplify looks forbidding

[Li, Li] = €iavejst [Pabp, 5Pt (1.74)

Because there are no repeated indexes, this doesn’t submit to any of the normal reduction identities.
Note however, since we only care about the i # j case, that one of the indexes a, b must be j for this
quantity to be non-zero. Therefore (for i # j)

[L;, i'j] = €ijb€jst 7] 15 Fspi } + eiujejst [

mﬁ) ﬁ)

i [VJPb — Popj, Pspi]
= [r]ph — Pppj, PpPi — Pipy] 1.75)
= [Fipo, 2opi] = (1] = [1uiropi] + [1upy i)
= ?ipi [Po, o) + Pibj [P, Po)
=i (7ip; — #ipi)
= iheijk?iﬁj.
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