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PHY1520H Graduate Quantum Mechanics. Lecture 15: angular
momentum rotation representation, and angular momentum addition.
Taught by Prof. Arun Paramekanti

Disclaimer Peeter’s lecture notes from class. These may be incoherent and rough.
These are notes for the UofT course PHY1520, Graduate Quantum Mechanics, taught by Prof.

Paramekanti, covering ch. 3 [1] content.

Angular momentum (wrap up.) We found

L̂2 |j, m〉 = j(j + 1)h̄2 |j, m〉
L̂z |j, m〉 = h̄m |j, m〉

L̂± |j, m〉 = h̄
√

(j∓m)(j±m + 1) |j, m± 1〉
(1.1)

or Schwinger

L̂z =
1
2
(n̂1 − n̂2) h̄

L̂+ = a†
1a2h̄

L̂− = a1a†
2 h̄

j =
1
2
(n̂1 + n̂2) ,

(1.2)

where each of the a1, a2 operators obey [
a1, a†

1

]
= 1[

a2, a†
2

]
= 1

(1.3)

and any pair of different index a operators commute, as in[
a1, a†

2

]
= 0. (1.4)
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Representations It’s possible to compute matrix representations of the rotation operators

R̂n̂(φ) = eiL̂·n̂φ/h̄. (1.5)

With respect to a ket it’s possible to find

eiL̂·n̂φ/h̄ |j, m〉 = ∑
m′

dj
mm′(n̂, φ)

∣∣j, m′
〉

. (1.6)

This has a block diagonal form that’s sketched in fig. 1.1.

Figure 1.1: Block diagonal form for angular momentum matrix representation.

We can view dj
mm′(n̂, φ) as a matrix, representing the rotation. The problem of determining these

matrices can be reduced to that of determining the matrix for L̂, because once we have that we can
exponentiate that.

Example: spin 1/2 From the eigenvalue relationships, with basis states

|↑〉 =
[

1
0

]
|↓〉 =

[
0
1

] (1.7)

we find

L̂z =
h̄
2

[
1 0
0 −1

]
L̂+ =

h̄
2

[
0 1
0 0

]
L̂− =

h̄
2

[
0 0
1 0

]
.

(1.8)

Rearranging we find the Pauli matrices

(1.9)L̂k =
1
2

h̄σi.
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Noting that (σ · n̂)2 = 1, and (σ · n̂)3 = σ · n̂, the rotation matrix is

(1.10)eiσ·n̂φ/2
∣∣∣∣12 , m

〉
=
(
cos(φ/2) + iσ · n̂ sin(φ/2)

) ∣∣∣∣12 , m
〉

.

The steps are

1. Enumerate the states.
j1 =

1
2
↔ 2 states (dimension of irrep = 2) (1.11)

2. Construct the L̂ matrices.

3. Construct dj
mm′(n̂, φ).

Angular momentum operator in space representation For L = 1 it turns out that the rotation matrices
turn out to be the 3D rotation matrices. In the space representation

(1.12)L = r × p,

the coordinates of the operator are

(1.13)L̂k = iεkmnrm

(
−ih̄

∂

∂rn

)
We see that scaling r → αr does not change this operator, allowing for an angular representation

L̂k(θ, φ) that have the form

(1.14)
L̂z = −ih̄

∂

∂φ

L̂± = h̄
(
± ∂

∂θ
+ i cot θ

∂

∂φ

)
.

Here θ and φ are the polar and azimuthal angles respectively as illustrated in fig. 1.2.

Figure 1.2: Spherical coordinate convention.

The equivalent wave function representation of the problem is
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L̂Ylm(θ, φ) = h̄2l(l + 1)Ylm(θ, φ)

L̂zYlm(θ, φ) = h̄mYlm(θ, φ)
(1.15)

One can find these functions

(1.16)Ylm(θ, φ) = Pl,m(cos θ)eimφ,

where Pl,m(cos θ) are called the associated Legendre polynomials. This can be applied whenever
we have

(1.17)
[
H, L̂k

]
= 0.

where all the eigenfunctions will have the form

(1.18)Ψ(r, θ, φ) = R(r)Ylm(θ, φ).

1.1 Addition of angular momentum

Since L̂ is a vector we expect to be able to add angular momentum in some way similar to the addition
of classical vectors as illustrated in fig. 1.3.

Figure 1.3: Classical vector addition.

When we have a potential that depends only on the difference in position V(r1− r2) then we know
from classical problems it is effective to work in center of mass coordinates

R̂cm =
r̂1 + r̂2

2
P̂cm = p̂1 + p̂2

(1.19)

where

(1.20)
[
R̂i, P̂j

]
= ih̄δij.

Given

(1.21)L̂1 + L̂2 = L̂tot,

do we have
(1.22)

[
L̂tot,i, L̂tot,j

]
= ih̄εijk L̂tot,k?
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That is

(1.23)
[
L̂1,i + L̂1,j, L̂2,i + L̂2,j

]
= ih̄εijk

(
L̂1,k + L̂1,k

)
FIXME: Right at the end of the lecture, there was a mention of something about whether or not L̂2

1
and L̂1,z were sharply defined, but I missed it. Ask about this if not covered in the next lecture.
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