## PHY1520H Graduate Quantum Mechanics. Lecture 15: angular momentum rotation representation, and angular momentum addition. Taught by Prof. Arun Paramekanti

*Disclaimer* Peeter's lecture notes from class. These may be incoherent and rough.

These are notes for the UofT course PHY1520, Graduate Quantum Mechanics, taught by Prof. Paramekanti, covering ch. 3 [1] content.

Angular momentum (wrap up.) We found

$$\hat{\mathbf{L}}^{2}|j,m\rangle = j(j+1)\hbar^{2}|j,m\rangle$$

$$\hat{\mathbf{L}}_{z}|j,m\rangle = \hbar m |j,m\rangle$$

$$\hat{\mathbf{L}}_{\pm}|j,m\rangle = \hbar \sqrt{(j \mp m)(j \pm m + 1)} |j,m \pm 1\rangle$$
(1.1)

or Schwinger

$$\hat{L}_{z} = \frac{1}{2} (\hat{n}_{1} - \hat{n}_{2}) \hbar$$

$$\hat{L}_{+} = a_{1}^{\dagger} a_{2} \hbar$$

$$\hat{L}_{-} = a_{1} a_{2}^{\dagger} \hbar$$

$$j = \frac{1}{2} (\hat{n}_{1} + \hat{n}_{2}),$$
(1.2)

where each of the  $a_1, a_2$  operators obey

$$\begin{bmatrix} a_1, a_1^{\dagger} \end{bmatrix} = 1$$

$$\begin{bmatrix} a_2, a_2^{\dagger} \end{bmatrix} = 1$$
(1.3)

and any pair of different index *a* operators commute, as in

$$\left[a_1, a_2^{\dagger}\right] = 0. \tag{1.4}$$

*Representations* It's possible to compute matrix representations of the rotation operators

$$\hat{R}_{\hat{\mathbf{n}}}(\phi) = e^{i\hat{\mathbf{L}}\cdot\hat{\mathbf{n}}\phi/\hbar}.$$
(1.5)

With respect to a ket it's possible to find

$$e^{i\hat{\mathbf{L}}\cdot\hat{\mathbf{n}}\phi/\hbar}\left|j,m\right\rangle = \sum_{m'} d^{j}_{mm'}(\hat{\mathbf{n}},\phi)\left|j,m'\right\rangle.$$
(1.6)

This has a block diagonal form that's sketched in fig. 1.1.





We can view  $d_{mm'}^{j}(\hat{\mathbf{n}}, \phi)$  as a matrix, representing the rotation. The problem of determining these matrices can be reduced to that of determining the matrix for  $\hat{\mathbf{L}}$ , because once we have that we can exponentiate that.

*Example: spin 1/2* From the eigenvalue relationships, with basis states

$$\begin{split} |\uparrow\rangle &= \begin{bmatrix} 1\\0 \end{bmatrix} \\ |\downarrow\rangle &= \begin{bmatrix} 0\\1 \end{bmatrix} \end{split} \tag{1.7}$$

we find

$$\hat{L}_{z} = \frac{\hbar}{2} \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} 
\hat{L}_{+} = \frac{\hbar}{2} \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} 
\hat{L}_{-} = \frac{\hbar}{2} \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}.$$
(1.8)

Rearranging we find the Pauli matrices

$$\hat{L}_k = \frac{1}{2}\hbar\sigma_i. \tag{1.9}$$

Noting that  $(\boldsymbol{\sigma} \cdot \hat{\mathbf{n}})^2 = 1$ , and  $(\boldsymbol{\sigma} \cdot \hat{\mathbf{n}})^3 = \boldsymbol{\sigma} \cdot \hat{\mathbf{n}}$ , the rotation matrix is

$$e^{i\boldsymbol{\sigma}\cdot\hat{\mathbf{n}}\phi/2}\left|\frac{1}{2},m\right\rangle = \left(\cos(\phi/2) + i\boldsymbol{\sigma}\cdot\hat{\mathbf{n}}\sin(\phi/2)\right)\left|\frac{1}{2},m\right\rangle.$$
(1.10)

The steps are

1. Enumerate the states.

$$j_1 = \frac{1}{2} \leftrightarrow 2 \text{ states (dimension of irrep = 2)}$$
 (1.11)

- 2. Construct the  $\hat{L}$  matrices.
- 3. Construct  $d_{mm'}^j(\hat{\mathbf{n}}, \phi)$ .

