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PHY1520H Graduate Quantum Mechanics. Lecture 19: Variational
method. Taught by Prof. Arun Paramekanti

Disclaimer Peeter’s lecture notes from class. These may be incoherent and rough.
These are notes for the UofT course PHY1520, Graduate Quantum Mechanics, taught by Prof.

Paramekanti, covering ch. 5 [1] content.

Variational method Today we want to use the variational degree of freedom to try to solve some
problems that we don’t have analytic solutions for.

Anharmonic oscillator
V(x) =

1
2

mω2x2 + λx4, λ ≥ 0. (1.1)

With the potential growing faster than the harmonic oscillator, which had a ground state solution

(1.2)ψ(x) =
1

π1/4

1

a1/2
0

e−x2/2a2
0 ,

where

(1.3)a0 =

√
h̄

mω
.

Let’s try allowing a0 → a, to be a variational degree of freedom

(1.4)ψa(x) =
1

π1/4

1
a1/2

e−x2/2a2
,

(1.5)〈ψa|H |ψa〉 = 〈ψa|
p2

2m
+

1
2

mω2x2 + λx4 |ψa〉

We can find
(1.6)

〈
x2〉 =

1
2

a2

(1.7)
〈

x4
〉

=
3
4

a4
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Define

(1.8)ω̃ =
h̄

ma2 ,

so that

(1.9)

Ea = 〈ψa|
(

p2

2m
+

1
2

mω̃2x2
)

+
(

1
2

m
(
ω2 − ω̃2) x2 + λx4

)
|ψa〉

=
1
2

h̄ω̃ +
1
2

m
(
ω2 − ω̃2) 1

2
a2 +

3
4

λa4.

Write this as

(1.10)Eω̃ =
1
2

h̄ω̃ +
1
4

h̄
ω̃

(
ω2 − ω̃2) +

3
4

λ
h̄2

m2ω̃2 .

This might look something like fig. 1.1.

Figure 1.1: Energy after perturbation.

Demand that

(1.11)

0 =
∂Eω̃

∂ω̃

=
h̄
2
− h̄

4
ω2

ω̃2 −
h̄
4

+
3
4

(−2)
λh̄2

m2ω̃3

=
h̄
4

(
1− ω2

ω̃2 − 6
λh̄

m2ω̃3

)
or

(1.12)ω̃3 − ω2ω̃ − 6λh̄
m2 = 0.

for λa4
0 � h̄ω, we have something like ω̃ = ω + ε. Expanding eq. (1.12) to first order in ε, this gives

ω3 + 3ω2ε−ω2 (ω + ε)− 6λh̄
m2 = 0, (1.13)

so that

2



Table 1.1: Comparing numeric and variational solutions
h̄/ω numeric variational
100 3.13 3.16
1000 6.69 6.81

2ω2ε =
6λh̄
m2 , (1.14)

and

h̄ε =
3λh̄2

m2ω2 = 3λa4
0. (1.15)

Plugging into

(1.16)

Eω+ε =
1
2

h̄ (ω + ε) +
1
4

h̄
ω

(
−2ωε + ε2) +

3
4

λ
h̄2

m2ω2

≈ 1
2

h̄ (ω + ε)− 1
2

h̄ε +
3
4

λ
h̄2

m2ω2

=
1
2

h̄ω +
3
4

λa4
0.

With eq. (1.15), that is

Eω̃=ω+ε ≈
1
2

h̄
(

ω +
ε

2

)
. (1.17)

The energy levels are shifted slightly for each shift in the Hamiltonian frequency.
What do we have in the extreme anharmonic limit, where λa4

0 � h̄ω. Now we get

ω̃∗ =
(

6h̄λ

m2

)1/3

, (1.18)

and

Eω̃∗ =
h̄4/3λ1/3

m2/3

3
8

61/3. (1.19)

(this last result is pulled from a web treatment somewhere of the anharmonic oscillator). Note
that the first factor in this energy, with h̄4λ/m2 traveling together could have been worked out on
dimensional grounds.

This variational method tends to work quite well in these limits. For a system where m = ω = h̄ = 1,
for this problem, we have
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Figure 1.2: Double well potential.

Example: (sketch) double well potential

V(x) =
mω2

8a2 (x− a)2 (x + a)2 . (1.20)

Note that this potential, and the Hamiltonian, both commute with parity.
We are interested in the regime where a2

0 = h̄
mω � a2.

Near x = ±a, this will be approximately

V(x) =
1
2

mω2 (x± a)2 . (1.21)

Guessing a wave function that is an eigenstate of parity

Ψ± = g± (φR(x)± φL(x)) . (1.22)

perhaps looking like the even and odd functions sketched in fig. 1.3, and fig. 1.4.

Figure 1.3: Even double well function

Using harmonic oscillator functions

φL(x) = ΨH.O.(x + a)
φR(x) = ΨH.O.(x− a)

(1.23)

After doing a lot of integral (i.e. in the problem set), we will see a splitting of the variational energy
levels as sketched in fig. 1.5.

This sort of level splitting was what was used in the very first mazers.
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Figure 1.4: Odd double well function

Figure 1.5: Splitting for double well potential.

Perturbation theory (outline) Given

H = H0 + λV, (1.24)

where λV is “small”. We want to figure out the eigenvalues and eigenstates of this Hamiltonian

H |n〉 = En |n〉 . (1.25)

We don’t know what these are, but do know that

H0

∣∣∣n(0)
〉

= E(0)
n

∣∣∣n(0)
〉

. (1.26)

We are hoping that the level transitions have adiabatic transitions between the original and per-
turbed levels as sketched in fig. 1.6.

Figure 1.6: Adiabatic transitions.

and not crossed level transitions as sketched in fig. 1.7.
If we have level crossings (which can in general occur), as opposed to adiabatic transitions, then

we have no hope of using perturbation theory.

5



Figure 1.7: Crossed level transitions.
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