Angular momentum operator in space representation For L = 1 it turns out that the rotation matrices turn out to be the 3D rotation matrices. In the space representation

$$\mathbf{L} = \mathbf{r} \times \mathbf{p},\tag{1.12}$$

the coordinates of the operator are

$$\hat{L}_{k} = i\epsilon_{kmn}r_{m}\left(-i\hbar\frac{\partial}{\partial r_{n}}\right)$$
(1.13)

We see that scaling  $\mathbf{r} \to \alpha \mathbf{r}$  does not change this operator, allowing for an angular representation  $\hat{L}_k(\theta, \phi)$  that have the form

$$\hat{L}_{z} = -i\hbar \frac{\partial}{\partial \phi} 
\hat{L}_{\pm} = \hbar \left( \pm \frac{\partial}{\partial \theta} + i \cot \theta \frac{\partial}{\partial \phi} \right).$$
(1.14)

Here  $\theta$  and  $\phi$  are the polar and azimuthal angles respectively as illustrated in fig. 1.2.



Figure 1.2: Spherical coordinate convention.

The equivalent wave function representation of the problem is

$$\hat{\mathbf{L}}Y_{lm}(\theta,\phi) = \hbar^2 l(l+1)Y_{lm}(\theta,\phi)$$

$$\hat{L}_z Y_{lm}(\theta,\phi) = \hbar m Y_{lm}(\theta,\phi)$$
(1.15)

One can find these functions

$$Y_{lm}(\theta,\phi) = P_{l,m}(\cos\theta)e^{im\phi},\tag{1.16}$$

where  $P_{l,m}(\cos \theta)$  are called the associated Legendre polynomials. This can be applied whenever we have

$$\left[H, \hat{L}_k\right] = 0. \tag{1.17}$$

where all the eigenfunctions will have the form

$$\Psi(r,\theta,\phi) = R(r)Y_{lm}(\theta,\phi).$$
(1.18)

## 1.1 Addition of angular momentum

Since  $\hat{\mathbf{L}}$  is a vector we expect to be able to add angular momentum in some way similar to the addition of classical vectors as illustrated in fig. 1.3.



Figure 1.3: Classical vector addition.

When we have a potential that depends only on the difference in position  $V(\mathbf{r}_1 - \mathbf{r}_2)$  then we know from classical problems it is effective to work in center of mass coordinates

. .

$$\hat{\mathbf{R}}_{cm} = \frac{\hat{\mathbf{r}}_1 + \hat{\mathbf{r}}_2}{2}$$
  
 $\hat{\mathbf{P}}_{cm} = \hat{\mathbf{p}}_1 + \hat{\mathbf{p}}_2$ 
(1.19)

where

$$\left[\hat{R}_{i},\hat{P}_{j}\right]=i\hbar\delta_{ij}.\tag{1.20}$$

Given

$$\hat{\mathbf{L}}_1 + \hat{\mathbf{L}}_2 = \hat{\mathbf{L}}_{\text{tot}},\tag{1.21}$$

$$\left[\hat{L}_{\text{tot},i}, \hat{L}_{\text{tot},j}\right] = i\hbar\epsilon_{ijk}\hat{L}_{\text{tot},k}?$$
(1.22)

do we have

That is

$$\left[\hat{L}_{1,i} + \hat{L}_{1,j}, \hat{L}_{2,i} + \hat{L}_{2,j}\right] = i\hbar\epsilon_{ijk}\left(\hat{L}_{1,k} + \hat{L}_{1,k}\right)$$
(1.23)

FIXME: Right at the end of the lecture, there was a mention of something about whether or not  $\hat{\mathbf{L}}_1^2$  and  $\hat{L}_{1,z}$  were sharply defined, but I missed it. Ask about this if not covered in the next lecture.

## Bibliography

[1] Jun John Sakurai and Jim J Napolitano. Modern quantum mechanics. Pearson Higher Ed, 2014. 1